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ABSTRACT Contactless vital signs detection, based on the Doppler radar sensor system, has opened a
great opportunity in biomedical applications. The radar sensor system can be used to provide the respiratory
information of people without disturbing their comfort. This sensor system promises high accuracy in
measuring breathing disorders as it escapes the touching sensors which might cause discomfort to the
user and negatively affect their sleeping habits. Moreover, this sensor system does not require any special
environment or depend on temperature and light conditions. In this paper, we propose a model to the end
users; this model is to be built based on neural networks. Our proposed system can diagnose whether a person
has a low, normal, or high breathing rate. This model can also be extended to more specific categories to
help doctors to determine breathing disorders in patients. In this paper, a continuous wave radar sensor
system, based on a vector network analyzer (VNA), is used to measure the breathing rate remotely. The
measured signal from this radar sensor system is then processed for further purposes. Different extracted
feature methods are implemented to obtain the breathing rate from the non-contact radar sensor system.
A model based on the machine learning technique is investigated to classify the breathing disorder. A total
of 31 people who were asked to perform low/normal/high breathing were measured by the CW radar sensor.
The measured data were also used to build a machine learning based model. The breathing rate measured by
theCW radar sensor system is comparedwith the referencemeasurement by the five-point touching Shimmer
sensor. The results of the breathing rate are compatible. Two main time–frequency (TF) extraction feature
methods, short-time Fourier transform (STFT) and continuous wavelet transform (CWT), were implemented
in the proposed system. Under these extraction techniques, some classification approaches were employed
and have shown high accuracy in categorizing the respiratory types. The research shows the possibility of
building an artificial intelligence (AI) module for a non-contact radar sensor system to inform the end user
of their breathing situation. This research enables a smarter and more friendly remote-detecting vital signs
sensor system.

INDEX TERMS Machine learning, vital signs detection, neuron network, classification problem.

I. INTRODUCTION
The first Doppler radar sensor system was used for medical
application in the 1970s [1]. This system operated at 10 GHz
frequency. Its function was very simple, in that an alarm
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approving it for publication was Qingxue Zhang.

was introduced when there was no breathing signal from a
patient within 10 seconds for infants, and 30 seconds for
adults. In the same vein, there aremany studies which concen-
trate on the biomedical implementations of the radar sensor
system [2]–[7]. The invention in [2] describes a non-acoustic
pulse-echo radar used to detect movements of organs like
heart, lung, arteries and so on. Inspired by sensor networks
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for health care, Carlos [3] presents a dual function ultra-
wide-band (UWB) technique for the radar sensor system. This
system can act as a microwave Doppler radar to measure the
heartbeat, and a sensor node to transfer heart information
to the central block. This ‘‘duo’’ feature (monitoring and
sharing data) of the sensor can function as an ideal node
in body sensor networks. In line with Carlos’s study [3],
Ernestina et al. [4] discusses in more detail the feasibility of
a vital signs detection radar sensor system, called frequency
modulation - ultra wide band (FM-UWB) radar. This system
integrated the advantages of FM radar and UWB radar in a
single device. Themost impressive features of Ernestina et al.
are sensing vital signs (penetration, location, breathing rate,
and heartbeat) and communicating to another node. However,
this work did not establish any hardware prototype for the
FM − UWB system.

Later, in 2011, the UWB system-on-chip Radar sensor in
90 nm CMOS technology was investigated by Domenico
Zito et al. [5]. Their on-chip device could observe the heart
beat and respiration of adults and babies. This work enabled
the continuous monitoring of the baby’s breathing rate. More-
over, it gave high accuracy of measurement within a distance
of 50 cm. This factor allowed more applications like respi-
ratory disorder diagnosed purposes, or a warning to drowsy
drivers. Different types of micro radar systems for medical,
animal, and structural monitoring applications were reviewed
by Stefano et al. [6], [8] in 2016 and 2017, respectively.
These surveys carefully considered continuous wave (CW)
radar, FM, UWB, and hybrid radar systems. The latter work
focused on the short-range application of radar sensors.
In the reference [7] Changzhan Gu et al. proposed a Doppler
radar system with a digital post-distortion (DPoD) method to
compensate for signal distortions and enhance the detecting
accuracy of the radar system. Recently, Christoph et al. [9]
investigated the physiological effects of the vital signs mea-
surement of the radar sensor system. They discovered the
cardiovascular system and the influence of antennae charac-
teristics to the radar signal. The respiratory detection capa-
bility of the radar sensor is utilized in [10] to improve the
safety for a driver. In this patent, the radar sensor system was
combined with other systems, like processors, to monitor the
respiratory system of a driver properly. Obviously, previous
authors have made a great contribution to the vital signs
detecting remote radar sensing system in terms of hardware
and signal processing development. However, to the best
knowledge of the authors, no-one has built the AI based
model for this system.

To make the radar sensor system more intelligent, in this
study, the specific machine learning model for the breathing
sign detection radar is utilized to diagnose the respiratory dis-
order of the end user. Based on the training data set, the pro-
posed system can give the medical information to a person,
such as whether they have a high/low/normal breathing rate.
This kind of warning is useful for the person to go further in
checking out health problems. Moreover, the model could be
extended to diagnose different types of respiratory disorders.

FIGURE 1. Simulation for dysthymic respiration.

FIGURE 2. Simulation of cheyne stokes respiration signal.

FIGURE 3. Block diagram.

For example, a person has dysrhythmic breathing problem
when their respiratory has irregular rhythm of rate and ampli-
tude. This type of breathing problem relates to a brain stem
issue. The rhythm and amplitude of this type changes with
the time, and it is difficult to estimate the breathing rate of
a person who has this breathing disorder [11] (see Figure 1).
Another example of breathing disorder is the central apnoea
respiration. This problem occurs when a person’s breathing
stops for a duration lasting from 10 to 30 seconds. The
apnoea duration corresponds with the time that the brain stops
sending signals to the breathing control muscles [12]. Two
above examples show that the breathing disorder can not be
classified by simply estimating the peak frequency spectrum
of receiving signal. Therefore, machine learning technique
should be used to diagnose breathing disorder issues. In addi-
tion, this work collected data from 31 people when they
perform high/low/normal respiration by CW radar sensor.
This work assists further research in the field by publishing
our data set.

This paper is structured as follows. Section II presents
the discussion on proposed system diagram and functions of
each module in the proposed system. Section III describes
the experimental setup and Section IV gives discussion on
measurement results. The final Section V is the conclusion
and consideration for future work.

II. PROPOSED SYSTEM
The block diagram of the proposed system is presented
in Figure 3. The system consists of three main modules,
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a radar sensor, an AI module, and a personal device. A contin-
uous wave (CW ) is sent toward the human position through
the transmitting antenna of CW radar sensor, the reflected
signal from the human chest goes back to the sensor sys-
tem through receiving antenna. The arctangent modulation is
applied to the sensor system; the output signal at the sensor is
proportional with the chest displacement. This signal is sam-
pled at a frequency of 256 Hz before sending to AI module.
At the AI module, signals are processed to provide useful
information to the person through their personal devices.

A. OPERATING PRINCIPLE OF CW RADAR SENSOR
In the CW radar sensor, a single sin wave is transmit-
ted toward the human position. Neglecting the amplitude,
the transmitting signal is given as follows [13], [14].

YT = cos (2π ft + φ (t)) (1)

where f is the operating frequency of radar sensor and φ (t)
is the phase noise. When the transmitting signal reaches the
chest of the person, this signal is then modulated by the
displacement of the chest and reflects back to the receiving
antenna of the sensor [13], [14]. The receiving signal can be
written as:

YR = cos
(
2π ft −

4πd
λ
−

4πx (t)
λ
+ φ

(
t −

2d
c

))
(2)

where d is the distance from the sensor to the human location,
λ is the wavelength of the sending signal, x(t) is the chest
displacement of the human, and c is the speed of light. The
receiving signal is then down converted into the intermediate
frequency (IF) signal. Two mixers are used in the down
converter to get in phase (I ) and quadrature (Q)signals. At the
base band I and Q discrete signals are given as [15]:

BI (n) ≈ cos
[
θ +

4πx(n)
λ
+4φ(n)

]
(3)

BQ(n) ≈ sin
[
θ +

4πx(n)
λ
+4φ(n)

]
(4)

where θ is the constant phase shift due to the distance from
the human position to the radar, and4φ(t) is the phase noise.
At the receiver, the arctangent demodulation is applied and
the output signal of the radar sensor system can be calcu-
lated as

ψ(n) = arctan
[
BQ(n)
BI (n)

]
= θ +

4πx(n)
λ
+4φ(n) (5)

The output signal ψ(n) of the radar sensor is processed by
the AI module to extract the breathing rate and classify the
breathing problems.

B. AI MODULE
The framework of the AI module is presented in Figure. 4.
AI module consists of three main steps; data processing,
feature extraction and classification. All the steps are imple-
mented using Matlab R2018b on Intel Core i5, 16 GB mem-
ory configuration hardware running with Windows 7 OS.

FIGURE 4. The steps implemented in the AI module.

In this module, the raw signal is reprocessed to remove the
DC value and be filtered by an appropriated filter. The next
step is to extract features based on time frequency technique.
Finally, data is classified into different categories.

1) DATA PREPROCESSING AND FEATURE EXTRACTION
After visual inspection, five-minute data (i.e. 76800 data
points because of 256 sampling rate) was extracted from the
six minutes recording. Firstly, the DC value of the measure
data was removed. The data was further bandpass filtered
by [0.1 to 2] Hz Butterworth. We used the two most pop-
ular time-frequency (TF) methods [16]: short time Fourier
transform (STFT ) and continuous wavelet transform (CWT )
to extract time-varying spectral properties of the breathing
signal as our features for the classificationmodel. TF features
are used for classification and also give an instantaneous
breathing rate of the user in the time domain.

In the STFT , first, a whole signal is divided into portions
of equal window size, then subsequently applied the Fourier
Transform (FT ) on each portion, respectively [17]. The STFT
F(τ, ω) of the measured signal ψ(t) is defined as:

F(τ, ω) =
∞∑
−∞

ψ(n)h(n− τ )e−jωn (6)

where h(n− τ ) is a window function. Based on Equation. 6,
the power spectrum density (PSD) of the signal is deter-
mined as

PS (τ, ω) = |F(τ, ω)|2 (7)

Above equations interpret that FT of each portion is captured
with the window moves along the time axis of the entire sig-
nal. Correspondingly, PS (τ, ω) is a two-dimensional vector
that stores power of the input signal according to time and
frequency. PSD of STFT has a fixed resolution, because the
width of window function is constant for all segments of input
signal. Specifically, a wider window function brings a better
frequency resolution, while a better time resolution [17] is
brought about by narrow size of window function.
CWT is an alternative feature extraction method to get

TF of a signal. This signal processing technique is able to
build up time-frequency representation of an input signal
with a great time and frequency resolution [18]. The CWT
coefficients W9(a,b) signal ψ(n) at a scale a(a > 0) and
position b is expressed as follows [18].

W9(a,b) =

∞∑
−∞

ψ(n)9(
n− b
a

) (8)
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9(n) is a basis or mother wavelet with zero average and
9(n) is its conjugated values. PSD Pw(a,b) of the CWT can
be defined as follows

PW (a,b) = |W9(a,b)|
2 (9)

2) CLASSIFICATION
The output signal of the feature extraction block goes
through the classification to separate the signal into differ-
ent categories. There are many classifying techniques used
to allocate signals into various groups. The most popular
classifying techniques are support vector network (SVM ),
artificial neural network (ANN ), hidden Markow mod-
els (HMM), fuzzy logic (FL), linear discriminant(LN ), deci-
sion tree (DTree), Bayesian classifier (BC) and K- nearest
neighbor (KNN ) [19]. In these, SVM is kernel-based access
and quite popular for non-linear data [19]. KNN is primar-
ily acknowledged for the pattern-recognition approach [20].
Therefore, in this study SVM , DTree and KNN are employed
to classify the breathing pattern of people.

FIGURE 5. Linear support vector illustration.

a: SVM
Support Vector Machines (SVM ) is a supervised machine
learning algorithm which is used for both regression and
classification problem. The main concept of SVM is to find
the optimum decision boundary to separate two classes [21].
This decision boundary (hyperplane) maximize the margin
between different classes. In SVM , support vectors are the
data points nearest to the hyperplane that help in obtaining the
optimal position of the hyperplane. The hyperplane, margin
support vectors for classification problem are demonstrated
in Fig. 5. In this figure, two features are chosen to apply SVM
algorithm. The problem to separate different classes becomes
finding an optimized hyperplane. The hyperplane decision
function for binary problem is:

f (x) = sign

(
N∑
i=1

aiyiK (xi, x)+ b

)
(10)

where C is a penalty parameter, which regulates the trade-
off between the imposed margins and allowed training error.
represents Lagrange multipliers and is given as 0 ≤ αi ≤ C
and i = 1, 2,N . The Kernel function is represented as
K (xi, x) and xi are the support vectors. Multi-class SVM can
be generated using binary SVMs.

FIGURE 6. Decision tree model.

b: DECISION TREES
Similar to SVMs, Decision tree (DT ) is one of vigorous
algorithm. DTs have a tree-like structure, is simple and
close to logical thinking of human. The DT is a crucial
element of Random Forest - the most compelling algorithm
nowadays [22], [23]. The DT model consists of different
types of nodes as mentioned in Figure. 6. The starting node
is called a root node, the internal nodes are the set of nodes
Child1 to Child3, bottom nodes are class labels or leaf
nodes. [24] In the DT model, to construct a reasonably good
tree and to define attributes for each root note,Grini impurity
(cost function) is given as follows: [24].

G(i) = 1−
n∑

k=1

p2i,k (11)

where G(i) is the Gini score of ith node, pi,k is ratio between
class k instances and training instance of ith node. In the two-
class problem, the best separation is achieved whenG(i) = 0.

Another alternative to determine the cost function is to
calculate the Entropy (H (i)) as follows.

H (i) = −
n∑

k=1

pi,k log
(
pi,k

)
; pi,k 6= 0 (12)

Both methods, Entropy and Gini impurity tend to point to
analogous trees. There is not a big variation between two
methods.

c: K NEAREST NEIGHBORS
K nearest neighbors (KNN ) is called a lazy algorithm that
stores all established vectors and class label correlated with
each vector and classifies new cases based on a similarity
measurement. This algorithm is widely used for practical
problems [25], [26] KNN was first mentioned in 1970′s as a
non-parametric method [27]. In the KNN , the input vector is
classified/ prediction by determining the similarity between
this vector and the training instances (neighbors). Distance
functions are used to measure the similarity between a new
sample and the training data set. Those distance functions are
Euclidean, Manhattan, Minkowski, and Hamming distance.
The data used in KNN should be rescaled before processing
to achieve a high accuracy result [28].

III. EXPERIMENT AND DATA
A. MEASUREMENT SET UP
The laboratory equipment - N5244A PNA − X Microwave
Network Analyzer plays a role of radar sensor system.
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FIGURE 7. Measurement set up.

The internal transmitter and receiver of N5244A PNA − X
are utilized for this application. Two antennae are connected
to two ports (transmitting and receiving ports) of N5244A
PNA − X . A volunteer is sat in front of antennae as shown
in Figure. 7, the distance from the antennae to the human posi-
tion is 1 m. The transmitting power is −8 dBm, the operating
frequency is 1.6 Ghz, and the sampling frequency is 256 Hz.
The same sampling frequency is set for a reference five-point
touching Shimmer sensor.

Thirty one able-bodied participants (20 males and 11
females, average age 25.4 years) completed three sessions,
each of which was approximately six minutes in duration.
All sessions occurred on the same day with three minutes
break between each session. The procedure of each session is
described in Figure. 8. In the first session, participants were
asked to breathe at their normal rate (i.e. 0.2 to 0.33 Hz)
while in the remaining two sessions they were instructed to
breathe at high ( > 0.33 Hz) and low (< 0.2 Hz) rates
respectively. Participants provided written informed consent,
and the experiment was approved by the Head of School
of Electronics and Telecommunications, Hanoi University
of Science and Technology, Vietnam. The breathing rate of
four random participants was measured by touching-probe
Shimmer sensor at the same time they were measured by the
remote sensor system to check the accuracy of the remote
sensor. The remaining participants were only measured by
the remote sensor to make sure that the natural signals were
obtained.

TABLE 1. Data set description.

B. DATA SETS
The five-minute data for each individual per session was
slotted into one minute, thirty seconds, and fifteen seconds
recording. Based on the different segment length, three data
sets were built as shown in Table 1.
• Data set I: From each individual, we get 15 data samples
belonging to low, high and normal ( 5 for each category).
Each data sample has 15360 data points( 60 sec×256Hz
sampling rate). Total data set size is 465×15360 having
465 cases of all categories.

• Data set II: Similarly, 30 data samples are obtained from
each person and the total data set size is 930× 7680

• Data set III: This data set has the highest time resolution
(15 seconds in each segmentation). The size of data
set III is 1860× 3840

Data sets are labeled into three categories low, high
and normal. Spectral density in the frequency band from
0.1 Hz to 2 Hz is used as a feature. After feature extraction,
the data set was divided into two sets 75% for the training
set and 25% for the testing set. The size of train and testing
sets in each data set is displayed in Table 1. To avoid the over
fitting problem, 10 × 10 fold cross validation is used for the
classification of the training set.

C. EVALUATION METRIC
In this paper, classification accuracy is unsterilized as an
evaluation metric. The accuracy in the three classifications
case can be determined as follows.

Accuracy =
Pcr

Pcr + PIcr
(13)

where
• Pcr is the number of correct predictions.
• PIcr is the number of incorrect predictions.

IV. RESULTS
The measured breathing rate by remote radar sensor system
in time and frequency domains are displayed in Figure. 9 and
Figure. 10.

FIGURE 8. Experimental procedure.
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FIGURE 9. Measured signal in the time domain.

FIGURE 10. Measured signal in the frequency domain.

FIGURE 11. Relation between feature # 2 and feature # 66 in the
data set I.

The frequency domain signal can give the respiratory rate
of a person. In this approach, the corresponding frequency
at the highest absolute magnitude of spectrum is considered
as breathing frequency. This technique is called peak position
detection [29]. The absolute spectrum of each segment signal
can be calculated by STFT as shown in Figure. 10. Figure. 10
gives the breathing rate of 18 beats/minute, the signal from
remote sensor is coincided with the signal from the reference
touching sensor. From both Figures, one can see that the
remote sensor system introduces more noise than the touch-
ing sensors, however, the remote radar sensor gives a similar
result of breathing rate to the five- probes Shimmer sensor.

Figure 11 and Figure 12 illustrate the relationship between
two features in the feature vector of data set I and data
set III. It is clear that in data set I (Figure 11), three classes
are separated properly, while in Figure 12, there are some
overlaps between classes. This phenomena come from time
resolutions of each data set. Data set I has the lowest time
resolution (60 seconds segmentation), while data set III has
the highest time resolution (15 seconds segmentation). The
increase in time resolution is compensated to the accuracy of
the system as mentioned in Table2.

Table 2 compares the accuracy of the proposed remote
sensing system in classifying breathing rate problems into

FIGURE 12. Relation between feature # 62 and feature # 65 in the
data set III.

three categories (fast, normal, and slow) with the conven-
tional method (based on peak position detection). Differ-
ent classifying techniques are applied and results are shown
in Table. 2. From this Table, we can see that data set I gives
very good results (above 99%) with KNN and SVM classi-
fiers. DTree introduces lower accuracy (around 95%). In data
set II, the segmentation is half of segmentation in the data
set I. However, SVM and KNN classifications still introduce
similar results underCWT and STFT extraction methods. For
DTreewithCWT extractionmethod, the accuracy is similar to
the data set I . There is a large reduction ( 14%) accuracy under
DTree classifier when feature are selected by STFT .When the
segmentation of data reduce to the size of 15 seconds in the
data set III, the accuracies of the system under SVM andKNN
techniques does not change much. Notwithstanding, DTree
delivers a significant reduction of accuracy. InDTreemethod,
under STFT and CWT extraction methods, the accuracies of
test set III are 75.81% and 83.01% respectively.

The conventional method introduces lower results, for
data set I and II the results are comparable with the recent
work [30]. The accuracy of modified STFT in reference [30]
is around 80% while our results are around 64%. There are
several reasons behind that difference. Firstly, the transmit-
ting power of their system was eight times our transmitting
power. Their system operated at much higher frequency
(around 24 GHz) while the proposed system operated
at 1.6 GHz. The result is that our system is less sensitive than
their system fifteen times.

The length of segmentation has a significant effect on the
accuracy of breathing rate estimation when the peak position
detection method is used. As discussed in the reference [31],
this method introduces high accuracy when the segmentation
is larger than 60 seconds. Data set III introduces very low
accuracy (35.48%) because of the low frequency resolution.
In this data set, 15 seconds’ observation window corresponds
to 1/15 = 0.067Hz frequency resolution. This frequency res-
olution equals to 4.02 beats/min, therefore, the peak position
detection methods shows very poor result (just 35.48%).

Generally, The CWT extraction technique presents better
results than STFT . The performance of machine learning
based methods outperforms the conventional method (peak
position detection) because our proposed system used the
whole CWT or STFT vector (including peak spectral and its
harmonics) for classification while the conventional method
use only one element (peak spectral). The result in Table 2
gives a good suggestion for further applications.
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TABLE 2. Classification accuracy of proposed system.

V. CONCLUSION AND FUTURE WORK
From measured results, the remote radar sensor system can
accurately capture breathing rate, and is more comfortable
for the measured person. The remote radar sensor system has
high potential in informing the user of their instantaneous
breathing rate by the TF feature extraction techniques. More-
over, the AI technique that was applied on the data obtained
by the remote radar sensor system, makes this system smarter
and gives useful information to the end user. The aim of the
proposed machine learning model is to classify the measured
signal from the radar sensor system in different categories.
This model is then integrated with the radar sensor system
and gives a warning to people, for instance, if their breathing
rate is abnormal. The accuracy of our proposed approach
is far greater than the conventional method. The SVM and
KNN classifications gave good accuracy on three types of
data sets of 31 measured people. The measurement results
suggest an alternative high accuracy method in category three
types breathing rate.

The results of this research show the high potential appli-
cation of remote radar sensor in diagnosing complicated
breathing/sleeping disorder problems. The systemmight give
high accuracy results because the sleep pattern of patients can
be measured remotely. The measuring system will provide
a comfortable environment for patients. The next step of
this work is to collect data from breathing disorder patients.
The model is then developed to recognize different types of
sleeping disorder like untreated central sleep appoea, Cheyne
Stokes, dysrhythmic breathing and so on.
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