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ABSTRACT As a crucial means for stability analysis in control systems, the Lyapunov equation is applied
in many fields of science and engineering. There are some methods proposed and studied for solving the
non-stationary Lyapunov equation, such as the zeroing neural network (ZNN) model. However, a common
drawback these methods have is that they rarely tolerate noises. Therefore, given that the existence of various
types of noises during computation, a noise-tolerant ZNN (NTZNN)model with anti-noise ability is proposed
for solving the non-stationary Lyapunov equation in this paper. For comparison, the conventional ZNN
(CZNN) model is also applied to solve the same problem. Furthermore, theoretical analyses are provided to
prove the global and exponential convergence performance of the proposed NTZNN model in the absence
of noises. On this basis, the anti-noise performance of the proposed NTZNN model is proven. Finally,
by adopting the proposed NTZNN model and the CZNN model to solve the non-stationary Lyapunov
equation, computer simulations are conducted under the noise-free case and the noisy case, respectively.
The simulation results indicate that the proposed NTZNNmodel is practicable for solving the non-stationary
Lyapunov equation and superior to the CZNN model at the existence of noises.

INDEX TERMS Non-stationary Lyapunov equation, noise-tolerant zeroing neural network (NTZNN),
conventional zeroing neural network (CZNN), global and exponential convergence.

I. INTRODUCTION
As a crucial means for stability analysis in control
systems [1], the Lyapunov equation is applied in many
fields of science and engineering, such as boundary value
problems [2], model order reduction [3], multi-agent sys-
tems [4], and Markov jump linear systems [5]. Thus, solving
the Lyapunov equation has been a focus in recent decades.

The typical methods to solve the Lyapunov equation
are numerical algorithms, which include two types meth-
ods, i.e., direct methods and iterative methods [3], [6].
Some direct methods, such as Bartels-Stewart methods
and Hammarling methods, which are based on the Schur
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decomposition, are feasible for solving non-large-scale
Lyapunov equations. Then, iterative methods become pop-
ular after being employed in large scale sparse problems.
Particularly, the alternating direction implicit (ADI) itera-
tion presented by Eugene L. Wachspress is strongly com-
petitive [7]. After that, some extended ADI iterations are
presented and applied [8]–[10]. Another method that rivals
the ADI iteration is the Krylov subspace method [11]–[13],
which uses the projection strategy in the iterative pro-
cess. Recently, rational Krylov subspace method appears
in many literatures [14]–[17]. The generalized minimal
residual method is employed to solve the Lyapunov
equation in multi-agent systems [4]. In [1], Sun and
Zhang propose quantum algorithms to exponentially accel-
erate the process of solving the Lyapunov equation.
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It is worth pointing out that the above methods are used to
solve the stationary Lyapunov equation but may be inappli-
cable in non-stationary problemswith parameters varying fast
with time.

In recent decades, neural network has become a
focus [18]–[23]. Due to the parallel-distributed process-
ing property, recurrent neural network (RNN) is applied
in many fields [24]–[27], especially for time-varying
problems [28]–[32]. Furthermore, a lot of attention is paid to
solving the Lyapunov equation by using various RNN mod-
els. The gradient-based neural network (GNN) model [33],
[34] and the zeroing neural network (ZNN) model [34]–[36]
are two typical RNN models to solve the Lyapunov equation.
Thereinto, GNN model is designed for solving stationary
problems, while ZNN model is used to solve stationary and
non-stationary problems [34]. For non-stationary Lyapunov
equations, ZNN model is able to converge to theoretical
solution due to the use of time derivative information. In
addition, there are some extensions of ZNNmodel [35], [36].
It is important to note that the above methods are employed
in the absence of noises.

Given that the existence of noises generated by model
implementation, measurement error, external interference
and so on [37], this paper aims to solve the non-stationary
Lyapunov equation at the existence of various types of
noises, by proposing a noise-tolerant zeroing neural network
(NTZNN) model. The remainder of the paper is divided into
four parts. In Section II, the problem formulation is presented
and the NTZNNmodel for this problem is proposed, with the
conventional ZNN (CZNN) model introduced. In Section III,
we give theoretical analysis for the convergence performance
of the proposed NTZNN model under the noise-free case
and the noisy case. In Section IV, computer simulations are
conducted by adopting the proposed NTZNN model and
the CZNN model respectively, and the results show that
the proposed NTZNN model has a prominent superiority to
the CZNN model in tolerating noises for the non-stationary
Lyapunov equation solving.

II. PROBLEM FORMULATION AND NTZNN MODEL
First of all, the problem formulation of the non-stationary
Lyapunov equation is presented in this section. Then, in order
to solve this problem, a NTZNN model is proposed and the
existing CZNN model is introduced.

A. PROBLEM FORMULATION
In this paper, we consider the following non-stationary
Lyapunov matrix equation:

MT(t)Y (t)+ Y (t)M (t)+ N (t) = 0, (1)

where M (t) ∈ Rn×n and N (t) ∈ Rn×n denote non-stationary
coefficient matrices and MT(t) ∈ Rn×n is the transposed
matrix ofM (t). Y (t) is an unknown non-stationary matrix for
the solution of (1). Note that, (1) has a unique solution [34].
For solving the non-stationary Lyapunov equation (1),

we propose the NTZNN model with anti-noise ability in the
ensuing Section II-B.

B. NTZNN MODEL
We define the following error function:

E(t) = MT(t)Y (t)+ Y (t)M (t)+ N (t). (2)

Next, the evolution formula is designed as [38]:

Ė(t) = −ζ E(t)− η
∫ t

0
E(δ)dδ, (3)

where ζ > 0 ∈ R and η > 0 ∈ R. For the above linear
system, the superposition principle can be applied to decom-
pose the output when input is decomposable. Combining (2)
and (3), the followingNTZNNmodel can be given as follows:

MT(t)Ẏ (t)+ Ẏ (t)M (t) = −ṀT(t)Y (t)− Y (t)Ṁ (t)− Ṅ (t)

− ζ [MT(t)Y (t)+Y (t)M (t)+N (t)]

−η

∫ t

0
[MT(δ)Y (δ)+ Y (δ)M (δ)

+N (δ)]dδ, (4)

where Y (t) ∈ Rn×n starts from the initial state Y (0). Besides,
the conventional ZNN model can be obtained from [39] as

MT(t)Ẏ (t)+ Ẏ (t)M (t)

= −ṀT(t)Y (t)− Y (t)Ṁ (t)− Ṅ (t)

− ζ [MT(t)Y (t)+Y (t)M (t)+N (t)]. (5)

Considering the existence of various types of noises, the pro-
posed NTZNN model (4) turns to

MT(t)Ẏ (t)+ Ẏ (t)M (t) = −ṀT(t)Y (t)− Y (t)Ṁ (t)− Ṅ (t)

− ζ [MT(t)Y (t)+Y (t)M (t)+N (t)]

− η

∫ t

0
[MT(δ)Y (δ)

+Y (δ)M (δ)+ N (δ)]dδ + T (t),

(6)

where T (t) ∈ Rn×n stands for noises in matrix form.

III. THEORETICAL ANALYSES OF NTZNN
In this section, we discuss the convergence performance of
the CZNN model (5) and the proposed NTZNN model (4).
It has been presented in [39] that the output Y (t) of the
CZNN model for solving the non-stationary Lyapunov equa-
tion converges globally and exponentially to the theoretical
solution of (1). In addition, in the absence of noises, the global
and exponential convergence performance of the proposed
NTZNN model is proven. Furthermore, the robustness of the
proposed NTZNNmodel is studied at the existence of noises.

A. CONVERGENCE OF NTZNN
In this subsection, we discuss the proposed NTZNN
model (4) and prove its global and exponential convergence
performance in the absence of noises.
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Theorem 1: The output Y (t) of the proposed NTZNN
model (4), which is randomly initialized, converges globally
and exponentially to the theoretical solution of the non-
stationary Lyapunov equation (1) as time evolves.

Proof: Let σ (t) =
∫ t
0 E(δ)dδ, with eij(t), σij(t),

σ̇ij(t), σ̈ij(t) respectively being the ijth element of E(t), σ (t),
σ̇ (t), σ̈ (t). In this way, the ijth subsystem of the evolution
formula (3) turns to

σ̈ij(t) = −ζ σ̇ij(t)− η σij(t), ∀i, j ∈ 1, . . . , n. (7)

λ1 = (−ζ +
√
ζ 2 − 4η)/2 and λ2 = (−ζ −

√
ζ 2 − 4η)/2

are characteristic roots of (7), located on the left half-plane
with ζ > 0 and η > 0. Thus, the second-order system (7) is
stable. Moreover, in terms of different ζ and η, the following
analyses are given with the initial values σij(0) = 0 and
σ̇ij(0) = eij(0).

1) For ζ 2 > 4η, λ1 6= λ2, we get the solution to (7):

σij(t) = C1 exp(λ1t)+ C2 exp(λ2t),

where C1 and C2 are unknown coefficients that can be
obtained by using initial values σij(0) = 0 and σ̇ij(0) =
eij(0). Next, we have

σij(t) =
eij(0)[exp(λ1t)− exp(λ2t)]√

ζ 2 − 4η
,

of which the derivative is

eij (t) =
eij(0)[λ1 exp(λ1t)− λ2 exp(λ2t)]√

ζ 2 − 4η
.

Finally, we get the error in matrix form:

E(t) =
E(0)[λ1 exp(λ1t)− λ2 exp(λ2t)]√

ζ 2 − 4η
.

2) For ζ 2
= 4η, λ1 = λ2, we get the error in matrix form

in the similar way:

E(t) = E(0)[exp(λ1t)+ λ1t exp(λ1t)].

3) For ζ 2 < 4η, λ1 = α + iβ and λ2 = α − iβ, we get the
error in matrix form in the similar way:

E(t) = E(0) exp(αt)[
α

β
sin(βt)+ cos(βt)].

It can be generalized from the proof in [40, Th. 1] that the
error E(t), which is randomly initialized, converges globally
and exponentially to zero while ζ > 0 and η > 0. Fur-
thermore, combining the analyses of the above three cases,
we draw the conclusion that the output Y (t) of the proposed
NTZNN model (4) for solving the non-stationary Lyapunov
equation converges globally and exponentially to the theoret-
ical solution of (1). The proof is thus completed.

B. NTZNN AT THE EXISTENCE OF NOISES
In this section, we discuss the robustness of the proposed
NTZNNmodel (4) at the existence of various types of noises,
i.e., linear noises, and random noises.
a) Linear Noises: To discuss the robustness of the pro-

posed NTZNN model (4) at the existence of linear noises,
we present the following theorem.

Theorem 2: At the existence of the linear noise T (t) =
Tt + τ ∈ Rn×n, where T and τ are constants, the upper
bound of the steady-state error limt→∞ ‖E(t)‖F of the noise-
polluted NTZNN model (6) is ‖T‖F/η, and limt→∞ ‖E(t)‖F
approaches to zero while η approaches to positive infinity.
In addition, when T = 0, the linear noise T (t) = Tt + τ
degrades to constant noise T (t) = τ , and the residual error
converges to zero globally.

Proof: The Laplace transform [41] of the linear-noise-
polluted NTZNN model Ė(t) = −ζ E(t) − η

∫ t
0 E(δ)dδ +

Tt + τ is

sE(s)− E(0) = −ζ E(s)−
η

s
E(s)+

T

s2
+
τ

s
, (8)

where T/s2+ τ/s is the Laplace transform of the linear noise
T (t) = Tt + τ . Then, (8) can be rewritten as

E(s) =
s[E(0)+ T/s2 + τ/s]

s2 + sζ + η
,

of which the poles are s1 = (−ζ +
√
ζ 2 − 4η)/2 and s2 =

(−ζ−
√
ζ 2 − 4η)/2, located on the left half-plane with ζ > 0

and η > 0. Thus, this system is stable. According to the final
value theorem [41], we obtain

lim
t→∞

E(t) = lim
s→0

sE(s) = lim
s→0

s2[E(0)+ T/s2 + τ/s]

s2 + sζ + η
=
T

η
.

Thus, we draw the conclusion that limt→∞ ‖E(t)‖F =
‖T‖F/η and limt→∞ ‖E(t)‖F → 0 as η → ∞. When
T = 0, limt→∞ ‖E(t)‖F = 0. That is, the output Y (t) of the
linear-noise-polluted NTZNN model arbitrarily approaches
to the theoretical solution of the non-stationary Lyapunov
equation (1) as long as η is sufficiently large. In addition,
at the existence of constant noises, the steady-state error of
the proposed NTZNN model converges to zero. The proof is
completed.

As for the linear-noise-polluted CZNNmodel, we study its
performance in the similar way. The Laplace transform [41]
of the linear-noise-polluted CZNN model Ė(t) = −ζ E(t)+
Tt + τ is

sE(s)− E(0) = −ζ E(s)+
T

s2
+
τ

s
.

Similar to the proof to Theorem 2, we obtain

lim
t→∞

E(t) = lim
s→0

sE(s) = lim
s→0

T/s+ τ

ζ
=


∞, T 6= 0,

τ

ζ
, T = 0.

Thus, we draw the conclusion that when T 6= 0, limt→∞ ‖

E(t)‖F = ∞ and when T = 0, limt→∞ ‖E(t)‖F = ‖τ‖F/ζ .
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That is, the steady-state error of the linear-noise-polluted
CZNN model goes to infinite when T 6= 0. In addition, when
T = 0, the linear noise becomes constant noise T (t) = τ ,
with the steady-state error converging to the constant ‖τ‖F/ζ .
Based on the above analyses, it is obvious that the proposed

NTZNN model (4) is superior to the CZNN model (5) at the
existence of linear noises.
b) Bounded Random Noises: In practical applications, ran-

dom noises are more common than linear noises. To discuss
the performance of the proposed NTZNN model (4) at the
existence of bounded random noises, we present the follow-
ing theorem.

Theorem 3: At the existence of the bounded ran-
dom noise T (t) = ω(t) ∈ Rn×n, the steady-state error
limt→∞ ‖E(t)‖F of the noise-polluted NTZNN model (6)
is bounded. Furthermore, limt→∞ ‖E(t)‖F can be arbitrarily
small, while ζ is sufficiently large and η is appropriate.

Proof: The ijth subsystem of the bounded random noise-
polluted NTZNNmodel Ė(t) = −ζ E(t)−η

∫ t
0 E(δ)dδ+ω(t)

can be rewritten as

ėij(t)=−ζ eij(t)−η
∫ t

0
eij(δ)dδ+ωij(t), ∀i, j ∈ 1, . . . , n.

(9)

Next, upper bounds of steady-state errors can be obtained
by the following analyses in terms of different ζ and η. Note
that λ1, λ2 and α, β have been defined in Theorem 1.
1) For ζ 2 > 4η, λ1 6= λ2, we get the solution to (9):

eij(t) =
eij(0)[λ1 exp(λ1t)− λ2 exp(λ2t)]√

ζ 2 − 4η
+

1√
ζ 2 − 4η

×

∫ t

0
{λ1 exp[λ1(t − δ)]

− λ2 exp[λ2(t − δ)]}ωij(δ)dδ.

According to the triangle inequality, we get

|eij(t)| ≤
|eij(0)[λ1 exp(λ1t)− λ2 exp(λ2t)]|√

ζ 2 − 4η

+

∫ t
0 |λ1 exp[λ1(t − δ)]ωij(δ)|dδ√

ζ 2 − 4η

+

∫ t
0 |λ2 exp[λ2(t − δ)]ωij(δ)|dδ√

ζ 2 − 4η
.

Furthermore, we get

|eij(t)| ≤
|eij(0)[λ1 exp(λ1t)− λ2 exp(λ2t)]|√

ζ 2 − 4η

+
2
∫ t
0 |λ2 exp[λ2(t − δ)]|dδ√

ζ 2 − 4η
max
0≤δ≤t

|ωij(δ)|.

Due to∫ t

0
|λ2 exp[λ2(t − δ)]|dδ =

∫ t

0
{−λ2 exp[λ2(t − δ)]}dδ

= 1− exp(λ2t) ≤ 1,

we derive

|eij(t)| ≤
|eij(0)[λ1 exp(λ1t)− λ2 exp(λ2t)]|√

ζ 2 − 4η

+
2√

ζ 2 − 4η
max
0≤δ≤t

|ωij(δ)|.

Finally, in accordance with the proof in [40, Th. 1],
we get

lim
t→∞
‖E(t)‖F ≤

2n√
ζ 2 − 4η

sup
0≤δ≤t

|ωij(δ)|.

2) For ζ 2
= 4η, λ1 = λ2, we get the solution to (9):

eij(t) = eij(0)[exp(λ1t)+ λ1t exp(λ1t)]

+

∫ t

0
{exp[λ1(t − δ)]

+ λ1(t − δ) exp[λ1(t − δ)]}ωij(δ)dδ.

From the proof in [40, Th. 1], there exist ι > 0 and
κ > 0, so that |λ1|t exp(λ1t) ≤ ι exp(−κ t). Combining
the above inequality and the proof of the case 1), we get

lim
t→∞
‖E(t)‖F ≤

(
ι

κ
−

1

λ1

)
n sup

0≤δ≤t
|ωij(δ)|.

3) For ζ 2 < 4η, λ1 = α + iβ, λ2 = α − iβ, we get the
solution to (9):

eij(t) = eij(0) exp(αt)[
α

β
sin(βt)+ cos(βt)]

+

∫ t

0
{exp[α(t − δ)]

α

β
sin[β(t − δ)]

+ exp[α(t − δ)] cos[β(t − δ)]}ωij(δ)dδ.

In the similar way, we get

lim
t→∞
‖E(t)‖F ≤

4n
√
η

ζ
√
4η − ζ 2

sup
0≤δ≤t

|ωij(δ)|.

Based on the analyses of the above three cases, we draw the
conclusion that at the existence of the bounded random noise
T (t) = ω(t), the steady-state error limt→∞ ‖E(t)‖F of the
noise-polluted NTZNN model (6) is bounded. Furthermore,
limt→∞ ‖E(t)‖F can be arbitrarily small, while ζ is suffi-
ciently large and η is appropriate. The proof is completed.

IV. ILLUSTRATIVE EXAMPLE
In previous sections, we have proposed theNTZNNmodel (4)
for solving the non-stationary Lyapunov equation (1), and
analyzed its convergence and robustness at the existence of
noises. In this section, in order to substantiate the superiority
of the proposed NTZNN model (4) to the CZNN model (5),
comparative computer simulations are conducted at the exis-
tence of various types of noises.
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FIGURE 1. Outputs Y (t) starting from ten randomly initial states Y (0) ∈ [−3,3]2×2 and residual errors ‖E(t)‖F of the proposed NTZNN
model (4) for solving the non-stationary Lyapunov equation (1) in the absence of noises. (a) Y (t) with ζ = 8 and η = 8, where the
theoretical solution Y ∗(t) is denoted by red dotted line and colored solid lines stand for outputs Y (t). (b) ‖E(t)‖F with ζ = 8 and η = 8.
(c) ‖E(t)‖F with ζ = 80 and η = 80.

FIGURE 2. Residual errors ‖E(t)‖F of the proposed NTZNN model (4) and the CZNN model (5) for solving the non-stationary Lyapunov
equation (1) with ζ = 8 and η = 8. (a) ‖E(t)‖F at the existence of the constant noise T (t) = [8]2×2. (b) ‖E(t)‖F at the existence of the
linear noise T (t) = [8t ]2×2. (c) ‖E(t)‖F at the existence of the random noise T (t) = [7.5,8.5]2×2.

In this example, time-varying coefficient matrices M (t)
and N (t) are defined as

M (t) =

−1− 1

2
C

1

2
S

1

2
S −1+

1

2
C

 , N (t) =
[
S C
−C S

]
,

where C = cos(2t), S = sin(2t). For such a simple example,
it is easy to get the following theoretical solution Y ∗(t) to (1):

Y ∗(t) =


S(2− C)

3

(1− 2C)(2+ C)
6

(1+ 2C)(2− C)
6

S(2+ C)
3

 .
In order to reveal the superiority of the proposed NTZNN

model (4) to the CZNN model (5) in tolerating noises, we
adopt them to perform computer simulations under the noise-
free case and the noisy case, respectively. Corresponding
simulation results are displayed in Fig. 1 through Fig. 3.

After adopting the proposed NTZNN model (4) to solve
the non-stationary Lyapunov equation (1) in the absence of
noises, the corresponding simulation results are obtained as
shown in Fig. 1. To be specific, with ζ = 8 and η = 8,
Fig. 1(a) displays the outputs Y (t) of the proposed NTZNN
model (4), while Fig. 1(b) displays the corresponding residual
errors ‖E(t)‖F. As can be seen from Fig. 1(a), the outputs Y (t)
from ten randomly initial states Y (0) ∈ [−3, 3]2×2 tend to the

theoretical solution Y ∗(t) denoted by red dotted line. Besides,
it is shown in Fig. 1(b) that residual errors ‖E(t)‖F converge
to zero in 6 s. Furthermore, Fig. 1(c) displays residual errors
‖E(t)‖F with ζ = 80 and η = 80. According to Fig. 1(b)
and Fig. 1(c), it is obvious that residual errors ‖E(t)‖F with
ζ = 80 and η = 80 converge faster than ‖E(t)‖F with ζ = 8
and η = 8. There is no doubt that the proposed NTZNN
model (4) is viable and valid.

As for noisy cases, Fig. 2 shows the corresponding residual
errors ‖E(t)‖F synthesized separately by the CZNNmodel (5)
and the proposed NTZNN model (4) with ζ = 8 and η = 8.
Next, we discuss the following three cases separately.

1) For constant noises, as shown in Fig. 2(a), the residual
error ‖E(t)‖F of the proposed NTZNN model (4) still
tends to zero, while the CZNN model (5) converges to
a non-zero constant. It is the convergence performance
of them that highlights the prominent superiority of the
proposed NTZNN model (4) to the CZNN model (5).

2) For linear noises, as shown in Fig. 2(b), there is a great
difference between the CZNN model (5) and the pro-
posed NTZNN model (4). That is, the residual error
‖E(t)‖F of the proposed NTZNN model (4) tends to
a constant related to the parameter η. To be specific,
according to Theorem 2, so long as the η is sufficiently
large, the residual error ‖E(t)‖F may tend to zero. On the
contrary, the residual error ‖E(t)‖F of the CZNN model
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FIGURE 3. Residual errors ‖E(t)‖F of the proposed NTZNN model (4) and the CZNN model (5) for solving the non-stationary Lyapunov
equation (1) with ζ = 80 and η = 80. (a) ‖E(t)‖F at the existence of the constant noise T (t) = [8]2×2. (b) ‖E(t)‖F at the existence of the
linear noise T (t) = [8t ]2×2. (c) ‖E(t)‖F at the existence of the random noise T (t) = [7.5,8.5]2×2.

(5) increases rapidly, and there is no tendency to stop.
There is no doubt that the proposed NTZNN model (4)
is superior to the CZNN model (5) under linear noises.

3) For random noises, as shown in Fig. 2(c), the proposed
NTZNN model (4) performs better than the CZNN
model (5) with the random noise T (t) = [7.5, 8.5]2×2.
Thereinto, the random noise T (t) = [7.5, 8.5]2×2 can be
decomposed into a random noise T (t) = [−0.5, 0.5]2×2

and a constant noise T (t) = [8]2×2. The residual error
‖E(t)‖F of the proposed NTZNNmodel (4) tends to zero
and stays near 0.01, whlie the residual error ‖E(t)‖F
of the CZNN model (5) stays at a high level. The
results also indicate the superiority in handling random
noises of the proposed NTZNN model (4) to the CZNN
model (5).

Furthermore, Fig. 3 displays residual errors ‖E(t)‖F syn-
thesized separately by the CZNNmodel (5) and the proposed
NTZNNmodel (4) at the existence of noises with ζ = 80 and
η = 80. Compared with Fig. 2, simulation results in Fig. 3
are similar, except the convergence speed of residual errors
‖E(t)‖F. To be specific, residual errors ‖E(t)‖F with ζ = 80
and η = 80 converge faster than ‖E(t)‖F with ζ = 8 and
η = 8.
In a word, we draw the conclusion that the proposed

NTZNN model (4) is effective for solving the non-stationary
Lyapunov equation (1) and is superior to the CZNNmodel (5)
at the existence of various types of noises.

V. CONCLUSION
For solving the non-stationary Lyapunov equation (1) at the
existence of various types of noises, this paper has pro-
posed the NTZNN evolution formula (3), from which the
NTZNNmodel (4) has been derived. Furthermore, the global
and exponential convergence performance of the proposed
NTZNN model (4) has been proven in the absence of noises.
Then, the anti-noise ability of the proposed NTZNN model
(4) has been proven. To be specific, at the existence of linear
noises and random noises, the steady-state error of the noise-
polluted NTZNN model (6) is bounded. At last, computer
simulations have been conducted by adopting the proposed
NTZNN model (4) and the CZNN model (5) to solve the

non-stationary Lyapunov equation (1) under the noise-free
case and the noisy case, respectively. The simulation results
reveal the practicality and prominent superiority of the pro-
posed NTZNN model (4) to the CZNN model (5). In a word,
the proposed NTZNN model (4) has a great contribution to
solve the non-stationary Lyapunov equation at the existence
of noises. Regarding the future research direction, we intend
to construct models which have better performance than
the NTZNN model proposed in this paper, and apply them
specifically.

REFERENCES
[1] H. Sun and J. Zhang, ‘‘Solving Lyapunov equation by quantum algorithm,’’

Control Theory Technol., vol. 15, no. 4, pp. 267–273, Nov. 2017.
[2] N. Tanaka and H. Iwamoto, ‘‘Active boundary control of an

Euler–Bernoulli beam for generating vibration-free state,’’ J. Sound
Vib., vol. 304, nos. 3–5, pp. 570–586, Jul. 2007.

[3] M. S. Hossain, ‘‘Efficient solution of Lyapunov equation for descriptor
system and application to model order reduction,’’ M.S. thesis, Bangladesh
Univ. Eng. Technol., Dhaka, Bangladesh, 2014.

[4] A. Ohashi and K. Takaba, ‘‘A modified GMRES method for solving large-
scale Lyapunov equations for multi-agent systems,’’ in Proc. 56th Annu.
Conf. Soc. Instrum. Control Eng. Jpn. (SICE), 2017, pp. 1583–1588.

[5] A.-G.Wu, L. Tong, and G.-R. Duan, ‘‘Finite iterative algorithm for solving
coupled Lyapunov equations appearing in continuous-time Markov jump
linear systems,’’ Int. J. Syst. Sci., vol. 44, no. 11, pp. 2082–2093,May 2012.

[6] H.-L. Shen, S.-Y. Li, and X.-H. Shao, ‘‘The NMHSS iterative method for
the standard Lyapunov equation,’’ IEEE Access, vol. 7, pp. 13200–13205,
2019.

[7] E. L. Wachspress, ‘‘Iterative solution of the Lyapunov matrix equation,’’
Appl. Math. Lett., vol. 1, no. 1, pp. 87–90, 1988.

[8] J.-R. Li and J. White, ‘‘Low-rank solution of Lyapunov equations,’’ SIAM
J. Matrix Anal. Appl., vol. 24, no. 1, pp. 260–280, Jul. 2006.

[9] P. Benner, P. Kürschner, and J. Saak, ‘‘Efficient handling of complex
shift parameters in the low-rank Cholesky factor ADI method,’’ Numer.
Algorithms, vol. 62, no. 2, pp. 225–251, Apr. 2012.

[10] T. Wolf, H. K. F. Panzer, and B. Lohmann, ‘‘ADI iteration for Lyapunov
equations: A tangential approach and adaptive shift selection,’’ Appl.
Numer. Math., vol. 109, pp. 85–95, Nov. 2016.

[11] I. M. Jaimoukha and E. M. Kasenally, ‘‘Krylov subspace methods for
solving large Lyapunov equations,’’ SIAM J. Numer. Anal., vol. 31, no. 1,
pp. 227–251, Aug. 2006.

[12] K. Jbilou and A. J. Riquet, ‘‘Projection methods for large Lyapunov
matrix equations,’’ Linear Algebra Appl., vol. 415, nos. 2–3, pp. 344–358,
Jun. 2006.

[13] V. Simoncini, ‘‘A new iterative method for solving large-scale Lyapunov
matrix equations,’’ SIAM J. Sci. Comput., vol. 29, no. 3, pp. 1268–1288,
May 2007.

[14] V. Druskin and V. Simoncini, ‘‘Adaptive rational Krylov subspaces for
large-scale dynamical systems,’’ Syst. Control Lett., vol. 60, no. 8,
pp. 546–560, Aug. 2011.

41522 VOLUME 7, 2019



J. Yan et al.: NTZNN for Solving Non-Stationary Lyapunov Equation

[15] V. Druskin, L. Knizhnerman, and V. Simoncini, ‘‘Analysis of the rational
Krylov subspace and ADI methods for solving the Lyapunov equation,’’
SIAM J. Numer. Anal., vol. 49, no. 5, pp. 1875–1898, Sep. 2011.

[16] B. Beckermann, ‘‘An error analysis for rational Galerkin projection
applied to the Sylvester equation,’’ SIAM J. Numer. Anal., vol. 49, no. 6,
pp. 2430–2450, Nov. 2011.

[17] T. Wolf, H. K. F. Panzer, and B. Lohmann, ‘‘On the residual of large-scale
Lyapunov equations for Krylov-based approximate solutions,’’ in Proc.
Amer. Control Conf., 2013, pp. 2606–2611.

[18] L. Chen et al., ‘‘Weight and structure determination neural network aided
with double pseudoinversion for diagnosis of flat foot,’’ IEEE Access,
vol. 7, pp. 33001–33008, 2019.

[19] L. Jin, Z. Huang, Y. Li, Z. Sun, H. Li, and J. Zhang, ‘‘On modified multi-
output Chebyshev-polynomial feed-forward neural network for pattern
classification of wine regions,’’ IEEE Access, vol. 7, pp. 1973–1980, 2018.

[20] Z. Xie, L. Jin, X. Du, X. Xiao, H. Li, and S. Li, ‘‘On generalized RMP
scheme for redundant robot manipulators aided with dynamic neural net-
works and nonconvex bound constraints,’’ IEEE Trans. Ind. Informat., to
be published. doi: 10.1109/TII.2019.2899909.

[21] L. Jin et al., ‘‘Dynamic task allocation in multi-robot coordination for
moving target tracking: A distributed approach,’’ Automatica, vol. 100,
pp. 75–81, Feb. 2019.

[22] L. Jin, S. Li, H. M. La, and X. Luo, ‘‘Manipulability optimization of
redundant manipulators using dynamic neural networks,’’ IEEE Trans. Ind.
Electron., vol. 64, no. 6, pp. 4710–4720, Jun. 2017.

[23] L. Jin and S. Li, ‘‘Distributed task allocation of multiple robots: A con-
trol perspective,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 5,
pp. 693–701, May 2018.

[24] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017.

[25] L. Ding, L. Xiao, K. Zhou, Y. Lan, and Y. Zhang, ‘‘A new RNNmodel with
a modified nonlinear activation function applied to complex-valued linear
equations,’’ IEEE Access, vol. 6, pp. 62954–62962, 2018.

[26] L. Ding, L. Xiao, K. Zhou, Y. Lan, Y. Zhang, and J. Li,
‘‘An improved complex-valued recurrent neural network model for
time-varying complex-valued Sylvester equation,’’ IEEE Access, vol. 7,
pp. 19291–19302, 2019.

[27] L. Jin, S. Li, X. Luo, andY. Li, ‘‘Neural dynamics for cooperative control of
redundant robot manipulators,’’ IEEE Trans. Ind. Informat., vol. 14, no. 9,
pp. 3812–3821, Sep. 2018.

[28] L. Jin and Y. Zhang, ‘‘Discrete-time Zhang neural network for online time-
varying nonlinear optimization with application to manipulator motion
generation,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 7,
pp. 1525–1531, Jul. 2015.

[29] L. Jin, Y. Zhang, S. Li, and Y. Zhang, ‘‘Modified ZNN for time-
varying quadratic programming with inherent tolerance to noises and
its application to kinematic redundancy resolution of robot manipu-
lators,’’ IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 6978–6988,
Nov. 2016.

[30] L. Jin, S. Li, H. Wang, and Z. Zhang, ‘‘Nonconvex projection activated
zeroing neurodynamic models for time-varying matrix pseudoinversion
with accelerated finite-time convergence,’’ Appl. Soft Comput., vol. 62,
pp. 840–850, Jan. 2018.

[31] L. Jin, S. Li, and B. Hu, ‘‘RNN models for dynamic matrix inversion:
A control-theoretical perspective,’’ IEEE Trans. Ind. Informat., vol. 14,
no. 1, pp. 189–199, Jan. 2018.

[32] L. Jin, S. Li, B. Hu, M. Liu, and J. Yu, ‘‘A noise-suppressing neural algo-
rithm for solving the time-varying system of linear equations: A control-
based approach,’’ IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 236–246,
Jan. 2019.

[33] C. Yi, Y. Chen, and Z. Lu, ‘‘Improved gradient-based neural networks for
online solution of Lyapunov matrix equation,’’ Inf. Process. Lett., vol. 111,
no. 16, pp. 780–786, Aug. 2011.

[34] C. Yi, Y. Chen, and X. Lan, ‘‘Comparison on neural solvers for the
Lyapunov matrix equation with stationary & nonstationary coefficients,’’
Appl. Math. Model., vol. 37, no. 4, pp. 2495–2502, Feb. 2013.

[35] L. Xiao and B. Liao, ‘‘A convergence-accelerated Zhang neural network
and its solution application to Lyapunov equation,’’ Neurocomputing,
vol. 193, pp. 213–218, Jun. 2016.

[36] X. Lv, L. Xiao, Z. Tan, and Z. Yang, ‘‘WSBP function activated Zhang
dynamic with finite-time convergence applied to Lyapunov equation,’’
Neurocomputing, vol. 314, pp. 310–315, Nov. 2018.

[37] L. Jin, Y. Zhang, S. Li, and Y. Zhang, ‘‘Noise-tolerant ZNN mod-
els for solving time-varying zero-finding problems: A control-theoretic
approach,’’ IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 992–997,
Feb. 2017.

[38] L. Jin, Y. Zhang, and S. Li, ‘‘Integration-enhanced Zhang neural net-
work for real-time-varying matrix inversion in the presence of various
kinds of noises,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12,
pp. 2615–2627, Dec. 2016.

[39] L. Xiao et al., ‘‘Design and analysis of FTZNN applied to the real-time
solution of a nonstationary Lyapunov equation and tracking control of a
wheeled mobile manipulator,’’ IEEE Trans. Ind. Informat., vol. 14, no. 1,
pp. 98–105, Jan. 2018.

[40] Z. Zhang and Y. Zhang, ‘‘Design and experimentation of acceleration-level
drift-free scheme aided by two recurrent neural networks,’’ IET Control
Theory Appl., vol. 7, no. 1, pp. 25–42, Jan. 2013.

[41] A. V. Oppenheim and A. S. Willsky, Signals and Systems.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1997.

JINGKUN YAN received the B.E. degree from the
Beijing Institute of Technology, Beijing, China,
in 2018. She is currently pursuing the M.E. degree
in communication and information systems with
the School of Information Science and Engineer-
ing, Lanzhou University, Lanzhou, China. Her
research interests include neural networks and
robotics.

XIUCHUN XIAO received the Ph.D. degree in
communication and information system from
Sun Yat-sen University, Guangzhou, China,
in 2013. He is currently an Associate Professor
with Guangdong Ocean University. His current
research interests include artificial neural net-
works and computer vision.

HONGXIN LI received the B.E. degree in mecha-
tronic engineering from the Nanjing University
of Science and Technology, in 1991, the M.E.
degree in radio electronics from Lanzhou Univer-
sity, in 1998, and the Ph.D. degree in mechani-
cal and electronic engineering from the Shenyang
Institute of Automation, Chinese Academy of
Sciences, Shenyang, China. He is currently an
Associate Professor with Lanzhou University. His
current research interests include the analysis of

distributed parameter systems, modeling and control, and networked control
systems.

JILIANG ZHANG (M’15) received the B.S., M.S.,
and Ph.D. degrees from the Harbin Institute of
Technology, in 2007, 2009, and 2014, respectively.
He is currently an Associate Professor with the
School of Information Science and Engineering,
Lanzhou University, China. His research interests
include neural networks, MIMO channel mea-
surement and modeling, single-radio-frequency
MIMO systems, relay systems, and wireless rang-
ing systems.

VOLUME 7, 2019 41523

http://dx.doi.org/10.1109/TII.2019.2899909


J. Yan et al.: NTZNN for Solving Non-Stationary Lyapunov Equation

JINGWEN YAN received the Ph.D. degree in
optics from the State Key Laboratory of Applied
Optics, Changchun Institute of Fine Mechanics
and Optics, Academia Sinica, in 1997. Since 2006,
he has been with the Department of Electronic
Engineering, Shantou University, China. He is cur-
rently a Professor with the Department of Elec-
tronic Engineering, University of Shantou, China.
He is also the Associate Director of the Key Lab-
oratory of Digital Signal and Image Processing,

Guangdong, China. His current research is focused on SAR image process-
ing, hyper-wavelet transforms, and compressed sensing.

MEI LIU received the B.E. degree in communi-
cation engineering from Yantai University, Yan-
tai, China, in 2011, and the M.E. degree in pat-
tern recognition and intelligent system from Sun
Yatsen University, Guangzhou, China, in 2014.
In 2017, she was a Lecturer with the College of
Physics, Mechanical and Electrical Engineering,
Jishou University, Jishou, China. She is currently
a Teacher with the School of Information Science
and Engineering, Lanzhou University, Lanzhou,

China. Her main research interests include neural networks, computation,
and optimization.

41524 VOLUME 7, 2019


	INTRODUCTION
	PROBLEM FORMULATION AND NTZNN MODEL
	PROBLEM FORMULATION
	NTZNN MODEL

	THEORETICAL ANALYSES OF NTZNN
	CONVERGENCE OF NTZNN
	NTZNN AT THE EXISTENCE OF NOISES

	ILLUSTRATIVE EXAMPLE
	CONCLUSION
	REFERENCES
	Biographies
	JINGKUN YAN
	XIUCHUN XIAO
	HONGXIN LI
	JILIANG ZHANG
	JINGWEN YAN
	MEI LIU


