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ABSTRACT Video surveillance has become ubiquitous due to the increasing security requirements in every
sphere of life. The next generation video surveillance system (VSS) possesses great challenges in various
applications, such as intelligent urban surveillance systems and smart cities. In these applications, we need
to deal with the fast-growing number of surveillance nodes which introduce several constraints, e.g., high
latency, high bandwidth, high energy consumption, and CPU and memory usage. To address these issues,
the Internet of Video Things (IoVT), which is considered to be a part of the Internet of Things (IoT), can
be a solution. The IoVT is composed of visual sensors (i.e., cameras) connected to the Internet. Unlike
conventional systems, the VSS under an IoVT framework provides multiple layers (i.e., edge, fog, and
cloud) of communication and decision making by capturing and analyzing rich contextual and behavioral
information. Since an appropriate application layer protocol (ALP) can help in alleviating the challenges
of future VSSs, the selection of ALPs is important for IoVT-based systems. Therefore, this paper presents
a generic architecture of an IoVT-based VSS and a comparative analysis of several ALPs, such as MQTT,
AMQP, HTTP, XMPP, CoAP, and DDS, with real-time experimentation. This analysis will assist the users to
choose the appropriate ALPs in various surveillance applications and determine their suitability at different
nodes of the IoVT framework.

INDEX TERMS Application layer protocols, the Internet of Video Things (IoVT), video analytics, video
surveillance.

I. INTRODUCTION
The use of Video Surveillance Systems (VSSs) has increased
tremendously in the last decade, primarily to counter ter-
rorism and to reduce the crime rate. It is also widely
adopted in various cyber-physical applications including traf-
fic analysis, healthcare, public safety, wildlife tracking, smart
building, industrial automation, and environment/weather
monitoring [1]. A typical VSS consists of image and video
data. The number of surveillance cameras is also increasing
around us. The advancement of technology has reached a
level where mounting a camera for monitoring is cheap but
finding sufficient human resources to sit, operate, and moni-
tor the captured image is expensive. To deal with the increas-
ing number of surveillance cameras, video surveillance that
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does not need human assistance for its functionality is becom-
ing more popular. The computer-assisted reproduction of
video analysis is called video analytics (VA) [2]. Its ability
to detect or identify, monitor or locate, and analyze action
or interaction in order to interpret the activity of a scene
without human intervention is known as intelligent video
surveillance (IVS) [8]. There have been over 6000 research
papers published since 1971 in video systems design, track-
ing, modeling, behavior understanding, abnormality detec-
tion, real-time performance, and practical implementation of
IVS and VA [9]. All of these works show the growing interest
of researchers in video surveillance-based applications.
The Internet of things (IoT) is the inter-networking of

physical devices, vehicles, buildings, and other items embed-
ded with electronics, software, sensors, actuators, and net-
work connectivity that enables these objects to collect and
exchange data. The IoT melds together physical objects,
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virtual objects, living beings, user interfaces, and analytics
that are all interconnected over an Internet-based infrastruc-
ture. IHSMarkit forecasted that over 130million surveillance
cameras would be shipped globally in 2018 [3]. In another
study [10], the authors estimated that the number of cam-
eras would rise to 13 billion by 2030. Therefore, there
is a need to combine visual sensors and surveillance data
within the framework of the IoT that will require higher
bandwidth and power for transmission and computational
ability [11]–[13]. The conventional cloud-based architecture
alone is not capable of dealing with the issues that are related
to the fast-growing number of visual IoT nodes in the IoVT
paradigm which has led to the introduction of fog and edge
computing. This IoT-integrated edge-fog-cloud framework
has the potential to bring the services closer to the edge by a
decentralizing cloud. Among many factors, application layer
communication, which depends on selected communication
protocols, is one that does influence the performance of such
an integrated system [4].

The application layer provides services and ensures effec-
tive communication between application programs in a
network [61]. The selection of an appropriate application
layer protocol (ALP) is a prerequisite for a better under-
standing of a specific IoT application and its data-sharing
demands [14]. The traditional web applications depend on
HTTP, but unlike them, IoVT applications cannot depend
on one protocol for all its requisites. However, hundreds
of emerging protocols are available which can be chosen,
depending upon the requirements of an IoT-based application.
Consequently, the future of IoVT systems largely depends
on the pros and cons of these emerging ALPs of the IoT
to determine their best-fit scenarios [14]. Hence, this paper
focuses on analyzing several widely used IoT protocols to
fulfill the communication requirements of the IoVT. The
contributions of this work are summarized as follows:

- We first discuss the edge-fog-cloud integrated generic
architecture and functional requirements of the next
generation IoVT-based VSSs.

- Then we present a comparative analysis of the char-
acteristics of IoT ALPs and evaluate them in terms
of performance parameters, such as latency, energy
and bandwidth consumption, and network throughput
based on real-time experimentation. This work pro-
vides information about their relative strengths and
limitations which will be useful to system architects
and protocol designers for determining the best fit and
the potential of a protocol in an IoVT-integrated edge-
fog-cloud-based VSS environment.

II. RELATED WORK
This section presents relevant research works that have
proposed novel architectures, communication protocols and
deployments of smart surveillance systems using IoT solu-
tions. In [24], the authors describe a novel, real-time,
wireless, multisensory, surveillance system with 3D-HEVC
features and deployed a network-adaptive transmission

protocol with adaptive packet frame grouping (APFG),
adaptive quantization to maximize the quality-of-experience
(QoE). The authors describe real-time, high update rate,
super media data transfer over the internet of things [25].
Plageras et al. proposed an IoT-based surveillance system for
ubiquitous healthcare monitoring [26]. In [27], the authors
described an innovative topology paradigm offering bet-
ter use of IoT technology in video surveillance sys-
tems. Memos et al. [28] proposed an efficient algorithm
using Wireless Sensor Network (WSN) packet routing and
high-efficiency video coding (HEVC) for a media-based
surveillance system (EAMSuS) in an IoT network for a smart-
city framework.

Traditionally, each surveillance camera/node directly
sends the video data to the cloud in video surveillance
applications. Cloud-based architectures are used for process-
ing and storing essential data. Examples of the cloud-based
IoT solutions are [5], [6], [7], [15], and [16]. Pflanzner and
Kertesz [44] conducted a detailed analysis of properties for
IoT cloud providers. In [17], the authors present the contri-
butions of both mobile cloud computing (MCC) and the IoT
to the technology of big data. Plageras et al. [18] performed
an analytic study of IoT technology, cloud computing, and
large-scale data to resolve various issues facing the health
sector. All these studies reveal the capability of cloud com-
puting to satisfy many IoT requirements (e.g., monitoring,
sensor stream processing, and visualization tasks). How-
ever, IoT-cloud architecture has issues regarding bandwidth
and latency-sensitive video surveillance applications, which
require surveillance nodes in the vicinity to meet their delay
requirements.

On the other hand, fog-based solutions are considered suit-
able to address real-time processing, fast data response, and
latency issues, thus extending the cloud computing and ser-
vices closer to the edge of the network [19]–[22]. Fog, how-
ever, can be distinguished from the cloud by its proximity to
the end users, the geographical distribution, and its mobility
support [23]. Edge computing provides simple processing at
the constrained IoT devices [60]. The opportunities, research
challenges [53], detail architectural insights, features, and
versatile roles in IoT applications show the promising future
of fog computing [55]. Long et al. [56] propose an edge com-
puting framework for cooperative video processing in mul-
timedia IoT systems. Fog computing and efficient resource
management methodology to balance the content genera-
tion rate of cameras in an IoVT environment are discussed
by [57]. Skrbic et al. [60] present design requirements for a
heterogeneous and collaborative edge-fog- cloud computing
network.

Though a variety of protocols is available for the edge, fog,
and cloud domains, there is no standard protocol to follow for
a specific IoT system. Thus, one of the primary issues is the
choice of the appropriate ALP/s for an IoVT system, while
levering the advances in edge, fog and cloud computing.
Though several works [64], [65] and surveys [7], [45]–[50]
cover various aspects of the IoT architectures, along with
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its research, simulators, and testbeds [54], the specific issues
of communication protocols in the application layer for any
VSS are yet to be addressed by researchers. To fulfill the
protocol requirements, the system designer should consider
the devices (which range from the resource-constrained IoT
edge-nodes to the resourceful clouds), data (produced at the
IoT edge, fog, and cloud layers), and communication archi-
tecture of the system. An efficient VSS architecture should
be able to achieve all these functionalities.

III. VSS REQUIREMENTS
In this section, we discuss the functional requirements of the
next generation VSS. First, an intelligent VSS must perform
the basic operation of surveillance, i.e., it should take images
and videos from the visual sensor node. These visual data
will help the system to detect and classify objects utilizing
standard techniques such as frame difference, optical flow,
and background subtraction [29]. The system can also track
persons using video arrays [30], point tracking, kernel track-
ing, and silhouettes [29]. Automatic interpretation of human
motion helps to identify abnormal behavior [9]. Behavior
detection and event recognition are also crucial in this regard
to detect intrusion [31] and movement disorder [32]. Learn-
ing and classification are other powerful ways for object
detection and event recognition [33]. Bio-inspired adaptive
hyperspectral imaging for real-time target tracking [34] and
a brain-inspired neural-cognitive approach for thermal image
analysis [35] are some examples. In addition, a VSS often
needs precise real-time operation during crimes, such as
breaking doors or locks of a highly secured area, or in critical
situations, such as a stampede, or fire. The detection time of
these types of incidents should be a few milliseconds.

All these tasks require the system to make quick decisions
automatically by analyzing a large amount of visual data.
Hence, local processing and decision making are essential in
this regard. The act of fast decision making can speed up the
process of initiating proper actions (e.g., turning the alarm on,
shutting down a lift, sending SMS (Short Message Service)
or calling an emergency number. Interconnectivity with other
systems is another requirement for a VSS. To enable all
these functional requirements, a VSS requires proper design
architecture.

IV. GENERIC ARCHITECTURE OF AN IOVT-BASED VSS
In this section, we describe the generic architecture of
an IoVT-based VSS with the aim of covering wide spec-
tra of smart surveillance applications in various real-life
domains, including healthcare, public safety in transporta-
tion, smart-home security, smart-city surveillance, environ-
mental disaster, and weather monitoring. We specify the
logical design considerations of data structures, nodes, and
communication architectures. Traditional cloud-based sys-
tems consist of only clouds and the device nodes, but the com-
bined edge-fog-cloud-basedVSS introduces new abstractions
between them [4]. Fig. 1 illustrates a typical edge-fog-cloud-
integrated IoVT based VSS. This framework describes the

possible devices and the communication architecture from
edge to fog and fog to cloud using the ALPs. The edge-node
devices are usually positioned to send visual surveillance data
to a more capable computing system in the fog layer in order
to offload larger computational tasks that require low-latency.
Cloud computing provides storage resources and performs
the largest amount of computation and analysis.

A. DATA STRUCTURE
The authors of [24] classify the different visual and sensory
media data of a smart surveillance system into three cate-
gories: image and video, audio, andmultisensory data. Unlike
mainstream IoT systems (where the nature of the data is
discontinuous and small in size), an IoVT-based VSS deals
with a large volume of data [11]. The streaming of such data
also takes a long time because of the transmission of many
packets [12]. Consequently, processing and transmission of
IoVT-based VSS data bring challenges for devices and appli-
cations, causing high latency and consuming high bandwidth
and energy [11].

B. EDGE-NODE ARCHITECTURE
IoT nodes are smart devices equipped with sensors or actua-
tors that provide information on real-world observations [36].
The regular IoT nodes have limited resources in comput-
ing, communication capacity, and energy. The image sen-
sors and cameras are the key components for acquiring the
real-world image and video data in the IoVT. The design
challenges of these visual sensor-equipped IoVT edge nodes
are high-energy consumption and high-transmission band-
width requirement, as well as a high-power consumption for
data transmission and communication [13]. Though video
and image compression techniques can significantly reduce
the required bandwidth, it is still high when compared to
the lightweight requirement of common IoT nodes [13], [36]
(e.g., 10 Mbps for 1080p over H264 vs. 1 byte of a tempera-
ture sensor reading). Hence, an IoVT edge node may require
relatively higher energy resources, computational power, and
communication capability. Kokkonis et al. explain quality
of service (QoS) requirements for a super media application
in [25], and state that each packet frame of video data should
be equal to the maximum transmission unit (MTU) size of
the physical layer, which requires a high data rate of about
2500-40000 kbps. The required throughput of a raw 1920 ×
1080@30fps video can reach up to 1.49 Gbps. Therefore,
the key criteria of an IoVT edge node are energy-efficient
processing, transmission with high throughput, and rela-
tively higher computational ability [11], [12]. Fig. 1 shows
camera-connected possible edge-node platforms of an IoVT,
including Arduino, Raspberry Pi, and BeagleBone.

C. FOG-CLOUD ARCHITECTURE
There will be many visual nodes in an IoVT system. Hence,
local edge-node computation alone will not be able to
solve all the potential issues. For instance, multi-camera
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FIGURE 1. Generic architecture of IoVT-based VSS.

object tracking may share data beyond single cameras [10].
Therefore, offloading some of the image-video compres-
sions and coding to a fog-computing unit can be another
attractive approach to include in an IoVT-based VSS
platform [11]. Fog paradigm can also be helpful in design-
ing a vendor-independent system (e.g., ONVIF [Open Net-
work Video Interface Forum] created such a standard for
IP products [43]). A visual fog paradigm can also add
more efficiency, lower bandwidth, node-end power consump-
tion, and latency [1]. Therefore, in an edge-fog-cloud plat-
form (as shown in Fig. 1), intra- prediction compression
and light computations can be done at the edge-node side,
whereas fog-computing units can accomplish the heavier
conversions, transcoding, and further processing, and finally,
the cloud unit can handle the heaviest processing [10], [11].
The authors in [1] propose an efficient framework for visual
fog-computing, describing key features such as reusabil-
ity, efficiency, and configurability. Examples of possible
fog-node platforms can be personal computers (PCs), lap-
tops, and Raspberry Pis. Examples of cloud services are the
servers of Apple iCLOUD, Amazon Web Services (AWS),
IBM cloud, Microsoft Azure, VMware, Google, and Digital
Ocean.

D. COMMUNICATION ARCHITECTURE
A reliable communication protocol is indispensable for an
IoVT-based VSS [12]. Fig. 2 describes the IoVT protocol
stack [14], [37]. It consists of the Data link (physical layer),

FIGURE 2. The general IoVT protocol stack.
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Network, Transport, and Application layers. The physical
layer is the first layer of the IoVT protocol stack where
physical devices, like IoVT visual sensors or cameras, will
work. The IEEE provides widely used physical layer stan-
dards, such as IEEE 802.3 (Ethernet), IEEE 802.11 (Wireless
Local Area Network/WLAN), and IEEE 802.15.4 (Wire-
less Personal Area Network/WPAN). A popular communi-
cation protocol in this layer for standard IoT-based systems
is IEEE 802.15.4 [37]. It is designed for low power, lower
data transmission, less complex modulation, lower frame
overhead, and a low data rate (max. 250 kb/s) [51], [52].
6LoWPAN is a protocol defined to enable Internet Protocol
version (IPv) 6 over the IEEE 802.15.4 standard [51]. The
maximum size of the media access control (MAC) layer
(MAC is a sublayer of the data link layer) frame in IEEE
802.15.4 is 127 bytes which leaves only 102 bytes for an
IPv6 packet, even though IPv6 requires an MTU size of
1280 bytes for operation. Therefore, 6LoWPAN provides the
necessary adaption between IPv6 and IEEE 802.15.4 [51].
Again, the IPv6 Routing Protocol for Low-power and Lossy
Networks (RPL) is another network layer convention which
provides the facility for devices to perform point-to-point or
multipoint communication [37].

IoVT systems require strictly sustained information deliv-
ery. Any lost packet in the video coding leads to severe
error propagation between two consecutive frames [12]. The
packet loss for video transmission should be≤ 1% as Kokko-
nis et al. describe in [25]. Because of the large MTU size,
high data rate, and almost no packet loss requirements of
the IoVT node, 6LoWPAN and RPL over IEEE 802.15.4
for large visual data transmission cannot be used. On the
other hand, IEEE 802.3 and IEEE 802.11 permit large MTU
sizes of 1518 bytes and 2304 bytes, respectively. Hence,
IPv6 or IPv4 over 802.11 or 802.3 will be an efficient choice
for IoVT-based VSS applications. The choice of transport
layer protocols (i.e., UDP [User Datagram Protocol] or TCP
[Transmission Control Protocol]) depends on the ALPs like
CoAP, MQTT, AMQP, and HTTP [37]. Also, the choice of
proper ALPs for an IoVT-based VSS application depends on
their best suitability at different node levels (edge, fog, and
cloud, as shown in Fig. 1), which is to be evaluated based on
their performances, as described in the following sections.

V. APPLICATION LAYER PROTOCOLS
Based on the application developers’ perspective, the design
alternatives for developing IoT-based real-time applications
are communication protocols, message encoding format, and
the Web platform [36]. Hence, this section presents some
widely accepted and emerging communication protocols
for IoVT-based smart surveillance systems: MQTT, HTTP,
CoAP, AMQP, DDS, and XMPP. Table 1 shows a comparison
based on the general criteria of these protocols.

A. MQTT (MESSAGE QUEUING TELEMETRY TRANSPORT)
MQTT, designed in 1999, is a lightweight machine to
machine (M2M) communication protocol that supports

the publish/subscribe architecture with minimal band-
width requirements, power consumption, and message data
overhead [14]. An MQTT client publishes messages to a
broker through an address known as Topic. Another client
can receive the messages by subscribing to that Topic. Clients
can subscribe to multiple topics [37]. MQTT provides three
levels of quality of services (QoS) to ensure reliability. QoS
0mode sends a packet one time only without requiring confir-
mation messages or ACK (Acknowledgement). QoS 1 mode
delivers the messages at least once by requiring an ACK.
QoS 2 mode guarantees that the message is delivered exactly
once [37]. MQTT has a facility for a variable length header.
It does not provide any MQTT ACK response, but its default
transport protocol (TCP) provides TCP ACK for each packet
sent [14], [38].

B. HTTP (HYPER TEXT TRANSFER PROTOCOL)
HTTP is a globally accepted web messaging standard which
offers several features such as persistent connections, request
pipelining, and chunked transfer encoding. HTTP supports
request/response RESTful Web architecture. Unlike MQTT,
HTTP uses the Universal Resource Identifier (URI) instead
of topics. It is a text-based protocol that does not define the
size of header and message payloads. It depends instead on
the web server or the programming technology [14].

C. COAP (CONSTRAINED APPLICATION PROTOCOL)
CoAP which is another lightweight M2M protocol was
standardized in 2014. It provides a request-reply interac-
tion model like REST (Representational State Transfer) to
constrained devices and environments. CoAP was devel-
oped to interoperate with HTTP and the RESTful Web
through simple proxies. It supports both request/response and
resource/observe architectures. Like HTTP, CoAP uses URI.
The server sends data through the URI, and the client receives
data from a specific resource indicated by that URI [14]. Its
payload size should be small, and the maximum size of the
payload depends on the web server or the programming tech-
nology. CoAP uses confirmable (CON) and non-confirmable
(NON) messages to provide two different levels of QoS.
The receiver acknowledges CON messages with an ACK
packet, unlike non-confirmable messages that do not need
ACK [14], [37], [38].

D. AMQP (ADVANCED MESSAGE QUEUING PROTOCOL)
AMQP, developed in 2003, is a lightweight M2M protocol
designed for reliability, security, provisioning, and interoper-
ability. This protocol supports both request/response and pub-
lish/subscribe architectures. In AMQP (version 0.9.1) clients
publish messages to a broker. The broker stores the messages
in queues as long as the subscribers to those queues have
not received the messages. Depending on the exchange type,
there are four possible ways of routing messages between
publishers and consumers: directly, in fanout form, by topic,
or based on headers [14], [36].
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TABLE 1. Comparision among application layer protocols.

E. DDS (DATA DISTRIBUTION SERVICE)
DDS uses a data-centric publish-subscribe (DCPS) model
for real-time M2M communications and was developed by
ObjectManagement Group (OMG) in 2004. Applications use
Data-Writer of the given data type to publish data objects
to a topic over Publishers component. Data-Reader of the
given data type receives data objects over the Subscriber
component. The publishers discover the subscribers dynami-
cally, usingmatching topics and data types [36]. In contrast to
other publish-subscribe protocols likeMQTT orAMQP,DDS
relies upon broker less architecture and uses multicasting.
It supports 23 QoS policies providing various communication
criteria like reliability, priority, urgency, and security [39].
DDS specifies the use of multicast UDP within LAN (Local
Area Network) and TCP transport for communication over
WAN (Wide Area Network) [36]. The two chief stakeholders
in the DDS market proposed the two main implementations
of DDS. One is OpenSplice by PrismTech, and the other is
Connext DDS by Real-Time Innovation (RTI) [41].

F. XMPP (EXTENSIBLE MESSAGING AND PRESENCE
PROTOCOL)
XMPP is an Instant Messaging (IM) standard used for real-
time messaging with XML (eXtensible Markup Language)

streaming technology at its core. It connects a client to
an XMPP server using a stream of XML messages called
stanzas, and uses TCP as the default transport protocol and
TLS/SSL for security. XMPP serves various purposes includ-
ing publish/subscribe messaging, multi-user chatting, and
sensor data exchange [36], [39].

VI. EXPERIMENT SETUP
According to the generic architecture described in section IV,
test video surveillance applications were set up to transmit
real-time images and video through the IoVT network. In this
case, an IoVT source node was used to capture images and
video and send them to the IoVT sink nodes, utilizing the
described protocols in section V. The source node will acts
either as an edge or a fog, while the sink node serves either
as the fog or the cloud, depending on the role of the source
node. Hence, this section describes the detailed technical
specifications of these nodes along with the specifications of
the software packages. Fig. 3 shows the experimental setup.

A. SOURCE NODE
Raspberry Pi1 3 model B (RPi-B) is one of the most common
devices for emulating an IoT source node [11]. Its quad-core

1www.raspberrypi.org
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FIGURE 3. Experimental setup.

64-bit ARM Cortex A53 operating Raspbian stretch (clocked
at 1.2 GHz) has a built-in 802.11 n Wireless LAN and
400 MHz Video Core IV. These features enable RPi-B to
encode/decode visual data in H264 format and implement
ALPs in real time. The Pi camera2 board plugs directly into a
dedicated 15 pin MIPI (Mobile Industry Processor Interface)
Camera Serial Interface (CSI) on the RPi-B through a 15-pin
Ribbon cable. This 5 MP (Mega Pixel) camera sensor is
capable of capturing 2592 × 1944 resolution static images,
as well as supporting the 1080@30fps, 720@60 fps, and
640×480@60/90 fps video recordings. Hence, the Pi camera
connected with RPi-B will serve as a visual sensor node for
this experiment.

B. SINK NODE
The Intel(R) Core (TM) i7 processor, clocked at 3.40GHz,
with a 24GB RAM and 64-bit Windows 7 operating system
works as a data sink node for this experiment. Another Rasp-
berry pi 3 model B board is also used as a sink node.

C. SOFTWARE AND COMMUNICATION PROTOCOL
IEEE 802.11(WLAN) was set as the physical layer and
IPv4 as the network layer protocols. The server/client side
and publisher/subscriber side scripts for test applications are
all written using Python3 version 2.7.13. Wireshark84 (ver-
sion 2.6) and tcpdump5 were used to monitor and analyze the
generated network traffic between the source and the sink.
The test parameters, like average latency (including data pro-
cessing, decoding and transferring time), throughput, mem-
ory and CPU usage, overhead, and energy and bandwidth

2www.raspberrypi.org
3https://www.python.org
4https://www.wireshark.org/
5http://www.tcpdump.org/

consumption were calculated with the help of these software
programs.

VII. TEST PARAMETER MEASUREMENT
This section explains the details about the methods and exper-
imental procedures taken to measure all the test parameters of
interest.

For MQTT and AMQP protocols, the source node pub-
lishes visual data to the broker/server, and then the bro-
ker forwards data to the client running at the sink node.
An Eclipse mosquitto6 message broker has been used as the
MQTT broker, while AMQP used a CloudAMQP7-provided
RabbitMQ8 server. XMPP used a Jabber9 server for commu-
nication between two clients. The HTTP and CoAP servers
were set at the source node (RPi-B), and the clients accessed
them by sending GET requests and using specific URI and
port numbers.

Unlike MQTT and AMQP, DDS does not require a bro-
ker. It uses Global Data Space (GDS) instead. The Pub-
lishers forward their data into the common GDS, and the
DDS support propagates the data to all interested Subscribers
having common topics. The underlying DDS data distribu-
tion is decentralized and adopts a peer-to-peer model, and
therefore requires no centralized broker [41]. RTI uses the
standard RTPS (Real-time Publish-Subscribe) data delivery
protocol by default. OpenSplice DCPS (Data Centric Publish
Subscribe) implementation supports an optimized proprietary
data delivery protocol called RTNetworking. It also supports
RTPS for interoperability with other DDS solutions [41].
Connext DDS by RTI was used for the experiment.

6https://mosquitto.org/
7https://www.cloudamqp.com
8https://www.rabbitmq.com/
9https://xmpp.org/software/servers.html
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The methods used to calculate the test parameters are
described in the following sub-sections.

A. LATENCY
Network latency10 is defined as the amount of time it takes for
a packet to reach a destination device from its source device.
Latency can be measured in several ways, including one way
and round trip. Synchronizing the clocks at both ends and
then subtracting the packet transmission time from the packet
arrival time at its destination gives the latency in one-way
measurement. In the case of the round-trip method, latency
from the sender to the receiver and back is measured, and it
is assumed that the end-to-end latency is half of this result.
This method measures latency from the same device, which
removes the necessity of the clock synchronization. In this
experiment, the one-way method for measuring the latency
for both full image/video and per packet data is used, taking
the average of multiple sessions for each.

B. THROUGHPUT
Throughput is the quantity of data being sent or received per
unit time. The maximum possible throughput measures the
bandwidth of the communication link. The throughput was
calculated using only the payload-containing packets per sec-
ond (packets/s). The maximum transmission unit (MTU)
defines the maximum Ethernet frame size (i.e.,1514 bytes),
which cannot be exceeded in this network configuration.

C. CPU AND MEMORY USAGE
The percentage CPU usage denotes how much of the proces-
sor’s capacity is in use, and can be calculated by dividing the
CPU usage time by the total process running time. The ratio
of the process’s resident size to the physical memory on the
machine is the percentage memory usage. These parameters
are calculated using the Linux command ‘‘top’’ in the Rasp-
berry Pi command terminal.

D. PACKET LOSS
Packet loss is the number of packets lost per 100 packets
sent from a source. Analyzing the captured packets stored in
the pcap11 files with the help of Wireshark, we assessed the
number of lost packets for each transmission.

E. AVERAGE BANDWIDTH (BW) CONSUMPTION
Using the Wireshark packet analysis tool we measured the
average BW consumption for each protocol. The captured
packets were saved in a pcap file by the ‘‘tcpdump’’ com-
mand in the RPi-B node. Wireshark analyzed the pcap file to
calculate the BW.

F. OVERHEAD
The network overhead generated for transmitting the data
packet was calculated utilizing the pcap files.

10http://smutz.us/techtips/NetworkLatency.html
11https://en.wikipedia.org/wiki/Pcap

G. ENERGY CONSUMPTION
We calculated the energy consumption by measuring the total
Power (Voltage × Current) drawn by each protocol process
during data transmission. First, the transmission latency was
measured, then the latency was multiplied by the Power to
find out the consumed energy for each protocol.

VIII. RESULT AND DISCUSSION
First, we analyzed the performance of different protocols
using color images of different resolutions and sizes. Then,
we checked the performance regarding video sequence trans-
mission. Finally, we performed multiple IoVT node-based
analysis. The analyses can be categorized into three parts:
analysis on single-node image data, analysis on single-node
video data, and analysis on multi-node data. Table 2 shows
the details of the visual data samples.

TABLE 2. Visual data used in the experiment.

A. ANALYSIS ON SINGLE-NODE IMAGE DATA
The analysis performed on single node image data of differ-
ent resolutions to measure the test parameters (described in
section VII) on the protocols is presented in this section.

1) LATENCY ANALYSIS
a: MQTT
The first experiment was performed to transmit color images
of various resolutions from the RPi-B source node to the
RPi-B sink node using the MQTT protocol. We used an
MQTT Python client library called Eclipse Paho12 to cre-
ate applications for the image publisher. It connects to the
mosquitto broker to route the visual data towards the Sub-
scriber, using a topic. The MQTT protocol is an M2M con-
nectivity protocol. Hence, the source node encodes the image
data into binary arrays before transmission. The receiving
node decodes these byte arrays and saves the image into JPG
format. We have calculated the encoding, transmitting, and
decoding time of the payload. Total latency (T) is calculated
using equation (1). We repeated each test five times to cal-
culate the average latency. Fig. 4 shows the outcomes. It is
evident that Latency (T) increased proportionally with the
quality of the image.

Latency (T ) = Encode time (Te)+ Transmit time (Tt)

+Decode time (Td ) (1)

12https://pypi.org/project/paho-mqtt/
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FIGURE 4. Latency of MQTT protocol with varied image resolutions
measured from RPi-B source to RPi-B sink.

Later the same experiment was done from the RPi-B source
node to a PC sink node as shown in Fig. 5, the results indicate
that changing the sink node does not impact Tt significantly,
although there is a slight change in Te and Td. Because of the
hardware configuration, the results may vary slightly from
machine to machine. In addition, the 1280 × 960 image
seems to require more transmission time in the PC sink node.
We examined the receiving packets for both the PC and
RPi-B and found a variation in the TCP receiver window
size (Win) [62]. The Windows operating-system-based PC
node used smaller Win than the Linux-based RPi-B [63]. The
transmission latency can be shorter if the device uses a larger
Win size with the help of the Win auto-scaling factor.

FIGURE 5. Latency of MQTT protocol with varied image resolutions
measured from RPi-B source to PC sink node.

b: AMQP
A similar experiment was done using AMQP, utilizing both
RPi and PC sink nodes. We used the Pika13 python client
library and RabbitMQ server, which is an implementation of
AMQP version 0-9-1. The AMQP Publisher runs in RPi-B,
and the Subscriber receives the image data through a specific
topic and queue defined by the Publisher. The RabbitMQ

13https://github.com/pika/pika

server routed the data successfully. We repeated each test five
times to calculate the average latency. Fig. 6 and Fig. 7 show
the results. The results indicate that the transmission time
significantly increased with the increasing image quality.
Because of the receiver window size variation, the transmis-
sion time varied from the PC to RPi nodes.

FIGURE 6. Latency of AMQP with varied image resolutions measured
from RPi-B source to RPi-B sink.

FIGURE 7. Latency of AMQP with varied image resolutions measured
from RPi-B source to PC sink.

c: HTTP
This experiment analyzed the performance of HTTP. A Sim-
ple14 HTTP image server written in Python was set to run in
the RPi-B at port 8000. The GET requests were made from
the RPi-B and the PC sink node using both the python urllib
module and chrome web browser. The HTTP content type
was defined as the image in the server script, as well as in the
binary format.We repeated each test five times and calculated
the average time. The calculated T from RPi-B to RPi-B and
RPi-B to PC are shown in Fig. 8 and Fig. 9, respectively.
As HTTP is considered to provide a more reliable network
condition, the PC node seemed to use a larger Win compared
to RPi-B in this case.

d: XMPP
This protocol used Jabber domain and two Jabber IDs (JIDs)
to perform the required tests. We utilized the Python

14https://docs.python.org/2/library/simplehttpserver.html
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FIGURE 8. Latency of HTTP with varied image resolutions measured from
RPi-B source to RPi-B sink.

FIGURE 9. Latency of HTTP with varied image resolutions measured from
RPi-B source to PC sink.

FIGURE 10. Latency of XMPP with varied image resolutions (In-band).

SleekXMPP15 library for implementing XMPP clients that
can exchange image, presence, and ID in the form of XML
stanza. As XMPP can transfer only small binary data, it is
unable to transmit large image and video files. Therefore,
its In-band16 binary data transfer resulted in limited success,
as shown in Fig.10. The results show that XMPP success-
fully transmitted the images of lower resolutions. The system
froze while trying to transmit higher resolution images. The
high-resolution images can use XMPP out-of-band.17 Fig. 11
shows the XMPP out-of-band performance.

e: CoAP
For CoAP, we used the txThings18 library, which is a Python-
implemented CoAP library for the twisted framework. The

15https://github.com/fritzy/SleekXMPP
16https://xmpp.org/extensions/
17https://xmpp.org/extensions/
18https://github.com/mwasilak/txThings

FIGURE 11. Latency of XMPP with varied image resolutions (Out-of-band).

CoAP image server at the source node transmitted images
according to the GET requests made by the client. It was
a block-wise transfer with CON-type acknowledgments.
CoAP successfully transmitted the images of low resolutions
(320 × 240 and 640 × 480). However, unlike other proto-
cols, the latency of CoAP seemed very large, and so we did
not continue our experiments using high-resolution images
(960×720, 1280×960). Fig. 12 and Fig. 13 show the results.

FIGURE 12. Latency of CoAP with varied image resolutions measured
from RPi-B source to RPi-B sink.

FIGURE 13. Latency of CoAP with varied image resolutions measured
from RPi-B source to PC sink.

2) ANALYSIS OF THROUGHPUT AND PER PACKET LATENCY
In this experiment, we took the 320×240 resolution, 76.6 kB
color image and analyzed the performances of various proto-
cols by observing per-packet processing, transmission, and
decoding time, as well as the throughput. We calculated
the packet processing, transmission, and decoding time (per
packet) as an approximate value based on the number of
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TABLE 3. Comparison of throughput and latency per packet.

FIGURE 14. Throughput (packets/s) comparison of different protocols.

FIGURE 15. Per packet Latency of different protocols.

the payload-containing packets and their transmission delay.
We also calculated the throughput (packets/s or bytes/s) using
only the payload-containing packets. Table 3, Fig. 14, and
Fig. 15 present the related outcomes.

3) MEMORY AND CPU USAGE vs. QUALITY
We performed this experiment to test the memory and CPU
usage of the protocols. The ‘‘top’’ command in the Linux
terminal helped to measure these parameters. We utilized
images of various resolutions. Figs. 16, 17, and 18 show the
related outcomes. Fig. 17 shows that image quality does not
impact memory usage significantly. Again, memory usage for
MQTT and HTTP is lower compared to the other protocols,
followed by AMQP and CoAP. XMPP is the highest memory
user among all the ALPs. On the other hand, the CPU usage

FIGURE 16. Memory and CPU usage monitoring.

FIGURE 17. %Memory usage comparison of the protocols.

FIGURE 18. %CPU usage comparison of the protocols.

of AMQP is highest (as shown in Fig. 18), followed by CoAP,
MQTT, HTTP, and XMPP.

4) BANDWIDTH CONSUMPTION
The experiment was also conducted to measure the average
BW consumption by each protocol while transmitting the
320× 240 resolution, 76.6 KB image. The maximum upload
LAN speed was 7.3 Mbps. Table 4 shows the results.

5) OVERHEAD
The pcap files captured while transmitting the 76.6 KB color
image were analyzed to find out total protocol overhead and
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TABLE 4. Bandwidth consumption analysis.

FIGURE 19. Overhead calculation.

other network layer overheads, as presented in Table 5 and
Fig. 19. We observed the per-frame physical and network
layer overheads as 14 bytes and 20 bytes respectively. The
transport layer overhead of TCP (32 bytes) was different from
UDP (8 bytes). The protocol overhead (ALP) includes all
the exchanged data except the payload and other network
overheads (including physical, network and transport layer).

6) ENERGY CONSUMPTION
Fig. 20 shows the experimental setup to measure power and
energy. We measured the voltage and current from a DC
power supply (supply voltage: 5V, supply Current: 1A) while
transmitting the 320 × 240 resolution, 76.6 KB image from
the source node. Subsequently, we also calculated the power
and energy consumption. Table 6 and Fig. 21 show the related
results. The table shows that MQTT drew less power and
consumed less energy during the process. On the other hand,
XMPP was the highest power user among all the ALPs.
In addition, the energy consumption of CoAPwas highest due
to its large transmission latency.

FIGURE 20. Energy measurement setup.

7) ANALYSIS OF DDS
OpenSplice implementation of DDS performs better for small
data at a high overhead cost. Moreover, it hinders imple-
mentation scalability for a large message and high data rate.
On the other hand, RTI performs poorly for small data but
exhibits good scalability if the message size increases [41].
Hence, we have focused on the characteristics of DDS imple-
mentations by RTI in the LAN, where DDS uses UDP as
its transport protocol. We used the rticonnextdds-connector
library that enables Python to access DDS data. It works
on XML Application Creation and Dynamic Data. As the
architecture of DDS is complicated compared to other pro-
tocols, the tests were limited to the transmission of text
data only. We transmitted text bytes of equal size to check
its average latency, throughput, memory and CPU usage,
bandwidth, and energy consumption. Table 7 shows the
outcomes achieved from the Wireshark analysis. RTI DDS
used RTPS as the data delivery protocol through UDP trans-
port to transmit the text data. Each of the RTPS useful
packets was 150 Bytes in length whereas the payload was
24 bytes.

We transmitted 10 RTPS packets and calculated the
protocol overhead. The results show that DDS generated
8836 bytes (74%) of overhead while transmitting 240 bytes
(2%) of payload. BW and energy consumption also seemed
high compared to the small payload (Table 7). This proto-
col also produced low throughput with a high per-packet
latency of 2 sec., where the maximum per packet latency
is 0.2986 sec., produced by CoAP. Due to this poor perfor-
mance, we cannot consider DDS as a potential candidate for
IoVT-based real-time video surveillance applications. Thus,
the analyses on the DDS protocol is included here separately
at the end of this subsection.

B. ANALYSIS ON SINGLE-NODE VIDEO DATA
The analysis performed on video data is described in this
second category. We measured the latency of each of the pro-
tocols for video transmission. Due to the poor performance,
we excluded CoAP from video data analysis. Fig. 22 shows
the outcomes. MQTT performs well for video transmission.
On the other hand, XMPP failed to transmit the video due to
its in-band limitation. Hence, we utilized XMPP out-of-band
transmission.

C. ANALYSIS ON MULTI-NODE LATENCY
Previously, MQTT and AMQP performed well in terms of
latency, throughput, and energy consumption. Hence, we con-
ducted experiments utilizing multiple nodes to compare the
delay between MQTT and AMQP. We took two color images
(320 × 240, 76.6 kB each) and transmitted them from two
different IoVT source nodes towards a common sink node.
Fig. 23 and Fig. 24 show the outcomes. MQTT outperformed
AMQP, and as the node number increased, latency signifi-
cantly decreased for MQTT. It took only 0.065s on average
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TABLE 5. Overhead calculation.

TABLE 6. Energy consumption measurement.

FIGURE 21. Comparison of energy consumption.

for MQTT to transfer two images from two different nodes,
while AMQP required 3.03s. Hence, for a double node,
MQTT is 47 times faster than AMQP.

IX. PERFORMANCE ANALYSIS OF MQTT PROTOCOL
USING STANDARD DATASET
As MQTT outperformed other protocols, we applied this
protocol to transmit various standard surveillance video
sequences [41]. We also tested the transmission latency of
the (320 × 240 resolution) color images of different formats

using MQTT. We divided this analysis into two subsections,
and described below.

A. TESTING OF IMAGE FORMATS
So far, we have utilized color images of JPG format only,
but in this experiment, we tested the performance variation in
different image formats. We chose the 320 × 240 resolution
color image sample of various formats like JPG, TIFF, BMP,
and PNG. Fig. 25 shows that JPG format achieves the lowest
delay, followed by TIFF, PNG, and BMP.
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FIGURE 22. Video transmission performance comparison.

TABLE 7. Performance analysis of DDS.

FIGURE 23. Multiple node comparison between AMQP and MQTT.

B. TESTING OF SURVEILLANCE VIDEO SEQUENCE
We have used standard video surveillance sequences from the
online repository ViSOR and evaluated the performance of
MQTT. The associated results of surveillance video testing,
illustrated in Table 8 and Fig. 26, show that per byte energy
consumption decreased as the video size increased.

X. COMPARATIVE DISCUSSION OF ALL PROTOCOLS
The performance analysis and comparison of ALPs for var-
ious IoVT layers are challenging in the IoT research com-
munity. Besides, MQTT, AMQP, HTTP, XMPP, CoAP, and
DDS, other ALPs, like MQTT-SN, Web Socket, SMTP, and
FTP, are also available in the world.

MQTT-SN is an emerging IoT protocol, but its service
is limited for sensor-based networks with low data rates,
which is why it is not suitable for large visual data-based

FIGURE 24. Latency comparison between AMQP and MQTT for
multiple-node.

FIGURE 25. Transmission Latency of different image formats using MQTT.

TABLE 8. Surveillance video sequence [40] testing.

surveillance applications.19 In addition, only a few plat-
forms support MQTT-SN implementation. Web Socket,
another emerging protocol, is designed for the resource-
intensive conditions which can be considered ideal for some

19http://www.mqtt.org/2013/12/mqtt-for-sensor-networks-mqtt-sn
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FIGURE 26. Latency of Surveillance Video sequence transmission using
MQTT.

IoT applications, but its work function is not entirely indepen-
dent, in particular, it cannot interpret its handshake without
an HTTP server).20 SMTP (Simple Mail Transfer Protocol),
an old protocol, is the basis of electronic mail, and is already
established and popular for mail messages. FTP (File Trans-
fer Protocol) is another old protocol that is popular for on
request file transfers on the internet. SMTP and FTP protocols
were designed when there was no encryption mechanism
(TLS/SSL/DTLS) available, and so, these protocols are vul-
nerable compared to the ALPs. Hence, we did not consider
them for experimentation.

MQTT, AMQP, HTTP, XMPP, CoAP and DDS protocols
were chosen instead as possible candidates for IoVT-based
smart surveillance system in this work. We discussed and
explained their suitability at different layers of an edge-fog-
cloud-integrated IoVT based VSS. The task carried out based
on their performances, as evaluated in the experiments.

From the latency analysis given in section VIIIA, it is
clear that MQTT produced the shortest latency, followed
by AMQP and HTTP. As the image size increased, HTTP
eventually outperformed AMQP. XMPP was able to send
only the lower resolutions of images, but at the cost of sig-
nificant latency. Though, the experiments regarding higher
resolutions of images failed due to its in-band binary data
transfer limitation. XMPP overcame this utilizing out-of-
band transfer. XMPP used the XEP-006621 plugin for this
purpose. XEP-0066 allows large file sharing through HTTP
or RTP links, and XMPP is used only as a signaling protocol.

Compared to others, CoAP performed poorly in terms of
latency. Wireshark analysis shows that CoAP fragments the
payload, which is only 64 bytes, in equal parts. Fragmentation
of payload in equal parts is better for small size payloads, but
worse when the payload size increases. Again, CoAP utilizes
a timeout mechanism for retransmission, and so, it needs to
wait for an acknowledgment (CON) for each packet. As the
payload size increases, the number of fragments increases.
As a result, timeouts, and delays increase. Due to this large

20https://tools.ietf.org/html/rfc6455
21https://xmpp.org/extensions/

latency for higher resolution images, it was illogical to mea-
sure the latency for them. Hence, we kept the measurements
within the lower resolutions of images, ignoring the higher
ones.

MQTT, HTTP, and AMQP fragment the payload based
on its size. If the payload size increases, the fragment size
also increases. Large fragment size results in a small number
of acknowledgments and fewer request responses. Hence,
they perform better in terms of transmission time. From
Fig. 23 and Fig. 24, it is clear that MQTT performs better than
AMQP, both for single and multiple nodes. It is interesting to
observe that MQTT requires less time for transmission while
the number of nodes is greater than one.

Although, XMPP out-of-band performs well with shorter
latency, embedding visual data in the XML stanza structure
produces the highest overhead compared to the other proto-
cols. Wireshark analysis shows that XMPP costs 2650 bytes
of protocol overhead out of a total of 87384 bytes while
transmitting 78464 bytes (59 packets) of image payload. This
high overhead causes the poor performance of XMPP, as
shown in Table 5. We found that XMPP required 59 packets
of data to transmit a color image, while HTTP and MQTT
used only 55 packets of data.

Although the per-packet overhead of CoAP is only 4 bytes,
the payload fragmentation method and timeout mechanism
of CoAP increased its total number of packets (1225). Con-
sequently, this block-wise data transfer and CON message
per packet generated a substantial sum of overhead, which
is 16.3% of the total bytes exchanged (Table 5).

HTTP is the proven worldwide protocol for the internet.
But it has limited compatibility with the constrained com-
munication environment when the application is running in
a device like a smartphone or a Raspberry Pi. Here the addi-
tional overhead associated with request/response for this pro-
tocol can negatively affect the environment of a constrained
network. For HTTP, if the number of connected devices
increases, the protocol overhead becomes critical [42]. Dur-
ing the experiment, we ran HTTP image and video servers in
the Raspberry Pi node and tried to request visual data from
another Raspberry Pi and a PC node, first simultaneously,
then one after the other. HTTP failed to process two simulta-
neous GET requests made from two different devices while it
was running in a constrained environment like Raspberry Pi.
In addition, it produced 501 bytes of additional application
layer overheads to transmit 78464 bytes of image data.

AMQP, which produced a shorter per-packet overhead of 8
bytes appears as a promising solution for exchanging large
visual data from publisher to subscriber. It induced 1150 bytes
of ALP overhead. On the other hand, the per-packet overhead
of MQTT is only 2 bytes. Consequently, while transmitting
the same image payload, MQTT produced a total of 48 bytes
of ALP overhead, which is only 0.056% of the total bytes
exchanged (Table 5). Hence, MQTT is proven to be the most
lightweight protocol of them all. It is useful for connec-
tions with remote locations where a small code footprint is
required, and network bandwidth is at a premium.
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TABLE 9. Performance summary high to low (from left to right).

In addition, MQTT took only 17ms to transmit a 1514 byte
packet (Fig. 14 and Fig. 15). It is the lowest per-packet latency
measured during the experiments. The highest through-
put (packets/s) is also achieved by this protocol which
is around 59 payload-containing packets/s. Compared to
MQTT, AMQP also performed well. The throughput rate
of CoAP and XMPP seem significantly lower compared to
MQTT and AMQP.

MQTT is highly energy efficient, as shown in the energy
consumption measurement table (Table 6), followed by
AMQP and HTTP. XMPP consumes a bit more energy,
while CoAP consumes the highest. The transmission latency
substantially affected the total energy consumption of each
protocol.

We also analyzed the protocols in terms of BW (Table 4).
In addition, there was 0 packet loss during the experiments.
The analysis shows that HTTP always consumed a high
BW compared to other protocols. In the case of MQTT and
AMQP, the BW consumption varied according to the network
conditions. But for CoAP, the BW consumption was almost
constant and efficiently low. ForAMQP andXMPP, it ismuch
better than HTTP. For MQTT, the range was wide. The BW
consumption by MQTT was as high as 799K bits/s and as
low as 39 bits/s. Hence, depending on the network situation,
MQTT controls its BW consumption efficiently.

As AMQP and MQTT performed well for single-node
analysis, we performed multiple-node analysis on these two
protocols. The result shows thatMQTT outperformedAMQP,
being 47 times faster in terms of average latency (Fig. 23 and
Fig. 24). The underlying TCP protocol ensured reliable trans-
mission of MQTT even though the QoS was 0.

Finally, we chose the MQTT protocol to perform some
more experiments based on image formats and standard
surveillance video sequences. The test result shows that,
among different available image formats, JPG format works
best for low-latency IoVT applications. The surveillance
video sequence test shows that MQTT can handle large
visual data efficiently. As the video size increased, MQTT

significantly reduced its transmission delay and per-byte
energy consumption. These outcomes prove the suitability of
MQTT in real-time surveillance applications. Table 9 sum-
marizes the overall analysis of comparative performances.

Security and privacy issues create a great challenge for
IoT systems [58], and the research regarding these issues will
continue to persist [55]. The evaluation of present and future
critical security issues in the IoT world [58] and possible
solutions regarding security threats in fog computing [55] and
edge computing [59] encourage future research on this topic.
Hence, in the future, we need to analyze privacy and threats,
as well, especially the additional overhead they might bring.
The security problem in IoT systems itself is a vast research
area, and is beyond the scope of this present work.

XI. CONCLUSION
This paper presented an evaluation of several widely accepted
ALPs for next-generation video surveillance systems using an
IoVT framework.We implemented real-time surveillance test
applications with image and video data and measured differ-
ent communication performance testing parameters induced
by these protocols, such as latency, throughput, BW and
energy consumption, overhead, memory usage, and CPU
usage. The overall analysis helped us rank the ALPs for
different video surveillance scenarios. MQTT can become
a matured platform for implementing IoVT based real-time
video surveillance applications in a constrained environment.
It can transmit visual data from an IoVT edge-node, consum-
ing less BW and with short latency. Though HTTP is most
used and adapted for different applications, its large overhead
and BW consumption make it inappropriate as an IoVT edge-
node protocol in a constrained environment. We can propose
its appropriate use for communication between a resourceful
fog and an unconstrained cloud in an IoVT video surveillance
case. AMQP can also efficiently handle large visual data. But
the observations proved that if the node number and data size
increases, it yields higher latency. CoAP seems to consume
much lower BW and costs less overhead per packet, but the
significant delay in transmitting large visual data makes it
inappropriate for an IoVT edge-node. Due to the complex
architecture, DDS already lacks sufficient deployments. The
experiments also confirm that this protocol possesses high
overhead, high energy consumption, and large latency which
discourage its usage in a constrained IoVT node. XMPP is
also not suitable for deployment in IoVT-edge nodes because
of its high overhead and latency in data transmission.We need
to analyze other features (e.g., security) in the future as well
to check the change of performance of the ALPs. The work
done in this paper will create exciting opportunities in new
IoVT-based VSS architectures that will need to combine
IoVT edge, fog, and cloud computing systems based on the
appropriate selection of underlying ALPs.
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