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ABSTRACT Light field videos provide a rich representation of real-world, thus the research of this technol-
ogy is of urgency and interest for both the scientific community and industries. Light field applications
such as virtual reality and post-production in the movie industry require a large number of viewpoints
of the captured scene to achieve an immersive experience, and this creates a significant burden on light
field compression and streaming. In this paper, we first present a light field video dataset captured with
a plenoptic camera. Then a new region-of-interest (ROI)-based video compression method is designed
for light field videos. In order to further improve the compression performance, a novel view synthesis
algorithm is presented to generate arbitrary viewpoints at the receiver. The experimental evaluation of four
light field video sequences demonstrates that the proposed ROI-based compression method can save 5%—7%
in bitrates in comparison to conventional light field video compression methods. Furthermore, the proposed
view synthesis-based compression method not only can achieve a reduction of about 50% in bitrates against
conventional compression methods, but the synthesized views can exhibit identical visual quality as their
ground truth.

INDEX TERMS Light field, video compression, region-of-interest, view synthesis, light field video dataset.

I. INTRODUCTION

Traditional applications of images and videos are limited to
a single viewpoint of scenes. By contrast, a light field offers
multiple viewpoints by sampling a huge number of light rays.
Over the past decade, light fields have attracted tremendous
attention due to their capability to represent 3D information
of the environment. Light field technologies provide a rich
representation of real-world scenes and have been popularly
adopted by a wide range of industries. Light field data can
be captured by light field cameras with a microlens array.
These cameras can capture the distribution of light rays in
free space, enabling exciting applications such as refocusing
and viewpoint change. The most popular commercialized
light field cameras are Lytro Illum [1] and Raytrix Plenop-
tic Camera [2]. In April 2014, Lytro Inc. announced Lytro
Ilum which uses microlens array technology to capture light
field images in one camera. The Illum focuses on consumer
markets and is designed to attract users with the concept of
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capturing first and refocusing later. Raytrix released Ratrix
Plenoptic Camera which provides 3D high-speed video cap-
ture and enhanced depth of field. Light field data can also
be captured with a camera array which is cumbersome and
expensive compared with the microlens-based plenoptic light
field cameras.

The existing light field datasets, [3]-[7], from real-world
light fields captured with a plenoptic camera (e.g., Lytro
[lum), real-world scenes captured with a camera array or a
synthetic light field are light field image datasets. The only
two exceptions are the light field video datasets recently
proposed by Dabata er al. [8] and Sabater et al. [9], which
used camera arrays to capture light field videos. However,
no work has yet attempted to create a light field video dataset
captured with plenoptic cameras. In this paper, a light field
video dataset captured with a Lytro Illum is created. Along
with this paper, the proposed light field video dataset is
published at [10] which we believe may be of special interest
to the community.

The fifth generation mobile network (5G) is making a huge
impact on multimedia applications. Although 5G certainly
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FIGURE 1. 3D matrix structure of a light field video.

provides the ability to have a larger bandwidth and higher
throughput, there is still a huge demand for compression
methods of larger-volume multimedia data, for example, light
field data. A light field video sequence is a 3D matrix,
with the three dimensions as horizontal views (H-Views),
vertical views (V-Views) and time, respectively, as shown
in Fig. 1. A light field video sequence records a scene with
a set of streams from different viewpoints, thus exhibiting
data redundancy in both spatial and temporal dimensions.
In terms of applications, the sheer size of the data volume
of a light field video brings new challenges to the efficient
storage and transmission of this massive amount of complex
data. Therefore, light field compression is a critical aspect
of the practical usage of light field technologies. Raw data
from light field cameras exhibit strong correlations, so there
is a significant amount of research [11]-[14] that has been
conducted on light field image compression by reducing these
spatial redundancies. A light field video contains hundreds
of times more pixels than a traditional monocular video
sequence, and light field data exhibits a more complicated
and unique structure. Therefore, despite the large volume of
research in light field image coding and traditional video
coding, using these methods to process light field videos is
inadequate.

Light field videos not only have high spatial correlations
in each light field image frame but also indicate strong cor-
relations among continuous video frames. Thus inter micro-
images correlations of each frame and inter-frame correla-
tions of each view should be combined in order to acquire
an efficient compression method for light field video cod-
ing. In the field of video processing, a light field video
sequence can be represented as a two-dimensional multi-
view sequence with both horizontal and vertical parallax.
And because of this fact, there are many light field video
coding methods proposed in the literature to date [15]-[18].
One direct coding method is to encode each view separately,
but the strong correlations between views are ignored. Con-
verting the two-dimensional multi-view video sequence into
a one-dimensional video sequence with a horizontal zigzag
order for light field video compression is proposed in [15].
In another paper [16], a rotary order which scans from the
centre and revolves around the view until the final view of
the last frame is proposed to improve the compression ratio
for light field data. However, the two biggest shortcomings
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of these methods are that the vertical correlations between
views and temporal correlations between frames are not fully
utilized. Wang et al. [17] proposed a light field multi-view
videos coding (LF-MVC) method by extending the inter-view
prediction multi-view video coding (MVC) [18] structure into
a two-directional parallel structure. However, this work just
focused on analyzing the relationship of the prediction struc-
ture with its coding performance, and the biggest obstacle
of LF-MVC is that this method only can be implemented
in H.264-based multi-view coding standard (not compatible
with HEVC).

All the above-mentioned compression methods for light
field videos do not take the importance of some regions of a
video scene into account. In most cases, a moving region of a
scene attracts more attention than other areas. Therefore, con-
sidering motion characteristics of videos, a region-of-interest
(ROI) based compression algorithm for light field videos
is presented. Considering strong inter-view correlations of
light field videos, a view synthesis algorithm is presented
to reduce the costs of video processing, transmission and
storage. Furthermore, the view synthesis algorithm can be
used in some interactive or selective applications to achieve
uneven views’ transmission and compression. In summary,
we make the following contributions:

o A dataset of four light field videos is captured and
presented by a Lytro Illum camera. To our knowledge,
this is the first light field video dataset which is captured
with a plenoptic camera, and the proposed dataset can be
downloaded from [10];

o Four popular light field video compression methods
are implemented to benchmark the compression perfor-
mance of the captured light field video sequences;

o A new ROI-based video compression method is pro-
posed to improve light field video coding efficiency
by 5%—7% compared with the other four popular light
field compression methods;

« A novel view synthesis method for light field videos
is proposed to realize low-latency real-time light field
video streaming, which is able to achieve a significantly
higher coding performance, and the synthesized views
are close to their ground truth.

The rest of the paper is organized as follows. The proposed
light field video dataset is introduced in Section II. The con-
ventional coding methods and a new ROI-based compression
method for light field videos are illustrated in Section III.
The proposed view synthesis for steamed light field video
is presented in Section IV. Experimental results are given in
Section V. Concluding remarks and future work are provided
in Section VI.

II. LIGHT FIELD VIDEO DATASET

Lytro and Raytrix are the two most important light field cam-
eras manufacturers in the market today. Due to the complex-
ity in light filed video processing, only the more expensive
Raytrix light field camera can capture real-time light field
videos, while the lower end Lytro light field camera only has
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FIGURE 2. Example frames of the proposed light field video dataset:

(a) Bottle, (b) David, (c) Toys and (d) Car.

the capability of capturing light field images. In consideration
of real-world applications, we use a Lytro Illum camera to
take several continuous still light field images and manually
generate light field video sequences.

A. LIGHT FIELD VIDEO CAPTURE AND PRE-PROCESSING
Four scenes have been captured using a Lytro Illum camera
(ISO is 3200, flicker reduction is 5S0Hz) to take several con-
tinuous still light field images and manually generate Light
field video sequences. In order to generate light field videos,
raw light field images captured by the Lytro camera are
first decoded, calibrated and rectified by Matlab LFToolbox
(Version 0.4) [19]. As is commonly carried out in video
coding, each view sequence is then transformed to a YUV
video sequence. Each light field image acquired with the
Lytro Illum camera is represented by a 4D matrix of 15 x 15
sub-aperture images/views. However, the viewing quality
of the border views are usually distorted and darksome,
especially the three views from each side are usually black.
To mitigate this problem, all the 15 x 15 views are refined and
corrected by a frequency filter and a color correction method
in this paper.

These videos are: Bottle, David, Toys and Car, as shown
in Fig. 2. Our dataset has two green background close-ups
sequences (David, Toys) that are interesting for some specific
use cases such as realistic telepresence and face 3D recover-
ing. We have also captured a rotary scene that includes two
small objects with a complex background (Bottle), and the
fourth light field video scene includes a car movement (Car).

B. DESCRIPTION OF THE CAPTURED LIGHT FIELD VIDEO
SEQUENCES

The proposed light field video dataset can be downloaded
from [10]. All light field video sequences in this dataset are
provided as 15 x 15 views in YUV format. The frame rate of
each light field video sequence in our dataset is 25 frames
per second, and each view has 100 frames. The detailed
description of each light field video sequence is as followed:

VOLUME 7, 2019

1) BOTTLE SEQUENCE
The video sequence Bottle contains one bottle and one toy on

a turn table and with a poster as background. The resolution
is 512 x 352.

2) DAVID SEQUENCE
The video sequence David contains one David sculpture on

a turn table and with a green background. The resolution is
480 x 320.

3) TOYS SEQUENCE
The video sequence Toys contains 2 toys on a turn table and
with a green background. The resolution is 480 x 320.

4) CAR SEQUENCE
The video sequence Car contains one car, and the car is

moving from right to left at a constant speed. The resolution
is 512 x 352.

Ill. VIDEO COMPRESSION METHOD FOR LIGHT

FIELD VIDEOS

In the following part of this section, we first apply four
conventional 2D/3D video coding methods to light field video
coding, and then a novel ROI-based compression method for
light field videos is proposed. The experimental results are
shown in Section V.

A. CONVENTIONAL COMPRESSION METHODS

FOR LIGHT FIELD VIDEOS

Taking 3 x 3 array as an example, four popular video com-
pression methods are converted to light field array structure
in order to further experimental analysis.

A straightforward way to compress a light field video
sequence is to encode each view sequence separately, like
a regular 2D video sequence. For example, every single
view can be encoded using the hierarchical-B coding struc-
ture, in which the first frame of each view is encoded
as I frames, and the remaining frames are predictively
encoded as B frames. This method is straightforward and easy
to implement, but only the inter-frame correlation between
frames in each single view sequence is considered while the
strong correlation between views is disregarded.

It is noted that a light field video can be considered as
a 3D image matrix. By transposing this 3D image matrix,
we can obtain a single video sequence and compress it with
high-efficiency video coding methods. A horizontal zigzag
transposed compression method is proposed in [15]. It trans-
poses the first from top-left to bottom-right, then the second
light field frame from bottom-right to top-left, and so on, and
construct a single 2D video sequence with all the transposed
images, as shown in Fig. 3. For example, a 3 x 3 views and
5 frames light field video sequence can be transposed into a
45 frames single view sequence. This method makes use of
the inter-view correlation, but in contrast to the single view
compression method, the inter-frame correlation no longer
exists in the final reconstructed video sequence.
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FIGURE 3. Horizontal zigzag transposed ordering coding structure for a
light field video sequence.
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FIGURE 4. Rotary transposed ordering coding structure for a light field
video sequence.

A rotary transposed ordering compression method for light
field images is proposed in [16]. We carried out this method
to compress light field videos by adding a time series into
the structure. It transposed the first light field frame from the
centre and revolved around the view until the final view of
the last frame, as shown in Fig. 4. Rotary transposed ordering
structure makes better use of the inter-view correlation when
the number of views is small compared with horizontal zigzag
transposed ordering structure, but more views will bring
larger rotation and frames get father from their references.
The primary problem of this compression method is the inter-
frame correlation is still not considered in this structure.

A light field video can be seen as a multi-view video
vector, and then the standard MVC coding structure can be
implemented to compress a light field video sequence by
making use of both inter-view and inter-frame correlations.
To implement multi-view coding in light field video coding,
a simple ordering operation can be applied to convert the
light field video sequence array into a video sequence vector.
For example, a two-dimensional (H-views and V-views) light
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FIGURE 7. Flexible quadtree structure of HEVC standard.

field video sequence is converted to a one-dimensional multi-
view video sequence, as shown in Fig. 5. MVC for light
field video coding exploits both the spatial and temporal
redundancy contained in a light field video sequence, which
can achieve a much better compression ratio compared with
the single view compression method and transposed ordering
(horizontal zigzag and rotary) methods. However, through
analyzing the extended MVC structure, we can find that the
vertical correlation disappears after the image array-vector
conversion. On the basis of the MVC prediction structure,
a light field multi-view coding (LF-MVC) structure is pro-
posed in [17]. This method makes use of inter-view cor-
relations, inter-frame correlations and vertical correlations
between frames, as shown in Fig. 6. However, the biggest
obstacle of LF-MVC is that this method only can be imple-
mented in the H.264-based multi-view coding standard.

B. A NEW ROI-BASED LIGHT FIELD VIDEO
COMPRESSION ALGORITHM

ROI-based coding methods which consider the importance
of some regions of videos are widely used to reduce bitrates
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FIGURE 8. Results of the proposed region division method (The centre view’s first frame of Bottle sequence, and the largest size of coding units is
64 x 64.): (a) Moving region distribution map, (b) Moving region division result, (c) Texture distribution map, (d) Non-ROI sub-division result.

and keep an excellent perceptual quality of videos. However,
there are no works using ROI technology to guide light field
video coding. In most cases, a moving region of a video
frame attracts more attention than other areas. For example,
the most important areas of the light field video sequences
in the proposed dataset and other two light field video
datasets [8], [9] are moving regions. Therefore, in order to
further improve coding efficiency and compression ratio,
we propose an ROI-based video compression method for light
field videos that based on flexible quadtree structure of the
high-efficiency video coding (HEVC) standard. The most
important thing is that the proposed method can be combined
with any HEVC-based compression methods.

As shown in Fig. 7, different from the fixed size mac-
roblock of H.264, HEVC standard uses quadtree-based
variable-size coding units. The largest size of coding units is
64 x 64 pixels, and the smallest size is 8 x 8. There are four
depth levels (0, 1, 2, 3) to divide the size of coding units by
doing in a recursive manner. A depth level of zero means that
the size of the current coding unit is 64 x 64, and a few bits are
allocated to this unit. On the contrary, a depth level of three
means that the current coding unit is partitioned into four 8 x 8
sub-units, and many bits are allocated to ensure the quality
of this unit. The size of a coding unit in HEVC is various
depending on the complexity of the video content. In order
to decide the most optimal partition mode, HEVC standard
compares the coding cost of units at current depth level and
the sum of four coding costs of units at other depth levels.
The process time of partitioning coding units accounts for
around 40% of the whole coding time. However, the HEVC
standard allows users to set the depth level for each coding
unit. We can use this option to save a lot of coding costs by
limiting depth level of coding units in non-ROI regions which
are not important in a video frame. According to the human
visual system, humans can not notice all details in non-ROI
regions, so the loss of some details caused by the limitation
of depth level in non-ROI regions have only a small impact
on users’ viewing experience.

In our ROI-based video coding method, moving areas
served as ROI regions, and non-moving areas served as non-
ROI regions. Considering the small difference between views
due to the dense and narrow-baseline of light field videos
captured with a Lytro Illum camera, ROI detection methods
only are implemented on the centre view of a light field
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video sequence in order to avoid extra computation time.
We firstly use frame differencial method to detect motion
regions and generate moving region maps. The difference
between frames for each pixel is calculated. The largest size
of coding units in our algorithm is 64 x 64, and the coding
unit is marked as a moving region if it contains moving pixels.
Results of a generated moving region distribution map and a
moving region division result are shown in Figs. 8 (a) and (b).
Moreover, through our observations, the characteristics of
coding units inside a non-ROI region may not be uni-
form. Therefore, non-ROI regions in our research are further
divided into smooth regions and complex regions. Smooth
regions are easy to encode and only needs a few numbers of
bits, and complex regions need more bits to ensure their per-
spective quality. In order to complete the division of non-ROI,
a texture detection method is used to obtain texture maps. The
essential idea behind the method is to calculate Euclidean
distance between the Lab pixel vector in a Gaussian filter
for each frame with the average Lab vector for each frame.
Results of a texture map and non-ROI sub-division are shown
in Figs. 8 (¢) and (d).

The generated moving region maps and texture maps are
then used to guide coding units partition and bitrate alloca-
tion. On the basis of these maps, we add a constraint on cod-
ing unit partition strategy, and the partition size is determined

by (1).

standard partition, cu €ROI

depth(cu) = { 1, cu ecomplex region of non-ROI (1)

0, cu esmooth region of non-ROI

where cu is the current coding unit. The standard recursive
manner is used to determine the unit partition if the unit
belongs to the ROI region. Otherwise, a constraint on the
depth level of the coding unit is added in the non-ROI region.
The depth level is one (two 32 x 32 sub-units) if the unit
belongs to the complex region, or the depth level is zero (one
64 x 64 sub-unit) if the unit belongs to the smooth region.

IV. VIEW SYNTHESIS ALGORITHM FOR STREAMED
LIGHT FIELD VIDEO

There is an inherent trade-off between angular and spatial
resolutions in light field data because of the limited resolu-
tion of sensors. The light field videos captured by camera
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array systems have a high spatial resolution but usually do
not have many available views. For example, the light field
videos in [8] and [9] only have 3 x 3 views and 4 x 4
views, respectively. On the other hand, the light field videos
captured by plenoptic cameras have many available views
at the cost of reducing the spatial resolution. For instance,
the light field videos in our dataset are captured with a Lytro
Illum camera have 15 x 15 available views, while the spatial
resolution is only 434 x 625 and a limited range of field-
of-view (FOV). To mitigate this problem, a learning-based
approach is proposed in [20] to improve the light field spatial
resolution. This algorithm synthesizes novel views from a
sparse set of input views captured by the Lytro Illum cam-
era. However, the primary issue in this system is that the
authors designed disparity features to represent appearance
flow instead of learning them from original light field images.
Computer vision researchers have shown that learned features
are generally much better than hand-designed features [21].
Niklaus et al. [22] propose an adaptive separable convolution
approach for video frame interpolation. The authors approxi-
mate adaptive convolutional kernels by separating them to the
vertical and horizontal kernels. This approximation greatly
reduces the cost of computer memory so that the network can
handle large motion between video frames. This deep neural
network is fully convolutional and can be trained end-to-end
using widely available video data without any difficult-to-
obtain meta data like optical flow. However, this approach is
designed for dealing with frame interpolation of 2D monoc-
ular video sequences.

Inspired by the above-mentioned algorithms, a view syn-
thesis algorithm for light field video compression is proposed
to improve coding efficiency. The essential idea behind com-
bining the proposed view synthesis algorithm with light field
video coding described in this section is that only a sparse
set of light field views are encoded, transmitted and stored
instead of processing all views. Obviously, compressing and
transmitting only a sparse set of views and synthesizing other
views according to the actual application is an effective way
to improve coding efficiency. Fig. 9 shows the proposed view
synthesis algorithm for streamed light field videos. There are
10 x 10 pink color views which need to be encoded in a
15 x 15 light field video sequence, and the other views (gray
and white color views) can be synthesized at the decoder
according to the actual application requirements. Traditional
compression methods need coding 15 x 15 views for each
light field video sequence, while the proposed view synthesis
method can directly cut down approximately 53% of views to
increase the compression ratio.

Considering narrow baseline structure and strong inter-
view correlations exist in light field videos, we extend the
time series of video frames interpolation [22] to the spatial
series of light field views synthesis. The overview of the
neural network architecture is shown in Fig. 10. The learning-
based framework contains three convolutional neural net-
works. Firstly, a multi-scale convolutional neural network
is used to estimate optical flow implicitly. Then the second
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FIGURE 9. Proposed view synthesis method for light field videos. There
are 15 x 15 views in the left picture. The pink color views (10 x 10) are
key views which are encoded using a conventional HEVC codec, and the
remaining views (gray and white color views) are synthesized in the
decoder to improve coding efficiency. Gray color indicates this view is
generated by key views, and white color indicates this view is yielded by
synthesized views. The coordinates in the right picture show the locations
of views in a light field video.

convolutional neural network is used to generate pixel-wise
adaptive kernels. The generated kernels are then doing the
convolution with the existing views to synthesize novel views.
Finally, we adopt the third convolutional neural network to
refine stacked synthesized views from adaptive convolution
to get the final synthesized views. This deep neural network is
fully convolutional and can be trained end-to-end. Since the
objective of the model is to synthesize novel views, optical
flow ground truth is not required to train the model. This
objective also brings a benefit that accurate optical flow
estimation is not necessary. Pixel-wise adaptive convolution
is used to synthesize novel views, so the problem of view
wrapping in large motion places can be avoided. Adaptive
kernels contain optical flow information thus they does the
view wrapping implicitly. Furthermore, these kernels have
common patterns which mean common features of images,
so the learning-based framework can synthesize more real
and accurate novel views.

Compared with traditional methods which compress all
views in light field videos, our approach reconstructs dense
light field video from sparse views. The high correlations
between neighboring views allow a deep neural network to
reconstruct original light field videos accurately. The most
significant difference between our approach and traditional
methods is that the deep neural network extracts a common
pattern from light field videos and leverages it to recon-
struct dense light field videos for all the possible videos.
The common pattern is a more efficient way to compress
the data and can be seen as a kind of intelligence. With the
great improvement of GPU’s performance and the property of
highly parallel of the deep neural network, compressed light
field videos can be efficiently reconstructed at the receiver.

In some interactive or selective applications (e.g., [23])
where users can choose some views that interest them to be
displayed, compressing and transmitting the whole light field
video generate not only a very significant computation load
but also an enormous encoding/decoding and transmission
latency. The proposed view synthesis compression method
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end-to-end.

TABLE 1. Rate-Distortion Performance of Four Conventional Compression Methods.

Toys 660.817 | 34.97 | 532.077 | 35.06
Car 410.553 | 33.85 | 368.291 | 33.88
Average | 619.383 | 34.78 | 510.556 | 34.85

MVC LE-MVC SV HZT RT
Videos Bitrates | PSNR | Bitrates | PSNR | Bitrates | PSNR | Bitrates | PSNR | Bitrates | PSNR
[kbps] | [db] | [Kbps] | [db] | [kbps] | [dB] | [kbps] | [db] | [kbps] | [db]
Bottle 620.046 | 34.87 | 507.267 | 34.88 | 706.281 | 3532 | 261.390 | 37.09 | 260.480 | 37.08
David 786.115 | 35.41 634.588 | 35.59 | 968.324 | 35.57 | 296.506 | 37.54 | 289.615 | 37.48

775911 | 3537
383.825 | 35.03
708.585 | 35.32

269.583 | 37.37
228.861 | 35.53
264.085 | 36.88

266.175 | 37.37
228.731 | 35.52
261.250 | 36.86

can be used to solve this problem by allowing users to gen-
erate novel views from a sparse set of decompressed views
at the receiver according to their interactive applications.
Therefore, the proposed view synthesis method for light field
video compression can significantly improve the coding effi-
ciency and apply to low-latency real-time interactive light
field streaming applications.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. EXPERIMENTAL RESULTS

Taking 3 x 3 light field video sequences as examples, exper-
iments for above compression methods are carried out. The
frame rate is 25 frames per second and quantization parameter
(QP) 37 is adopted. To evaluate the compression efficiency,
we use conventional rate-distortion and Bjgntegaard Delta
(BD) rate [24] to evaluate the performance of compression
methods.

Firstly, the rate-distortion performance of the four pop-
ular compression methods: Single view (SV) compression
method, Horizontal zigzag transposed (HZT) ordering com-
pression method, Rotary transposed (RT) ordering compres-
sion methods and LF-MVC for four light field videos in
our dataset are given in Table 1. According to the results,
the bitrate savings of LF-MVC relative to MVC under the
same objective quality about 19.527% on average, because
the vertical correlations of views are used in LF-MVC. The
performance of HZT is similar to RT due to the strong inter-
view correlations. However, the objective performance of
RT is affected by the number of views because more views
will bring larger rotation and frames get farther from their
references.
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TABLE 2. BD-Rate Reductions Obtained by Combining ROI Technology in
Comparison to Conventional Methods.

Videos BD-rate reduction [%] relative to
SV HZT RT
Bottle -8.312 | -6.530 -6.724
David -5.438 | -3.829 -3.176
Toys -6.303 | -4.297 -4.324
Car -8.102 | -5.231 -5.255
Average | -7.039 | -4.972 -4.869

Moreover, Table 2 shows the BD-rate reductions obtained
by the proposed ROI-based compression method to the
SV, HZT and RT methods. According to Table 2,
the proposed compression method can achieve a reduction
of 4.869%-7.039% in bitrates against the conventional com-
pression methods.

Table 3 shows the BD-rate reductions obtained by the
proposed view synthesis-based compression strategy to the
above four commonly used compression methods. According
to the results, the proposed view synthesis-based compression
strategy can achieve a reduction of about 50.811% in bitrates
against the conventional compression methods.

B. EXPERIMENTAL RESULTS OF VIEW SYNTHESIS

ALGORITHM FOR STREAMED LIGHT FIELD VIDEO

Compressing, transmitting and storing only a sparse set of
views instead of processing all views is an effective way
to improve the performance of light field video compres-
sion. Therefore, a learning-based view synthesis algorithm
for streamed light field videos is proposed in Section IV.
The precondition of combining view synthesis algorithm with
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FIGURE 11. Comparison of our algorithm against the resent method of Kalantari et al. [20] on the Flower1 and Cars scenes. The contents in
the red boxes obviously show our synthesized views are better than Kalantari et al.’s synthesized views in terms of the quality of edges and
local details.

TABLE 3. BD-Rate Reductions Obtained by the Proposed View
Synthesis-Based Compression Strategy in Comparison
to Conventional Methods.

BD-rate reduction [%] relative to

Videos Ve SV HZT RT
Bottle | -48.269 | -53.000 | -52.092 | -52.768
David | -47.312 | -53.000 | -51.775 | -52.018
Toys 47.694 | -53.000 | -53.167 | -52.932
Car 49.662 | -53.000 | -52.284 | -53.007
Average | -48.234 | -53.000 | -52.330 | -52.681

video coding is to make sure novel views can be synthesized
correctly by a few input views. In order to verify the effective-
ness of the proposed view synthesis algorithm, comparison
experiments are done by using the existing popular view
synthesis algorithm [20] and the proposed algorithm.

1) OBIJECTIVE EXPERIMENTAL RESULTS FOR LIGHT FIELD
VIEW SYNTHESIS ALGORITHM
We test the proposed light field view synthesis algorithm on
microlens-based light field image dataset [20] in order to
compare the proposed algorithm against the state-of-the-art
algorithm available in the literature [20]. The experimental
results are evaluated numerically, in terms of the PSNR and
structural similarity (SSIM) [25]. SSIM produces a value
between 0 and 1, where 1 indicates perfect perceptual quality
with respect to the ground truth.

Table 4 shows the PSNR and SSIM values for these two
methods on different test scenes. As can be seen in the table,
the results of our algorithm are better than another algorithm.

2) SUBJECTIVE EXPERIMENTAL RESULTS FOR LIGHT FIELD
VIEW SYNTHESIS ALGORITHM

We first test our algorithm on Flowerl and Cars scenes which
are offered in microlens-based light field image dataset [20]
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TABLE 4. Objective Comparison of Our View Synthesis Algorithm Against
the State-of-the-Art Method [20].

Kalantari et al. [20] Ours
SSIM PSNR SSIM | PSNR
Flower 1 | 0.969 33.31 0.974 | 34.01
Flower2 | 0.959 31.93 0.974 | 34.35
Cars 0.966 31.65 0.971 32.64
Rock 0.970 34.67 0.969 | 34.85
Leaves 0.936 27.80 0.948 | 30.14
Average | 0.960 31.87 0.967 | 32.20

Images

to compare the subjective quality of the proposed view
synthesis algorithm against Kalantari’s algorithm [20], and
the results are shown in Fig. 11. Ground truth is shown
in Fig. 11 (a) as the judging criteria, and the contents
within red boxes in Figs. 11 (b) and (c) show obviously
subjective improvement of our synthesized views compared
with another algorithm. In the Flowerl scene, the leaves
in the red box of the right image (our synthesized view)
have better quality than the same area in the medium image
(Kalantari et al.’s synthesized view). In the Cars scene,
the tree branches in the red box of the right image are much
clearer than the same area in the medium image. Therefore,
this subjective contrast shows our algorithm is able to synthe-
size more details and much closer to the ground truth.

Then we implement our algorithm in the proposed light
field video dataset to demonstrate its superiority and effec-
tiveness. Taking four 3 x 3 light field video sequences which
are belong to the proposed light field video dataset as exam-
ples, the subjective results are shown as Fig. 12. The results
show no detectable differences between the ground truth and
the synthesized view. Therefore, the proposed view synthesis-
based light field video compression strategy is feasible, and
views can be flexibly synthesized according to the specific
application.
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FIGURE 12. Subjective results of synthesized views. (a) Ground truth of Bottle (the 36th frame), David (the 23rd frames), Toys (the 5th frame) and Car
(the 36th frame) sequences, (b) Magnified details of the central ground truth, (c) Synthesized views of the four sequences, (d) Magnified details of the

central synthesized views.

VI. CONCLUSION

In this paper, we presented a light field video dataset with
four scenes. To our knowledge, this is the first light field
video dataset captured with a plenoptic camera (Lytro [llum).
Four popular compression methods were implemented in the
proposed dataset to set a benchmark of light field video
compression performance. In order to further improve the
compression performance, a new ROI-based light field video
compression method which considers motion characteristics
was proposed. Instead of using the same way to encode the
whole frame, every frame in our compression method is
divided into an ROI region, a complex non-ROI region and
a smooth non-ROI region to be processed differently. Then
a novel fview synthesis method for light field video com-
pression was presented to reduce bitrates further. Experimen-
tal results show that the proposed ROI-based compression
method can save 5%—7% in bitrates compared with traditional
HEVC-based light field video compression methods, and a
reduction of about 50% in bitrates can be achieved by using
the proposed view synthesis-based compression method. Fur-
thermore, subjective results show that our view synthesis
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algorithm yields high-quality views that are superior to the
state-of-the-art synthesis algorithm.

In the future, we would like to improve coding efficiency
by utilizing depth estimation [26] from light field videos.
Another interesting approach will be to design an interactive
light field video compression method that will efficiently
encode uneven views by predicting users’ viewing trajecto-
ries and gestures.
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