
SPECIAL SECTION ON DEEP LEARNING FOR COMPUTER-AIDED MEDICAL DIAGNOSIS

Received March 8, 2019, accepted March 17, 2019, date of publication March 26, 2019, date of current version April 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2906890

RP-Net: A 3D Convolutional Neural Network
for Brain Segmentation From Magnetic
Resonance Imaging
LIANSHENG WANG 1,2, (Member, IEEE), CONG XIE2, AND NIANYIN ZENG 3
1Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
2Department of Computer Science, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
3Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China

Corresponding authors: Liansheng Wang (lswang@xmu.edu.cn) and Nianyin Zeng (zny@xmu.edu.cn)

This work was supported by the National Natural Science Foundation of China, under Grant 61671399.

ABSTRACT Quantitative analysis of brain volume is quite significant for the diagnosis of brain diseases.
Accurate segmentation of essential brain tissues from 3D medical images is fundamental to quantitative
brain analysis. Since manual segmentation is extremely tedious and time-consuming, there is a growing
demand for automated segmentation. In this paper, we propose a 3D convolutional neural network including
recursive residual blocks and a pyramid pooling module (RP-Net) for segmenting brain from 3D magnetic
resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). RP-Net
is an U-Net like the network that consists of a downsampling path and an upsampling path. Each path
consists of four stages with a recursive residual block. All layers in RP-Net are implemented in a 3Dmanner.
The pyramid pooling module is applied before a voxel-wise classification layer for obtaining both local
and global context information. The RP-Net has been evaluated on WM, GM, and CSF segmentation with
CANDI, IBSR18, and IBSR20 dataset. The experiments show that the RP-Net achieved mean dice similarity
coefficients of 90.7% on CANDI, 90.49% on IBSR18 and 84.96% on IBSR20. The results demonstrate that
our proposed method has achieved a significant improvement in segmentation accuracy compared to other
reported approaches.

INDEX TERMS Brain segmentation, brain tissue, convolutional neural network, deep learning, magnetic
resonance imaging.

I. INTRODUCTION
Magnetic resonance imaging (MRI) is a medical imaging
techniquewhich forms a vital part in clinical diagnosis. It pro-
vides high-resolution images for soft tissues and presents no
known health hazards at a certain field strength and radio
frequency power. One of the focuses of MRI technology is
imaging brain. Brain MRI has been widely used to diag-
nose degenerative diseases such as Alzheimer‘s disease and
dementia [1]–[3]. Besides, it helps to observe generalized
changes of the brain such as specific changes associated
with aging [4]. Segmentation of brain tissues has important
applications in many brain nerve image analyses, such as ana-
lyzing anatomical structures, studying pathological regions,
surgical planning, and visualization. Particularly, the accu-
rate segmentation of white matter (WM), gray matter (GM),
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and cerebrospinal fluid (CSF) is the key to the diagnosis and
quantitative measurement of various diseases.

However, accurate segmentation of brain tissues from
MR images is a challenging task due to the fuzzy tissue
edge, noise, image artifacts and the differences between
individuals [5]. For the moment, the gold standard of this
task is manual brain segmentation which is a tedious and
time-consuming job for radiologists. Manual segmentation is
based on vast clinical experience and requires outlining struc-
tures slice-by-slice. Therefore, automating the segmentation
process is of great value to obtain results faster and repro-
ducibly. Automated segmentation methods have developed
rapidly during the recent years. MRI segmentation methods
can be divided into the following categories.

Atlas-based segmentation methods. Atlas-based segmen-
tation is used to segment the brain by registering the target
image with an atlas [6]. Early approaches segment the brain
by propagating the labels of a single manually labelled
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atlas [7]. Multi-atlas segmentation methods is a hot topic of
current research, which maps all labeled images onto the tar-
get image [8]. However, these methods can be computation-
ally expensive due to complex nonrigid registration and atlas
construction in which the iterative procedure is combined.
Besides, registration errors can reduce the accuracy of label
fusion results from multiple atlases.

Intensity-based segmentation methods. This kind of
method classifies individual pixels/voxels based on their
intensity [9] such as k-Nearest-Neighbors (kNN) classifi-
cation method, Fuzzy C Means (FCM) clustering method,
expectation-maximization (EM) clustering method and
region growing method. Automatically trained kNN classi-
fication method [10] is achieved by non-rigidly registering
the MR image with a tissue probability atlas to automatically
select training samples. The EM algorithm [11] is an iterative
method for combining statistical parameter estimation with
the characteristics of MR images. Many studies [12]–[14]
propose methods based on FCM for brain image segmen-
tation. The region growing method [15] is based on similar
intensities. However, the main limitation of these methods to
become more accurate is that the intensity profiles of more
detailed brain tissues overlap.

Deep learning-based segmentation methods. MRI segmen-
tation based on deep learning has been given increasing
attention due to its ability for self-learning and gener-
alization. A convolutional neural network (CNN) is one
of the most popular deep learning architecture and has
shown outstanding results in many tasks, such as alcoholism
identification [16], [17], abnormal breast identification [18],
multiple sclerosis identification [19], [20], tea-category iden-
tification [21], and polarimetric synthetic aperture radar
image segmentation [22]. The main advantage compared to
classical approaches is that CNN learns abstract feature rep-
resentations of images without prior knowledge and avoids
human effort in feature design. It is a rapidly developing
technology that also has found numerous applications in brain
segmentation. Nie et al. [23] used a 2D fully convolutional
network fusing multi-modality information to segment isoin-
tense phase brain MR images. Xu et al. [24] used a 3D-like
fully convolutional network by regarding three successive
slices of the volume as input to segment the middle slice.
Chen et al. [25] proposed a deep voxelwise residual network
for volumetric brain segmentation. Dolz et al. [26] proposed
HyperDenseNet which is a 3D convolutional neural network
applying complex combinations between modalities. Recent
research shows that deep learning technology has great poten-
tial in the field of brain tissue segmentation.

In this paper, we propose a novel 3D Convolutional Neural
Network referred as RP-Net for automatically segmenting
the brain from 3D MR images into WM, GM, and CSF.
All operations in the RP-Net are extended with 3D man-
ner. 3D CNN can fully incorporate volumetric information.
The overall framework of RP-Net is based on 3D U-Net
architecture, which consists of a downsampling path and an
upsampling path. Besides, we introduce the pyramid pooling

module and the recursive residual block in our network. The
results demonstrate that the method obtains accurate segmen-
tation on the CANDI, IBSR18 and IBSR20 dataset, and hence
demonstrates its robustness to differences in acquisition pro-
tocol. Our main contributions can be summarized as follows:

1) Recursive residual blocks are employed in our net-
work instead of the widely-used residual blocks. Every
residual path in the recursive residual block is directly
attached to the first convolutional layer, which helps to
learn highly complex features.

2) At the end of our network, we add a pyramid pooling
module with 3D operations. The pyramid pooling mod-
ule can better extract volumetric context information
and fuse multi-scale contextual feature representations.

3) In the testing phase, we adopt a two-stage strategy. This
strategy allows the model to focus on the brain area and
reduce the effect of excessive pixels around.

4) In order to optimize the learning process, we put aux-
iliary classifiers at each stage in the upsampling path.
The auxiliary classifiers make the features of hidden
layers more meaningful.

The rest of paper is structured as follows. In Section II,
we describe the experimental datasets and data preprocess-
ing, elaborate the detail of the proposed RP-Net. Section III
presents the experiments and results followed by discussion
in Section IV. Finally in Section V, conclusions are drawn.

II. MATERIAL AND METHODS
A. DATA ACQUISTION
The MR image data is composed by 141 T1-weighted scans
from two datasets.

1) CANDI
The CANDI dataset consists of T1-weighted MRI brain
scans from 103 subjects and corresponding labels of 39
structures segmented by expert manually. The dataset is pub-
licly available from the Child and Adolescent NeuroDevelop-
ment Initiative (CANDI) at UMassMedical School [27], [28]
(https://www.nitrc.org/projects/candi_share). The data orig-
inates from four diagnostic groups: Healthy Controls,
Schizophrenia Spectrum, Bipolar Disorder with Psychosis,
and Bipolar Disorder without Psychosis. All volumes have a
size ranging from 256×256×128 to 256×256×158 voxels,
with voxel spacing of 0.9mm×0.9mm×1.5mm. We obtained
four-class labeled volumes by assigning each of the 39 struc-
tures into GM, WM, CSF, and background (see Table. 1).

2) IBSR
The IBSR dataset consists of two sets of scans. The first set of
scans is commonly known in the literature as IBSR20 while
the second is known as IBSR18. The dataset is publicly
available from the Internet Brain Segmentation Reposi-
tory (IBSR) [29] (https://www.nitrc.org/projects/ibsr).

IBSR20 consists of 20 low resolution 3.1mm T1-weighted
scans. All volumes have a size ranging from 256× 256× 60
to 256 × 256 × 65 voxels, with voxel spacing of
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TABLE 1. Label conversion rules for CANDI dataset.

1mm× 1mm× 3.1mm. The dataset provides segmentation
label with main tissue for evaluation (GM, WM, CSF and
background). Some of scans contain important acquisition
artifacts and irregularities.

IBSR18 consists of 18 high resolution 1.5mm T1-weighted
scans. All volumes have a size of 256 × 256 × 128 voxels,
with voxel spacing ranging from 0.8mm × 0.8mm × 1.5mm
to1.0mm× 1.0mm× 1.5mm. We got file named segTRI_ana
from IBSR_V2.0 skull-stripped NIFTI folder as ground truth,
which segments the brain into four-class tissues, i.e, GM,
WM, CSF, and background. IBSR18 scans present higher
resolution and image quality than IBSR20, with no apparent
acquisition artifacts that can bias the accuracy of some scans.

B. PREPROCESSING AND DATA AUGMENTATION
The voxel spacing of volumes in the above datasets is quite
different. In this paper, we fix voxel spacing as 1mm ×
1mm × 1.5mm by using linear interpolation firstly. Data
normalization is performed to reduce the variations of input
data. The method we used is min-max normalization which

rescales the range of features to the range of [0, 1]. Moreover,
we apply Contrast-Limited Adaptive Histogram Equaliza-
tion (CLAHE) to increase the local contrast of all images.

Due to the absence of heavy training dataset, data aug-
mentation is adopted. The augmentation operations include
rotation, zoom, and flip. Specifically, we random rotation the
original images by −15,−10,−5, 0, 5, 10, 15 degrees in the
direction of the x and y axis. Besides, we flip the images
horizontally and vertically and rescale images with a zoom
range [0.5, 1.5] randomly.

C. 3D U-NET
U-Net [30] has extensively been used in medical image
segmentation, which combines low-level and high-level
information. Taking better advantage of volumetric data,
3D U-Net [31] extended the 2D U-Net architecture by replac-
ing all 2D operations with their 3D counterparts.

The architecture of 3D U-Net in this paper is illustrated
in Fig. 1. It consists of two parts, a downsampling path, and
an upsampling path. The downsampling path contains four
stages. Each stage consists of two 3 × 3 × 3 convolution
layer and each followed by a batch normalization (BN) and a
rectified liner unit (ReLU). Batch normalization [32] reduces
the amount by what the hidden unit values shift around
(covariance shift), and it works well to avoid overfitting.
At the end of each stage, a 2×2×2 max pooling with strides
of 2 is attached for down sampling. The number of feature
channels is doubled after each stage. The upsampling path
also contains four stages. Each stage includes an upsampling
layer of 2× 2× 2 kernel by strides of 2 followed by a convo-
lution layer with BN and ReLU. Next is two 3 × 3 × 3 con-
volution layer each followed by BN and ReLU. For reducing
the impact of information loss, stages in the downsampling
path are connected with stages that have the same resolution
in the upsampling path. Different from the standard U-Net,
we apply an element-wise addition instead of a concatena-
tion operator for connection. In the last layer, a 1 × 1 × 1
convolution with ‘softmax’ activation is used to produce the
output.

D. RECURSIVE RESIDUAL BLOCK
ResNet [33] introduces residual connections to solve the
problem of vanishing gradient. Deep neural networks with
residual connections performwell onmany challenging tasks.
The residual connection is defined as

xl = Fl(xl−1)+ h(xl−1), (1)

where xl−1 and xl are the input and output of the l th

unit, h(x) is an identity mapping where h(xl−1) = xl−1.
Fl(·) denotes the residual function corresponding to l th unit.
The function contains two convolutional layers with activa-
tion function (BN and ReLU).

In a basic residual block, the activation function (BN and
ReLU) is performed after the weight layer. A ‘‘pre-
activation’’ structure [34] performs the activation function
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FIGURE 1. 3D U-Net architecture. Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the
box. The arrows denote the different operations.

FIGURE 2. Structures of (a) the kth residual unit, (b) a simple residual
block with 3 residual units, and (c) a recursive residual block with
3 residual units.

before the weight layers and has achieved better results.
We use the ‘‘pre-activation’’ structure in our residual unit.

Instead of directly using the residual block mentioned
above, we used a recursive residual block that Tai et al. [35]
proposed. The structure of the recursive residual block is
illustrated in Fig. 2(c). The recursive residual block contains
several residual units. A residual unit can be seen as Fig. 2(a).
The residual paths help to learn highly complex features. The
residual unit is formulated as

H k
= G(H k−1) = Fk (H k−1)+ H0, (2)

where k = 1, 2 · · · ,K , K is the number of residual units in a
recursive residual block, H k is the output of the k th residual
unit. Especially, H0 is the result of the first convolutional
layer in the recursive residual block.

Thus, the output of the bth recursive block can be define as

xb = HK
b = G(K )(H0

b ) = G(G(· · · (G(H0
b )) · · · )), (3)

where K-fold operations of G are performed.

FIGURE 3. Structures of the pyramid pooling module.

E. PYRAMID POOLING MODULE
Pyramid poolingwas first introduced to CNN in SPP-Net [36].
Pyramid pooling is for eliminating the fixed size constraints
of convolutional neural networks without losing image loca-
tion information while it is robust to object deformations.
In PSPNet [37], pyramid pooling generates feature maps at
different levels. The pyramid pooling module fuses these
feature maps for obtaining both local and global context
information.

The pyramid pooling module in our network has four
pyramid levels as shown in Fig. 3. Instead of only using
spatial information, we use volumetric information by per-
forming 3D pooling operators. Bin sizes of pyramid pooling
are 1 × 1 × 1, 4 × 4 × 4, 8 × 8 × 8 and 16 × 16 × 16. The
different pyramid level divides the feature map into different
sub-volumes and gets the pooled feature representation at
different locations. A 1× 1× 1 convolution layer is followed
by each pyramid level to reduce the number of channels to 1

4 .
An upsampling layer is used for rescaling the low-dimension
feature to original feature map shape. Finally, different levels
of features are concatenated as the final pyramid pooling
global feature.

F. NETWORK ARCHITECTURE
Here we describe the details of our RP-Net architecture
as illustrated in Fig. 4. Like 3D U-Net, the RP-Net has a
downsampling path, and an upsampling path and each path
contains four stages. In the downsampling path, each stage
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FIGURE 4. Architecture of the proposed RP-Net. The boxes and arrows denote the different operations. The orange box represents a basic block
which consists of two convolution layers and each stacked by weight-BN-ReLU layers.

consists of a recursive residual block with three residual units
as illustrated in Fig. 2(c) and a 2 × 2 × 2 max pooling
layer with strides of 2. In the upsampling path, each stage
includes an upsampling layer with convolution layer and
followed by a recursive residual block. At the end of the
path, we use the pyramid pooling module shown in Fig. 3
to collect different levels of volumetric contextual informa-
tion. All convolutional layers in RP-Net contain 3 × 3 × 3
filter kernels. To reduce information loss by pooling operator,
we implement skip connection to our network by connecting
the corresponding recursive residual blocks with the same
resolutions in the upsampling path and downsampling path.
The element-wise addition is applied to feature map before
feeding to the recursive residual block in the upsampling path.
Note that all layers in our network including convolution,
pooling, and upsampling layers are implemented in a 3D
manner, so our network can take full advantages of volumetric
information.

In addition, we introduce a deep supervision mecha-
nism [38] in the RP-Net to accelerate the convergence speed
and make the features of hidden layers more meaningful.
We add auxiliary supervision to some hidden layers through
auxiliary classifiers. Specifically, we use upsampling layer
followed by the element-wise addition to get the feature map
with the same size of the input, and then employ a 1× 1× 1
convolution layer to obtain auxiliary coarse predictions.
A 1× 1× 1 convolution layer at the end of the network is
to generate the main prediction. The purpose of the auxiliary
loss function is to optimize the training process, but during
testing, we abandon auxiliary branches and only use the well-
optimized main branch for the final prediction.

G. IMPLEMENTATION DETAILS
Our implementation is using Python based on the public
platform Keras [39] which supporting 3D operations. All the

FIGURE 5. Overview of the testing phase.

training and experiments are conducted on a workstation
equipped with one NVIDIA GTX 1080 Ti GPU. The RP-Net
is randomly initialized under the default setting of Keras with
no pretraining on any external dataset. To reduce overfitting,
we adopt data augmentation as mentioned in Subsection II-B.
The network is trained with Adam method with a batch size
of 1 due to the limited physical memory on GPU cards.
The learning rate is set at 1e−4 initially. We use categorical
cross-entropy loss to train the master classifier and auxiliary
classifiers. Of the four auxiliary loss, we set the balancing
weight to 0.2. Due to the limited GPU memory, we randomly
crop 128×128×48 sub-volumes from every sample as input
when training the network.

In the testing phase, we only use the master branch for
prediction. The testing phase goes through two stages shown
in Fig. 5. We use overlapped sliding windows strategy in
both two stages. In the first stage, the full image put into
the network. The sub-volume size is 128× 128× 48 and the
stride is 120× 120× 40.The output result is used to crop the
coarse region of interest. In the second stage, CLAHE and
normalization are performed again on the region of interest,
so that the interference of pixels near the brain region can
be avoided. The network and the strategy are as the same
as the first stage, and the stride is smaller as 32 × 32 × 12.
The whole final volume prediction is provided by the average
of the probability maps of the sub-volumes in the second
stage.
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FIGURE 6. Brain segmentation results (green, blue, and red colors represent the GM, WM, and CSF, respectively) of (a) BPDwPsy_067 image on a
axial slice (number 128), a coronal slice (number 64), and a sagittal slice (number 128) from CANDI, (b) 10 image on a axial slice (number 128),
a coronal slice (number 64), and a sagittal slice (number 128) from IBSR18, (c) 6_10 image on a axial slice (number 128), a coronal
slice (number 32), and a sagittal slice (number 128) from IBSR20.

III. EXPERIMENTS AND RESULTS
A. EVALUATION METRIC
The evaluation metric of the segmentation is dice similarity
coefficient (DSC), which is calculated for each tissue type
(i.e., GM, WM, and CSF). The DSC [40] measures the over-
lap between automatic segmentation and manual segmenta-
tion with range 0 (no overlap) to 1 (perfect agreement). It is
defined as

DSC(A,M ) =
2 |A ∩M |
|A| + |M |

× 100%, (4)

where A is the set of automatic segmentation results,M is the
set of manual segmentation results.

In this paper, the results of automatic segmentation and
manual segmentation all are a binary image, so the DSC
between two binary images is defined as

DSC(A,M ) =
2

∑N
i piqi∑N

i p
2
i +

∑N
i q

2
i

× 100%, (5)

whereN is the total number of pixels in the image, pi and qi is
the pixel ofmanual segmentation and automatic segmentation
respectively.

B. EXPERIMENT DETAILS
The performance of RP-Net is evaluated on 141 images using
CANDI and IBSR dataset. From CANDI dataset, 61 images
are used for creating the training set, and 21 images are used
for making the validation set. To make the test set more
adequate, the remaining 21 images of CANDI dataset and all
of IBSR20 and IBSR18 dataset are utilized to the test set. The
train/validation/test set is summarized in Table. 2.

In our experiments, we perform brain-tissue segmentation
by voxelwise classification. Every voxel is classified as either
WM, GM, CSF, or background. We choose the model that
achieves the best score of mean DSC on the validation set
and evaluate it on the test set.

TABLE 2. The train/validation/test data summary.

C. EVALUATION ON CANDI AND IBSR DATASET
Fig. 7 shows the average performance in terms of DSC.
On CANDI dataset, the meanDSC for CSF, GM, andWMare
87.86%, 93.43%, and 90.81%, respectively. While RP-Net
scores 88.18%, 92.08%, and 91.21% on IBSR18 dataset and
81.06%, 87.91% and 85.89% on IBSR20 dataset for the
same classes. Quantitative analyses indicate high accuracy
for all three tissues. As it can be observed, the mean DSC
of CSF, GM andWM are close between IBSR18 and CANDI
dataset but the performance on IBSR20 dataset is the worst
among three datasets. Images of IBSR20 are more difficult to
segment than images of IBSR18 because some of them have
acquisition artifacts and irregularities. Fig. 6 shows examples
of brain segmentation results and original images on three
datasets. These results indicate that our method performs well
in segmenting brain tissues in a visual view.

D. ABLATION ANALYSIS OF RP-NET ON IBSR DATASET
The RP-Net contains recursive residual blocks with three
residual units, a pyramid pooling module and deep super-
vision mechanism. We perform a series experiments to
evaluate the performance of these modules. The RP-Net
without pyramid pooling module is regarded as CNNrecur+ds,
and CNNrecur defines as removing deep supervision on
the basis of CNNrecur+ds. Besides, we replace the recursive
residual block to the residual block as shown in Fig. 2(b)
named CNNres. Fig. 8 shows the result of the four networks.
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FIGURE 7. Bar plots of DSC (with standard deviation as error bar) of CSF,
GM and WM using (a) CANDI dataset, (b) IBSR18 dataset, and
(c) IBSR20 dataset.

1) EFFECTIVENESS OF RECURSIVE RESIDUAL BLOCK
To analyze the effectiveness of recursive residual block,
we compare the proposed method with and without the recur-
sive residual block. Both CNNrecur and CNNres are trained
with the same training strategies. They both haveU-Net struc-
tures. The difference is that CNNres has stages with the resid-
ual block that the input of each unit is the output of previous
unit and CNNrecur has stages with the recursive residual block
that the input of each unit is the result of the first convolution
layer on the block. As results shown in Table. 3, CNNrecur
achieve better performance than CNNres, with 1.38% and
9.03% improvement on the average DSC on IBSR18 and
IBSR20 dataset respectively.

2) EFFECTIVENESS OF PYRAMID POOLING MODULE
To validate the effectiveness of the pyramid pooling mod-
ule, we compare our network with and without the pyra-
mid pooling module. As a result shown in Table. 3, our
network with pyramid pooling module achieved 0.68% and
0.92% improvement on the average DSC on IBSR18 and
IBSR20 respectively. PR-Net performs better on CSF seg-
mentation with 1.73% and 2.54% improvement of mean DSC
on IBSR18 and IBSR20 than CNNrecur+ds while only drops by
0.44% on the mean DSC of WM on IBSR20.

3) EFFECTIVENESS OF DEEP SUPERVISION
We compare the performance of CNN with deep super-
vision or not. Specifically, CNNrecur+ds has four auxiliary

FIGURE 8. Bar plots of the DSC for CSF, GM and WM with four networks
using (a) IBSR18 dataset and (b) IBSR20 dataset.

classifiers but CNNrecur has not. The average DSC of
CNNrecur+ds improve 0.23% on IBSR18 and 1.03% on
IBSR20 thanCNNrecur. AndCNNrecur+ds has 1.87% improve-
ment on the mean DSC of WM. It shows different deep
supervised layers‘ results in Fig. 9.We can see the layers from
early to later can provide location information from coarse
to fine.

E. COMPARISON WITH OTHER METHODS
ON IBSR DATASET
IBSR dataset has been extensively used in numerous studies
on brain structures segmentation. Table. 5 lists some of the
studies using the IBSR dataset as segmentation benchmark
and their results on the IBSR dataset. They use part of the
data or all for evaluating the method they proposed. It can be
seen that our results are quite competitive.

To validate the effectiveness and robustness of our method,
we also compare our RP-Net with three segmentation meth-
ods 3D U-Net, 3D-like FCN [24] and VoxResNet [25] by

TABLE 3. DSC of CSF, GM, WM and the average of them for IBSR18 and IBSR20.
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TABLE 4. DSC of CSF, GM, WM and the average of them for IBSR18 and IBSR20.

FIGURE 9. Different deep supervised layers‘ segmentation results (axial
view). (a) is the original image, (b) is ground truth, (c) to (f) are the
segmentation results of deep supervised layers respectively.

using the same training set and validation set. U-Net has
widely used in medical image segmentation. The structure
of 3D U-Net we compared is mentioned above. 3D-like FCN
is a 2.5D CNN which use only a single modality and get
the best performance in the MRBrains13 competition among
the methods using single modality. VoxResNet is one of the
principal methods in MRBrains13 competition. It is a 3D
CNN integrating auto-context with multi-modality informa-
tion. Since we only use single modality, we evaluate the
architecture of VoxResNet by using T1-weighted scans only.

Table. 4 shows the comparison of the CSF, GM and
WM segmentation performance on the IBSR18 and
IBSR20 dataset. We can see that our method outperforms
3D U-Net, 3D-like FCN and VoxResNet on IBSR18, with
1.85%, 1.69% and 4.54% improvement on the average
DSC respectively. Moreover, when evaluating on IBSR20,
we achieve better performancewith 7.32%, 3.12% and 6.19%
improvement than the three methods.

IV. DISCUSSION
Brain tissue segmentation plays an important role in clin-
ical diagnosis. While manual segmentation is tedious and
time-consuming, automated segmentation is quite challeng-
ing because of the complex anatomical environment of the
brain and the large variations of brain tissues. In this paper,

TABLE 5. Summary of brain tissues segmentation methods.

we present an automatic brain segmentation method based
on 3D CNN, named RP-Net. Our method segments the brain
into WM, GM, and CSF. RP-Net can incorporate multi-scale
features and fully explore volumetric context information.
A portion of CANDI dataset is used for training. In the
testing phase,MR images fed into the network twice. The first
stage‘s result is used to crop the region of interest as the input
of the second stage. It can avoid the interference of border
pixels around the brain region. To show the generalization
capability of our method, we evaluate our method on CANDI
and IBSR dataset. The IBSR dataset contains IBSR18 and
IBSR20, and IBSR20 is more challenge to be segmented.
As shown in Fig. 7, the average DSC of CSF, GM, and
WM is 90.7% on CANDI, 90.49% on IBSR18 and 84.96%
on IBSR20. Examples of brain segmentation results of test
data are shown in Fig. 6. Experimental results demonstrate
that the RP-Net achieves high-quality segmentation of brain
tissue.

RP-Net consists of recursive residual blocks, a pyramid
pooling module, and deep supervision mechanism. In our
experiments, we assess the effectiveness of these modules.
To prove the influence of the recursive residual block, we give
a comparison of CNN with recursive residual blocks and
CNN with residual blocks. From Fig. 8, it can be observed
that recursive residual blocks improve the network perfor-
mance compared to residual blocks. The pyramid pooling
module is extended by replacing 2D pooling operator with
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3D pooling operator. Then it can obtain both local and
global volumetric context information. After adding the pyra-
mid pooling module, the performance of CSF segmentation
achieves a great improvement (1.73% on IBSR18, 2.54%
on IBSR20 of DSC). To demonstrate the effectiveness of
deep supervision mechanism, we compare CNN with deep
supervision or not. As shown in Table. 4, using the auxiliary
loss can improve the score of DSC by 0.23% on IBSR18,
1.03% on IBSR20. Fig. 9 shows that it helps to generate more
distinctive features of different level.

The segmentation accuracy of our method was compared
to recently proposed methods for the task of brain segmen-
tation such as 3D U-Net, 3D-like FCN, and VoxResNet.
Statistics in Table. 4 show that RP-Net outperforms other
methods using only T1-weighted modality. Our method yield
a mean DSC value of 88.18%, 92.08% and 91.21% for CSF,
GM and WM on IBSR18 dataset while 81.06%, 87.91% and
85.89% of CSF, GM andWMon IBSR20. This highlights the
potential of the proposed automatic brain tissue segmentation
architecture in clinical applications.

V. CONCLUSION
In this paper, we propose the RP-Net for brain tissue segmen-
tation from 3DMR images. Our method adopts 3D fully con-
volutional architecture and it is effective for handling 3DMR
images. The incorporation of the recursive residual block,
pyramid pooling module, and deep supervision mechanism
improve the network performance. We evaluate our method
on both CANDI and IBSR. The result of IBSR20 indicates
the robustness of our method. With a single-modality basis,
our method excelled others and achieved the very competitive
results on brain segmentation on the IBSR dataset.
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