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ABSTRACT A new two-stage method is proposed for the model-matching fractional-order (FO) controller
(FOC) design for the single-input single-output (SISO) / multiple-input multiple-output (MIMO) linear
systems. A streamlined procedure for the selection of reference model M(s), based on a linear quadratic
regulator (LQR) with integral action (LQRI) is presented. Since the proposed M(s) is designed using the
optimal control theory, the designed output-feedback closed-loop system can be termed as a suboptimal one.
Formulation of M(s) incorporates the time-domain characteristics, and the optimal interaction desired to be
present in the designed closed-loop system. The developed controller design procedure also works with a
user-specified M(s). In the first stage of the controller design, a higher-order controller K(s) which makes
the closed-loop system exactly equal to the M(s) is obtained. In the second stage, K(s) is approximated to a
FOC or an integer-order (IO) controller (IOC) C(s) with the aim ofmatching a certain number of approximate
generalized time moments (AGTMs) and/or approximate generalized Markov parameters (AGMPs) of K(s)
to those of C(s) at a set of frequency points in the s-plane. The simulation and experimental validation of
the proposed approach are performed by the design and implementation of the controller for an IO MIMO
plant with time-delays. The controller design algorithm is also illustrated based on the user-defined reference
model for a FO MIMO plant with time-delays taken from the literature. The obtained results show that the
FOC results in better performance compared with its IO counterpart.

INDEX TERMS AGTM and AGMP matching, fractional-order controller, MIMO, model-matching,
reference model.

I. INTRODUCTION
Fractional calculus is a generalization of ordinary differ-
entiation and integration to arbitrary (non-integer) order.
Field of research on fractional calculus is beyond 300 years
old. In the initial period of the research, there were only
a few mathematicians and theoretical physicists who were
working in this field. However, situations have considerably
changed in the last three decades. The main reason behind the
growing interest was the applications of fractional calculus
in engineering, especially control engineering. Fractional-
order (FO) system are best in representing the memory and
hereditary properties compared with the integer-order (IO)
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system [1]. These properties of FO controller (FOC) were
exploited to improve the performance of a multi-band power
system stabilizer against system uncertainties [2]. Techniques
developed by the research community for obtaining the solu-
tion of non-integer differential equations over past decades
have considerably extended its applications, especially in the
areas of system modeling and controller design [3].

The linear quadratic regulator (LQR) design procedure has
been widely utilized in the field of control engineering. Two
reasons justifying the choice of LQR for solving control prob-
lem are: Firstly, it usually leads to a closed-form solution for
a given control problem. Secondly, it has an efficient mathe-
matical formulation [3]. The performance of trial and error
based manual tuning of weighting matrices of LQR heav-
ily relies on the experience and knowledge of the designer.
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Methods based on pole placement [4], genetic algorithm [5],
and particle swarm algorithm [6] had been utilized for deter-
mining the weighting matrices of the LQR based controller.
Methods for determining weighting matrices described in
the literature have not considered the interactions present in
multiple-input multiple-output (MIMO) systems.

The model-matching technique has been a power-
ful methodology for controller design of MIMO sys-
tems [7]–[10]. The reference model selection in the literature
of the model-matching based techniques focuses only on
embodying the desired time-domain characteristics of output.
A method based on the preservation of pole-zero excess of a
plant had been utilized for the selection of a reference model
in the model-matching based controller design technique
presented in [7]. The reference model selection procedure
presented in [8] incorporates specified time-domain spec-
ifications. Besides, the method presented in [8] embodied
specified interaction to the off-diagonal elements of the
transfer function matrix (TFM) of the reference model. The
authors of [9] had suggested the idea of a time-varying type
reference model which adapts the deviation in the mathemat-
ical representation of the plant but had not considered the
incorporation of optimal interaction in the reference model.
The amount of time-delay that has to be present in a chosen
reference model, during the realizable controller design for
delayed MIMO plant was addressed in [10]. The FOC design
for MIMO systems using the model-matching techniques has
not been reported in the literature to the best knowledge of
the authors.

Application of FO calculus into controller design field was
first introduced in [11]. The superior performance of non-
integer order control over the conventional IO proportional-
integral-derivative (IOPID) controller was described in [11].
The concept of FOPID controller, introduced in [12], had
made a huge impact in control engineering. The method
presented in [12] applies to linear systems only. Preliminaries
of fractional calculus theory and its valuable applications
in the area of control systems were presented in [12]–[14].
The adaptive fuzzy backstepping controller design presented
in [13] relies on the approximated fuzzy model of the non-
linear function. It was shown that iso-damping character-
istics were possible only with the use of FOC [15], [16].
A model-matching FOC design for single-input single-
output (SISO) systems was presented in [17]. For a MIMO
IO system, model-matching techniques were used to solve
several control problems: design the controller for stable [7]
and unstable [18] plants, design of robust decentralized con-
trollers for stable and non-minimum phase plants [19], con-
troller design for disturbance rejection [20], and development
of a damping-based controller design framework [21]. The
controller design for MIMO FO plants is a growing field
of research. The controllers for the FO MIMO plant was
designed using the parameter optimization algorithm in [22].
The assessment of robustness of the controller to parametric
variations was presented in [2], [11], [16], [19], [22]–[24].
The disturbance rejection capability of the designed

controller was investigated in [24]. In [23], the tuning of
parameters of FOPD controller for FO plants was consid-
ered, which takes advantage of the extra degree of freedom
present in the FOC to design a more effective controller. The
FOPID controller provided a more flexible tuning strategy
in [25]–[27], thereby achieving the control requirement in a
better way compared with its IO counterpart. The comparison
of the performance of the FOPID controller with the IOPID
controller was presented in [25]–[27]. The FOC design for
stable and unstable MIMO plants was achieved in [28].
However, work presented in [28] requires pre-decoupling as
an initial stage of the FOC design.Matching algorithms based
on approximate generalized time moments (AGTMs) [29]
and approximate generalized Markov parameters (AGMPs)
[30] have been utilized for the rational approximation of
MIMO FO system [31]. The work presented in [31] was
restricted only to the rational approximation of the FO system
by an IO system, where open-loop stability was one of the
objectives. In addition, the search space for optimal frequency
points was limited to positive real-axis of the s-plane.
An ideal controller, which exactly matches the response of

the designed closed-loop system with that of the reference
model was synthesized during the controller design technique
described for SISO systems in [32]. The ideal controller TFM
usually consists of improper or higher-order elements, which
leads to difficulties in its practical implementation. Literature
such as [32] presented the possibility of finding a reduced
IO approximation of the ideal controller with the objective
of matching the response of the designed closed-loop system
with that of the desired one. A frequency-domain design
method for IOPID controller based on the synthesis equation
was presented in [33], [34]. The reference model selection
and/or controller design procedure presented in [32]–[34]
were not generalized one and depended on the designer’s
knowledge. Suboptimal control of FO systems was presented
in [35]. The work in [35] was limited to parametric variations
in the system. Work presented in [36] depends on cancel-
lation of non-dominant poles and zeros present in higher-
order controller TFM in their design process, leading to a
reduced-order implementable controller structure. However,
in a practical scenario, pole-zero cancellation will be very
difficult to be realized.

The following are major underlying motivations for con-
ducting this research work. Most of the FOC design algo-
rithms presented in the literature such as [2], [12], [17],
[25], [26] are based on heuristic methods. To the best of
authors knowledge, it is still an interesting and challenging
work to develop an algebraic approach for the design of
FOC/IOC for a general class of linear time-invariant sys-
tems described earlier. The limitation of the reference model
selection approaches presented in the literature [7]–[10]
is that they do not include information about the plant
dynamics. Thereby the feasibility of achieving the objective
lies heavily on the knowledge of the designer about the
plant. Hence, the selection of a reference model, which
takes into account the complete information regarding the
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IO/FO plant is still very challenging. Most of the
MIMO controller design algorithms presented in the litera-
ture such as [7], [10], [19], [22], and [28] yields different
denominator polynomials for each element of the con-
troller TFM. These approaches thereby increase the resultant
order of the MIMO system. The increase in the order of
system increases complexity in its realization. Hence it is
advantageous to propose a MIMO FOC design technique,
which yields a common denominator polynomial for the
controller TFM.

Motivated by the above discussions, this paper investigates
the problem of designing a MIMO FOC/ IO controller (IOC),
by solving a set of simultaneous linear algebraic equations
for a given set of fractional/integer exponents of the numer-
ator and denominator polynomials of each element of the
controller TFM. It also investigates the possibility of a gen-
eralized reference model selection procedure, applicable for
both IO and FO linear systems. The present work provides
some solutions to the problems identified in the literature. The
main contributions of this work are as follows: (1) A novel
streamlined procedure for the selection of a reference model
in the design of the model-matching suboptimal FOC/IOC is
presented. The incorporation of finding an optimal interac-
tion for a given time-domain specification is one of the key
features of the reference model selection procedure in the
proposed work. Also, the reference model is formulated by
considering the dynamics of the plant. The proposed refer-
ence model selection procedure is based on the LQR with
integral action (LQRI). (2) The proposed algorithm can be
said to provide a generalized algebraic method, to determine
the coefficients of numerator and denominator of each ele-
ment of MIMO FOC/IOC with the objective of meeting the
desired closed-loop specification. The FOC/IOC design is
achieved using the AGTM/AGMP matching method, ensur-
ing the closed-loop system stability. The algorithm gives out
a unique search strategy which involves the two-dimensional
space in the s-plane in pursuit of the optimal frequency points.
The desired frequency band of approximation decides the
bounds for each frequency variables. Pre-decoupling is not
required in the proposed controller design method. (3) The
proposed method yields a MIMO FOC/IOC with a common
denominator in each element of the controller TFM. The
advantage of the controller design technique is that it yields
a low order controller of predefined/optimal order and the
controller structure need not be fixed. The user can choose
any controller structure to achieve the objectives. Certain
controller parameters can be chosen, and the remaining can
be obtained according to the developed algorithm, resulting
in a reduction in hardware compulsion. (4) The proposed
FOC/IOC design procedure ensures the steady-state match-
ing (SSM) of the designed closed-loop system to that of the
reference model.

The paper is organized as follows. Section II gives
the preliminary definitions of fractional derivative operator.
Section III describes the proposed reference model selection
procedure. The controller design methodology is described

in Section IV. The proposed controller design methodology is
applied to two plants: an IOMIMO plant with time-delays [8]
and a FO MIMO plant with time-delays [22]. The simulation
and experimental results are summarized in Section V and
Section VI, respectively. Finally, the conclusions and future
scope are presented in Section VII.

II. DEFINITIONS OF FRACTIONAL DERIVATIVE
OPERATOR
The definitions of the noninteger-order derivative opera-
tor are summarised in this section. The most widely used
definitions of non-integer order derivatives fall into
three main categories: the Riemann-Liouville defini-
tion, the Caputo definition and the Grünwald-Letnikov
definition [3]. The definitions by Riemann-Liouville and
Grünwald-Letnikov are equivalent. The Riemann-Liouville
definition is given by

dα

dtα
x(t) ≡ Dαx(t)

=
dn

dtn

[
1

0(n− α)

∫ t

0
(t − τ )n−α−1x(τ )dτ

]
, (1)

where α ∈ <+, n − 1 < α < n, n ∈ N and 0(·) is the
Gamma function.

The Caputo definition is defined as

dα

dtα
x(t) =

1
0(n− α)

∫ t

0
(t − τ )n−α−1x(n)(τ )dτ, (2)

where n− 1 < α < n, n ∈ N.

III. GENERALIZED REFERENCE MODEL SELECTION
In this section, a streamlined procedure for the selection of a
reference model to be used in the model-matching techniques
is presented. The developed procedure applies to plant having
either integer or fractional dynamic representation. If a plant
has IO dynamics, then the reference model obtained will
be of IO. If the plant possesses FO representation, then the
reference model obtained will be of FO.

The developedmethod proposes a generalized LQRI-based
closed-loop system (GLCLS) model as M (s). The reference
model selection procedure focuses on obtaining the optimal
interaction factor for given desired output time-domain spec-
ifications. In addition, the GLCLS design procedure deter-
mines the optimum main diagonal elements of the diagonal
weighting matricesQ and R. As a first step in the formulation
of the GLCLS model, a generalized initial model (GIM)
is framed with the desired time-domain specifications. The
interaction parameters of the GIM are kept as tuning param-
eters. The GLCLS model is framed by tuning the elements of
the weighting matrices in the optimal state feedback design
procedure. The interaction thus developed in the GLCLS
model is mapped onto the GIM by tuning the interaction
parameters. The desired time-domain specifications of the
GIM are used to tune the elements of the weighting matri-
ces of the GLCLS model. Thus, GLCLS model reflects the
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desired time-domain specifications and the optimal interac-
tion to be present in the designed-closed loop system.

Let, the mathematical representation of a multivariable LTI
FO system [3] be

Dαx = Ax + Bu, (3)

y = Cx + Hu, (4)

where α = [α1α2 . . .αn], u ∈ <q×1 is the input vector [14],
x ∈ <n×1 is the state vector, y ∈ <p×1 is the output vector,
A ∈ <n×n is the state matrix, B ∈ <n×q is the input matrix,
C ∈ <p×n is the output matrix, and H ∈ <p×q is the direct
transmission matrix, respectively. The TFM representation of
the system, presented in (3) and (4), is:

P(s) = C
{
(sαI − A)−1B

}
+ H . (5)

The system presented in (5) represents an IO system if all
the elements of α-vector i.e. αi’s are unity.

A. GIM
The GIM is framed from the desired closed-loop specifi-
cations such as settling time, rise time, damping ratio, etc.
An IO or FO representation can be used to represent the
dynamics of the GIM. The response of the GIM in the
s-domain, for an input vector R(s) = [R(k,1)(s)], can be
expressed as:[

Y (i,1)
m (s)

]
=

[
G(i,k)
m (s)

] [
R(k,1)(s)

]
, (6)

where G(i,k)
m (s), i = 1, 2, . . . , p; k = 1, 2, . . . , q represents

an element of the GIM TFM relating the ith output to the
kth input. Consider the case where the input vector to the
system consists of step signals with amplitude Dk . In the
present work, a three-term FO low-pass filter structure pre-
sented in [37] has been utilized to represent the dynamics
of Y (i, 1)

m (s). The ith response Y (i, 1)
m (s) of the GIM due to kth

input is taken in the form of a step response of a generalized
three-term low-pass filter as

Y (i, 1)
m (s) =

Dkω
2
n

s(s2α + 2ζωnsα + ω2
n)
, (7)

where α ∈ <+ is the base order. The desired closed-loop
time-domain specifications such as natural frequency ωn,
damping ratio ζ , etc., can be embodied to an IO representation
using the work presented in [8] and to a FO representation
using the work presented in [37]. In the present work, the off-
diagonal elements of the GIM TFM have been taken in the
form of an αth order two-term FO system with zeros taken at
infinity. The diagonal elements of the GIM are then obtained
as

G(u,u)
m (s) =

sY (u,1)
m (s)−

∑
∀k
k 6= u

Dk
(sα+λ(u,k))


Du

, (8)

where λ(u,k) represents the interaction to be present in the
designed closed-loop system, u = 1, 2, . . . ,min(p,q); k =
1, 2, . . . , q. Hence, for a given desired time-domain speci-
fication, the dynamics of Gm(s) will be a function of the
parameter λ(u,k). The value of λ(u,k) quantifies the level of
interaction that can be present in the controlled dynamics.
Higher values of λ(u,k) imply a systemwith lesser interactions
and vice versa. Interaction present in a MIMO plant makes its
control more challenging.

B. GLCLS MODEL
The GLCLS model includes an integrating action along with
full state feedback optimal controller. The combined structure
is as given in [38]. The difference between input and output
vectors are integrated, and the outputs of the integrators are
considered as additional states. GLCLS model TFM repre-
sentation can be obtained by

M (s) = Cag(sαI(n+p) − (Aag − BagKop))−1E, (9)

where Kop = −
[
K Ki

]
, Kop ∈ <q×(n+p), Aag =[

A On×p
−C Op×p

]
, Bag =

[
B

Op×q

]
, Cag =

[
C Op×p

]
,

and E =
[
On×p
Ip

]
. Here, O represents the null matrix,

the subscript of which indicates its dimension. The constant
matrices K ∈ <q×n and Ki ∈ <q×p are the state feedback
gain and integral gain matrices, respectively. In the present
work, the weighting matrix S in the cost function of the
conventional LQR problem is set as zero. The optimal state-
feedback gain matrix Kop is thereby obtained by solving the
following algebraic Riccati equation for a given set of values
of weighting matrices Q and R [39]:

ATP+ PA− PBR−1BTP+ Q = 0, (10)

where P is the solution of the algebraic Riccati equation,
and the superscript T denotes the transpose of the matrix.
From (9), it can be seen that the formulation of the
GLCLS model involves information about plant dynamics.

In the present work, the problem of finding the elements
of the weighting matrices has been framed in an optimization
setup. The optimization framework is formed with the objec-
tive of matching the step response of the GLCLS model with
that of the GIM and can be stated as follows:

Find (i) λ(u,k) (ii) α (in case of FO GIM), and
(iii) elements of the state and input weighting matrices of the
GLCLS model, to

minimize J1 =
tf∫
0

(
y(i,k)m (t)− y(i,k)d (t)

)2
dt

subject to



(i)State weighting matrixQ should be
symmetric positive semidefinite
(Q� 0) i.e. xT (t)Qx(t) ≥ 0, ∀ x(t) 6= 0 and
(ii) Input weighting matrixR should be
symmetric positive definite matrix
(R � 0) i.e. uT (t)Ru(t) > 0, ∀ u(t) 6= 0,

(11)
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FIGURE 1. Flow diagram of the proposed reference model selection
procedure.

where y(i,k)m (t) and y(i,k)d (t) represents the step responses of
transfer functions relating the ith output to the kth input
of Gm(s) and M (s), respectively. The vector of state vari-
ables and input variables are represented by x(t) and u(t),
respectively. If the desired time-domain specifications of the
designed closed-loop system are feasible, the solution of (11)
always exist. The reference model is formed by substituting
the optimal values of the decision variables λ(u,k), α, and the
elements of the weighting matrices into (9). The objective
function presented in (11) ensures that the GLCLS model
embodies the desired time-domain specifications. The overall
procedure for obtaining the optimal GLCLS model can be
illustrated in the form of a flow diagram as shown in Fig. 1.

The selection of the GLCLS model as the reference model
tackles the difficulty in embodying the required interaction
that has to be present in the controlled dynamics. Besides,
the GLCLS model design procedure demands the need for
imparting the desired specifications to the weighting matrices
of the LQRI. In this work, both of these problems have
been tackled with the help of a properly framed optimiza-
tion procedure. The selection of the GLCLS model over the
GIM as an input to the first stage of the proposed model-
matching-based controller design procedure guarantees two
major advantages. First, the GLCLS model is formulated by
considering the dynamics of the plant. Second, the GLCLS
model is designed to contain the desired/optimal interaction
to be present in the controlled dynamics for a given set
of desired specifications. The performance of the designed
closed-loop system mimics that of the GLCLS model. Since
the GLCLS model is designed using optimal control the-
ory, the designed output-feedback closed-loop system can be
termed as a suboptimal one.

IV. PROPOSED CONTROLLER DESIGN SCHEME
In this section, the methodology for the model-matching
FOC/IOC design is presented. Block diagrams of the first
and second stages of the two-stage controller design algo-
rithm have been shown in Figs. 2(a) and 2(b), respectively.
The objective is to design a MIMO FOC/IOC C(s) for a
MIMO plant P(s) with the aim of making the response of the
designed closed-loop system YC (s) as close as possible to the

FIGURE 2. Block diagram of the controller design algorithm. (a) First
stage. (b) Second stage.

desired characteristics Yd (s). The desired specifications are
embodied in the reference modelM (s). The designed closed-
loop system T (s) is a unity feedback system consisting of
the plant and the controller in the forward path and is shown
within dashed lines in Fig. 2(b).

In the first stage, a higher-order ideal controller TFM K (s)
is obtained from the plant and the reference model TFMs.
The rational approximation in the second stage is achieved
by matching a few numbers of AGTMs/AGMPs of K (s)
to those of low-order controller C(s) at a set of frequency
points in the s-plane. The AGTMs/AGMPs matching is
utilized to form a set of non-homogeneous simultaneous
equations. The solution of these set of equations gives the
values of numerator and denominator coefficients in each
element of C(s).
The analytical expression for the ideal controller K (s)

which makes the closed-loop system exactly equal to the
M (s) can be obtained as:

K (s) = P(s)−1M (s)(I −M (s)). (12)

Equation (12) yields a TFM which is practically difficult
to implement due to its improper or higher-order dynamics.
Let C(s) = [C (i,k (s)]. Each element of the C(s) can be
represented by a general structure n + 1 term FO transfer
function as follows:

C (i, k)(s) =
c(i, k)0 + c(i,k)1 sβ

(i,k)
1 + . . .+ c(i,k)

m(i,k)s
β
(i,k)
m(i,k)

d0 + d1sα1 + . . .+ dn−1sαn−1 + sαn
, (13)

where u − 1 < β
(i,k)
u ≤ u and v − 1 < αv ≤ v with u =

1, 2, . . . , m(i,k) and v = 1, 2, . . . , n. Assigning values
to αv and β

(i,k)
u as α∗v and β∗(i,k)u , respectively, satisfying the

above-specified range, the parameters d’s and c(i,k)’s of (13)
becomes the unknown parameters ofC (i,k)(s), which are to be
determined with the objective of making the performance of
C(s) as close as possible with that of K (s). The total number
of unknown coefficients d’s and c(i,k)’s for each element of
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the controller TFM presented in (13) can be obtained as n +(
m(i, k)

+ 1
)
. Hence the total number of unknown coefficients

of the p × qMIMO controller nu is obtained by

nu = n+
p∑
i=1

q∑
k=1

[(
m(i, k)

+ 1
)]
. (14)

The objective is to obtain the unknown parameters of
the FOC/IOC C(s) such that nw number of AGTMs and/or
AGMPs of higher-order controller matches to those of its
approximant, i.e.,

C(s)|s=δr = K (s)|s=δr , (15)

where δr , r = 1, 2, . . . , nw are frequency points in the
s-plane, and nw is the minimum number of the frequency
points to be chosen, in the desired frequency band of approx-
imation. The minimum number of frequency points can be
obtained using ceiling function as

nw = dnu/(pq)e . (16)

The total frequency points across the s-plane nw consist
of frequency points along the real axis nx , frequency points
along the imaginary axis ny, and complex frequency points
having both real and imaginary parts nc, i.e.,

nw = nx + ny + nc. (17)

Hence, each of the nw frequency points can be either of
the three types: purely real, purely complex or complex with
its real part not equal to zero.The search process for optimal
values of expansion points is carried out along with those
of the distribution of frequency points nx , ny,and nc across
the s-plane, in an optimization framework as presented in the
section IV-A. Equation (12) is utilized for determining the
right-hand side of (15). Let (i, k)th element of matrix present
in the right-hand side of (15) be represented by f (i,k)r , where
i = 1, 2, . . . , p and k = 1, 2, . . . , q. Then,

C(s)|s=δr =
[
f (i,k)r

]
. (18)

Equating the corresponding elements on both sides of (18)
lead to

c(i, k)0 + c(i,k)1 (δr )
β
(i,k)
1 + . . .+ c(i,k)

m(i,k) (δr )
β
(i,k)
m(i,k)

d0 + d1 (δr )α1 + . . .+ dn−1 (δr )αn−1 + (δr )αn
= f (i,k)r . (19)

Cross-multiplying and equating the coefficients of like
terms, a set of nonhomogeneous simultaneous equations are
constructed as

A(i, k)r X (i, k)
= B(i, k)r , (20)

where

X (i, k)
= [X (i,k)

c Xd ]T , (21)

with

X (i,k)
c =

[
c(i,k)
m(i,k) c

(i,k)
(m(i,k)−1)

· · · c(i,k)1 c(i,k)0

]
, (22)

and

Xd = [dn−1 dn−2 . . . d0] . (23)

The matrices A(i, k)r and B(i, k)r are constructed as

A(i, k)r = [S(i,k)c − f (i,k)r Sd ]
∣∣∣
s=δr

, (24)

B(i, k)r = f (i,k)r × δαnr , (25)

where

S(i,k)c =

[
(s)β

(i,k)
m(i,k) (s)

β
(i,k)
m(i,k)−1 . . . (s)β

(i,k)
1 1

]
, (26)

and

Sd =
[
(s)αn−1 (s)αn−2 . . . (s)α1 1

]
. (27)

For each frequency point δr , (20) leads to the formation of
the p × q set of equations. These set of matrix equations can
be cascaded in the form of:

ArX = Br , (28)

where

X = [X (1,1)
c X (1,2)

c · · · X (1,q)
c X (2,1)

c X (2,2)
c · · ·

X (2,q)
c · · · X (p,1)

c X (p,2)
c · · · X (p,q)

c Xd ]T , (29)

Ar is obtained as shown in (30), as shown at the top of the
next page, where O1×(m(i,k)+1) represents the null matrix of
dimension 1× (m(i,k)

+ 1).

Br =
[
f (1,1)r f (1,2)r · · · f (1,q)r f (2,1)r f (2,2)r · · ·

f (2,q)r · · · f (p,1)r f (p,2)r · · · f (p,q)r

]T
×
(
δαnr
)
. (31)

Matrices Ar and Br , obtained at each frequency point are
cascaded to form the resultant matrices A and B, respectively.
This cascading leads to a set of non-homogeneous equations
in the form:

AX = B. (32)

The least squares solution of (32) yields values of the
unknown parameters in vector X , given in (29), (22),
and (23), thereby obtaining the numerator and denominator
coefficients in each element of C(s). Equation (32) is also
utilized to match the steady-state response of the designed-
closed-loop system with that of the reference model as pre-
sented in section IV-B. The procedure presented in this
section for obtaining the numerator and denominator coef-
ficients in each element of C(s) is for one set of decision
variables, which are nx ,ny,nc, δr , α∗v , and β

∗(i,k)
u .
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Ar =


S(1,1)c O1×(m(1,1)+1) O1×(m(1,1)+1) O1×(m(1,1)+1) · · · · · · −f

(1,1)
r Sd

O1×(m(1,2)+1) S(1,2)c O1×(m(1,2)+1) O1×(m(1,2)+1) · · · · · · −f
(1,2)
r Sd

...
...

. . .
...

...
...

...

O1×(m(p,q)+1) O1×(m(p,q)+1) O1×(m(p,q)+1) O1×(m(p,q)+1) · · · S
(p,q)
c −f (p,q)r Sd

 , (30)

A. SELECTION OF OPTIMAL DECISION VARIABLES
The objective function for choosing the optimal decision
variables has been chosen as the integral of squared deviations
in the step response of the designed closed-loop system from
that of the reference model over a chosen simulation time.
The distribution of frequency points across the s-plane nx , ny,
and nc influences the performance of the proposed approxi-
mation method. The proposed method, therefore, determines
the optimum values of frequency points along with its opti-
mum distribution across the s-plane. Hence the decision vari-
ables ν is the set of frequency variables δr along with their
distribution nx , ny, and nc in the s-plane. The problem of
finding optimal values of nw frequency points and those of
the fractional exponents of the numerator and denominator
polynomials of each element of the C(s) is framed in an
optimization framework. The optimization framework can be
stated as follows:

Find (i) nx ,ny,nc (ii) δr (iii) α∗v , and (iv) β
∗(i,k)
u , to

minimize J2 =
tf∫
0

(
y(i,k)d (t)− y(i,k)c (t)

)2
dt

subject to


(i) u− 1 < β

(i,k)
u ≤ u

(ii) v− 1 < αv ≤ v
(iii) The poles ofT (s) should be

in the left-half of the s-plane,

(33)

where y(i,k)d (t) and y(i,k)c (t) represents the step responses of
transfer functions relating the ith output to the kth input of
M (s) and T (s), respectively; tf is the total simulation time.

B. CLOSED-LOOP SYSTEM SSM
In this work, a provision has been incorporated for matching
the steady-state response of the designed-closed loop system
with that of the reference model. The SSM can be incorpo-
rated using the final-value theorem:

Lt
s→0

sYc(s) = Lt
s→0

sYd (s). (34)

Equation (34) in the case of a unit-step input takes the form:

Lt
s→0

T (s) = Lt
s→0

M (s), (35)

Lt
s→0

[I + P(s)C(s)]−1 P(s)C(s)

= Lt
s→0

M (s), (36)

Lt
s→0

C(s) = Lt
s→0

P−1(s)M (s)(I −M (s))−1. (37)

Substituting the structure of the controller (13) in (37)
yields

c(i,k)0

/
do = Lt

s→0
P−1(s)M (s)(I −M (s))−1. (38)

The matching of the steady-state response of the refer-
ence model with that of the designed closed-loop system
is achieved by using (38) in (32). By adopting this scheme
of SSM, the number of parameters in C(s) get reduced by
the product of p and q for a p × q MIMO system. The
SSM algorithm is valid if the respective limits in (37) exist.

V. SIMULATION RESULTS
This section illustrates the application of the proposed algo-
rithm first to a linear MIMO IO plant and then to a linear
MIMO FO plant, both with time-delay characteristics. The
comparative results of the simulation of the designed closed-
loop system with that of the reference model are presented.
The design of FOCs and IOCs have been accomplished using
the same algorithm to have a basis for comparison. The
effectiveness and robustness of the proposed controller design
strategy are assessed using linear time-domain simulations.
In this work, because of the first two constraints presented

in (33), the values of m(i,k) have been taken one less than
that of n (m(i,k)

= n − 1), to ensure that the elements of
the designed C(s) in (13) are strictly proper. In addition,
the variable n is allowed to take the values two or three which
results in the three-term and four-term controller, respec-
tively. Using the same procedure, keeping the base order as
unity, IOC is also designed. The FO three-term, four-term
and PID structure controllers along with their IO counterpart
have been designed using the proposedmethod. The design of
PID structures has been carried out by incorporating a low-
pass filter along with the differentiator. In this work, the fun-
damental sample time and the total simulation time tf for the
evaluation of the integral squared error (ISE) index presented
in (33) have been taken as 0.1 s and 15 s, respectively. The
desired frequency band of approximation has been taken
as (10−5-102) rad/s.

A. MIMO IO PLANT WITH TIME-DELAYS
The proposed controller design strategy has been illustrated
by designing a velocity controller for a two-wheeled mobile
robot (Quanser QBot 2) taken from the literature. The
mathematical representation of the wheeled mobile robot is
described in [8]. During the Hardware-in-the-Loop simula-
tion of the wheeled mobile robot, a time-delay of 1.4 s and a
reduction by a factor of 0.9225 in the steady-state value was
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observed in the open-loop wheel velocity profiles. Sample
time used in the real-time system, delay in actuator dynamics,
and friction may have contributed to the undesirable char-
acteristics in the velocity profiles during Hardware-in-the-
Loop simulation. The delay and steady-state error observed
in the velocity profiles are compensated in the mathematical
representation of wheeled mobile robot dynamics as

P(s) = P̃(s)× 0.9225× e−1.4s, (39)

where P̃(s) is the TFM representation of the plant obtained
in [8].

1) REFERENCE MODEL
The transport delay observed during the Hardware-in-the-
Loop simulation of the wheeled mobile robot is also con-
sidered in the formulation of the reference model. Hence
the transport delay of each element of the reference model
TFM has been taken as 1.4 s. Since the plant is modeled in
a classical way, the obtained GLCLS model is of IO. The
proposed reference model can be selected in two different
ways: one by taking the GIM as an IO representation, and one
by considering it as a FO one. In this work, the fundamental
sample time and the total simulation time tf for the evaluation
of the ISE index presented in (11) have been taken as 0.01 s
and 10 s, respectively. The optimal values of the parameters
of the GIM and the GLCLS model are determined by using
the procedure presented in section III and are given in the
appendix.
Case 1: IO GIM
In the case of IO GIM, the value of α in (7) and (8) has

been taken as unity. The settling time and damping ratio of
the desired response are chosen as 3 s and 1.1, respectively.
The steady-state value of the right wheel velocity D1 has
been taken as 0.2 m/s. For a circular trajectory with a radius
of 0.35 m, the steady-state value of left wheel velocity D2 is
evaluated as 0.1 m/s [8].

The comparisons of the velocity profiles of the optimal
IO GIM with that obtained using the IO GLCLS model are
shown in Figs. 3(a)-3(d). It clearly shows that the time-
domain specifications of the IO GIM are embodied in the
GLCLS model. The GLCLS model is formed with the inclu-
sion of the information of the plant, whereas the GIM is
an arbitrary transfer function embodying the desired time-
domain specifications. The optimal interaction also gets
embodied in the GLCLS model, which is the sufficient inter-
action required within the GLCLS model to achieve the
desired time-domain specifications.
Case 2: FO GIM
The FO GIM takes the form of a three-term FO system,

which can be utilized to embody the desired time-domain
specifications as presented in [37]. The desired damping
ratio has been taken as 0.58. The tolerance fraction for the
evaluation of settling time has been taken as 2%. The rest of
the time-domain specifications are taken the same as in the
IO GIM case. The comparisons of the velocity profiles of the
optimal FO GIM to that obtained using the IO GLCLS model

FIGURE 3. Comparison between the velocity profiles of IO GIM and IO
GLCLS model at (a) output 1 due to input 1 (b) output 1 due to input 2
(c) output 2 due to input 1 (d) output 2 due to input 2.

are presented in Figs. 4(a)-4(d). It clearly shows that the time-
domain specifications of the FO GIM are embodied in the
GLCLS model. The response of the off-diagonal elements
of the GLCLS model is close to that of the corresponding
elements of the GIM with a maximum error of 10−3 m/s.

2) PERFORMANCE EVALUATION OF IOC/FOC FOR
IO PLANT WITH TIME-DELAYS
The minimum value of the objective function J2 defined
in (33), obtained in the case of IOGIM representation is given
in Table 1. The corresponding value for the FO GIM is given
in Table 2. The SSM algorithm presented in section IV cannot
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FIGURE 4. Comparison between the velocity profiles of the FO GIM and
IO GLCLS model at (a) output 1 due to input 1 (b) output 1 due to input 2
(c) output 2 due to input 1 (d) output 2 due to input 2.

TABLE 1. Minimum value of the objective function J2 for wheeled mobile
robot, keeping IO GIM.

be utilized in the case of controllers with PID structure since
the left-hand side of (37) becomes infinity for such type of
controllers. From Tables 1 and 2, it is clear that FOC achieves
better ISE index compared with its IO counterpart.

TABLE 2. Minimum value of the objective function J2 for wheeled mobile
robot, keeping FO GIM.

TABLE 3. Minimum value of the objective function J2 with 100%
parametric variation for wheeled mobile robot, keeping IO GIM.

TABLE 4. Minimum value of the objective function J2 with 150%
parametric variation for wheeled mobile robot, keeping IO GIM.

From both Table 1 and Table 2, it can be seen that the
minimum value of optimum ISE indices is obtained for the
four-term FOC, C(s). The corresponding TFMs are shown at
the bottom of the next page.

Since there always exists a mismatch between the mathe-
matical model of the plant and the actual plant, the investi-
gation of robustness of the designed controllers to parametric
variations is a major concern in every controller design pro-
cedures. In the present work, the robustness to parametric
variations has been investigated in the simulation. The per-
formance of the designed-closed loop system is analyzed by
changing the parameters such as mass, the moment of inertia
and the distance between the wheels of the mobile robot, each
by 100% and 150%. The robustness assessment is carried out
by selecting IO representation for the GIM. The minimum
value of the objective function J2 defined in (33), for the
abovementioned parameters variations by 100 % and 150 %
are given in Table 3 and Table 4 respectively. Comparison
between the velocity profiles of the wheeled mobile robot
during 150% parametric variation with those of the reference
model is shown in Fig. (5). The robustness to parameter
uncertainties offered by the proposed controller is evident
from Tables 3, 4, and Fig. (5).

B. MIMO FO PLANT WITH TIME-DELAYS
Consider a MIMO FO plant with interaction and time-delay
properties between its I/O channels [22]:

P(s)

=

 1
1.35s1.2 + 2.3s0.9 + 1

e−0.2s
2

4.13s0.7 + 1
e−0.2s

1
0.52s1.5 + 2.03s0.7 + 1

−
1

3.8s0.8 + 1
e−0.5s

 .
(40)
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FIGURE 5. Comparison between the velocity profiles of the wheeled
mobile robot during 150% parametric variation with those of the
reference model. (a) right wheel. (b) left wheel.

The following subsections illustrate the performance of
the proposed FOC/IOC design methodology based on a user-
defined reference model.

1) USER-DEFINED REFERENCE MODEL
The proposed controller design technique for the FO plant
presented in (40) has been carried out by taking two different
types of reference models: (i) M (s) as presented in [22],
which is of having a dc gain equal to an identity matrix I and
(ii)M (s) having a dc gain other than an identity matrix. In the
first type of chosen reference model, the designed closed-
loop system is expected to behave like a fully decoupled sys-
tem. However, while incorporating SSM, an identity matrix
for the dc gain of the reference model TFM makes the dc
gains of C(s) undefined according to (37). Hence, in order to
achieve SSM, the second type of the user-defined reference

TABLE 5. Minimum value of the objective function J2 for FO plant with
time-delays.

model has been arbitrarily taken as:

M (s) =


9

(s+ 3)2
0.09

(s+ 3)2
1

(s+ 10)2
100

(s+ 10)2

 . (41)

2) PERFORMANCE EVALUATION OF IOC/FOC FOR
FO PLANT WITH TIME-DELAYS
The minimum value of the objective function J2 defined
in (33), obtained for the FO plant presented in (40) has
been shown in Table 5. Comparison of the minimum value
of the objective function defined in (33), obtained using
the method presented in [22] with the corresponding value
obtained using the proposed method, is given in Table 5.
The IOPID in [22] had different denominator polynomials in
each element of its TFM, which thereby increases the overall
order of the MIMO system. In this work, C(s) is designed to
have the same denominator polynomial in each element of its
TFM which results in its minimum realization. The proposed
controller design method outperforms the method presented
in [22] on realization and ISE index. In addition, the per-
formance of FOC while compared with its IO counterpart is
found superior because of its better ISE index.

The IOPID controller designed using the proposed method
is, C(s), as shown at the bottom of the next page.

In Table 5, the minimum value of optimum ISE indices has
been obtained for the following FOPID, C(s), as shown at the
bottom of the next page.

The investigation on the capabilities of the controller to
achieve the desired closed-loop characteristics in the pres-
ence of load disturbance is of prime importance in con-
troller design procedures. A load disturbance signal D(s) =
[D1(s) D2(s)]T has been applied to the system as shown

C(s) =
1

s2.6 + 0.094842s1.9 + 5.2517s+ 0.13064

×

[
0.39269s1.2 + 0.048878s0.6 + 1.55 0.029274s1.7 + 0.047107s0.6 + 0.014087

0.044781s1.4 + 0.053418s0.2 − 0.0080568 0.53433s1.1 − 0.11485s0.9 + 1.5589

]

C(s) =
1

s2.7 + 0.57296s1.7 + 5.3617s+ 0.13333

×

[
0.11034s1.7 + 0.43778s0.9 + 1.5916 0.043811s1.8 + 0.069231s0.4 + 0.00023976

0.046149s1.8 + 0.074233s0.5 + 0.0096455 0.46353s1.1 + 0.066982s0.2 + 1.5577

]
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FIGURE 6. Designed closed-loop system with load disturbance.

in Fig. 6, to assess the disturbance rejection characteristics of
the proposed controller. The load disturbance signalD1occurs
on first output y1 at 4 s and 10 s with magnitude +10%
and −10% of the steady-state value of y1respectively, each
with 2 s duration, as shown in Fig. 7. The load disturbance sig-
nal D2on second output y2 is kept as zero. The effect of D1on
y1 and y2 are shown in Figs. 7(a) and 7(b) respectively, which
indicate the satisfactory disturbance rejection capabilities of
the proposed controller. The disturbance rejection capabilities
of the proposed controller design technique are demonstrated
for the four-term FOC. The user-defined reference model
presented in [22] is used for the controller design in this
case.

From the simulation of the closed-loop system with the
designed FOC/IOC for IO/FOMIMO plant with time-delays,
it is evident that the performance of the designed closed-
loop system matches with that of the reference model. The
superiority in performance of the FOC over its IO counter-
part is evident from the comparison of the closed-loop step
responses based on the ISE index.

VI. EXPERIMENTAL RESULTS: MIMO IO PLANT WITH
TIME-DELAYS
The experimental verification of the obtained controller
parameters is performed for a wheeled mobile robot QBot 2.
The working of QBot 2 is already discussed in [40]. The
MATLAB-based Simulink, interfaced with the experimental
setup of a wheeled mobile robot is utilized to illustrate the
performance of the designed controller. The real-time con-
trol software, QUARC, downloads real-time code which is
generated from the host computer, into an embedded com-
puter mounted on the QBot 2 platform [40]. The veloc-
ity profiles of wheeled mobile robot, while the four-term

FIGURE 7. Comparison of the output responses of the designed
closed-loop system with and without disturbance at (a) output 1 due to
D1 (b) output 2 due to D1.

FOC was designed to match the steady-state response of
designed-closed loop system with that of the reference model
and the GIM chose was having IO representation have been
shown in Figs. 8(a)-8(b). It clearly shows the velocity profiles
of the right and left wheels of the wheeled mobile robot
during simulation, and experimental analysis matches well
with the velocity profiles of the reference model. The devi-
ation present in the experimental result is more, compared
with that present in the simulation results, which may be due
to the modeling error incorporated during the formulation
of the mathematical representation of the plant dynamics.
The controller effort present at the right and left wheels of
the wheeled mobile robot during the experimental analysis
have been shown in Figs. 9(a) and 9(b), respectively. The
controller effort measured was for the four-term FOC/IOC,
which was designed to match the steady-state response of

C(s) =
1

s2 + 0.59559s

×

[
0.053723s2 + 2.0881s+ 0.26706 9.6131s2 + 9.8827s+ 2.109
2.3408s2 + 2.3959s+ 0.34254 -2.8443s2 − 7.8359s− 1.3578

]
C(s) =

1
s1.2 + 1.1765× 10−05s0.2

×

[
−3.5798s1.2 + 5.3282s− 1.6614s0.4 + 1.3964s0.2 − 0.044051
5.0304s1.2 − 10.996s+ 8.914s0.9 + 0.15828s0.2 + 0.09343

33.123s1.2 − 53.937s1.1 + 31.613s+ 2.4282s0.2 + 0.35909
0.0057557s1.2 − 3.4458s− 5.0593s0.4 + 1.4106s0.2 − 0.4139

]
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FIGURE 8. Comparison between simulation results and experimental
results of the wheeled mobile robot velocity profiles. (a) left wheel.
(b) right wheel.

FIGURE 9. Controller effort at (a) right wheel (b) left wheel.

the designed-closed loop system with that of the reference
model and while IO representation was chosen for the GIM.
The comparison of the performances of the controllers dur-
ing experimental analysis has been performed based on
integral squared control effort. For the right wheel of the
wheeled mobile robot, the values obtained for the integral
squared control effort are 15.6721 and 15.7419 for FOC
and IOC, respectively, while the corresponding values for
the left wheel are 3.9384 and 3.9857. The lesser integral
squared control effort and hence the lower energy consump-
tion is obtained with FOC in comparison of that with its
IO counterpart.

VII. CONCLUSIONS
This paper deals with the design of a model-matching
FOC/IOC using AGTM/AGMP matching technique. The
proposed FOC/IOC design approach belongs to the class
of generalized algebraic method. The proposed reference
model selection procedure guarantees a solution for every
set of feasible desired specifications of the designed closed-
loop system. The reference model selection procedure and
controller design approach presented in this work are gen-
eralized one and hence applies to IO/FO SISO/MIMO lin-
ear plant with or without time-delays. The load disturbance
rejection capability and the robustness to system parame-
ter variations offered by the proposed controller are evi-
dent from the simulation results. The reference model selec-
tion procedure and controller design approach are proved
to be efficient and accurate by simulation and experimental
results. The future research plan includes the development
and implementation of the proposed controller design algo-
rithm for SISO/MIMO IO/FO interval plant with or without
time-delays.

APPENDIX
An outline of the optimization framework of the reference
model selection procedure using the global optimization tool-
box of MATLAB is presented in this section. The optimal
set of decision variables can be determined by heuristic
search methods, and the genetic algorithm has been used
in this work. The bounds for the interaction factor of the
GIM and elements of diagonal weighting matrices of the
GLCLS model are given as 5×10−7 and inf, respectively.
The interaction parameters of the GIM are assumed to be
identical. The lower and upper bounds for α in the case
of FO GIM are given as zero and one, respectively. MAT-
LAB function ‘‘lqr’’ is utilized to obtain the value of gain
matrix Kopt . The feedback gain matrix can be obtained for
a given set of weighting matrices Q and R, by solving the
algebraic Riccati equation. The solution of the algebraic
Riccati equation is determined using the method presented
in [39].
Case 1: IO REPRESENTATION OF GIM
The optimal value of the interaction parameter λ of

the GIM is obtained as 1589.5. The weighting matri-
ces Q and R of the GLCLS model, are obtained as
diag(0, 2.4414×10−04, 6.2671, 6.1746, 10.1043, 9.9536) and
diag(20.6833, 20.3829), respectively.
Case 2: FO REPRESENTATION OF GIM
The optimal value of the interaction parameter λ of the

GIM is obtained as 233.5492. The weighting matrices of the
GLCLS model, Q and R are obtained as diag(0.2743, 0.2390,
98.5533, 86.3534, 123.2557, 106.0006) and diag(1.0233,
9.9584), respectively. The parameter αof the FO GIM is
obtained as 0.87. The obtained optimal parameters together
with the desired time-domain specifications are utilized
to obtain the GIM and the GLCLS model as described
in section III.
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