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ABSTRACT The brain activity pattern can be presented by Electroencephalogram (EEG), which is
considered as an alternative to traditional biometrics. Researchers have done conducted studies on
EEG-based identification, while few of them discussed the effect of time robustness which is very important
for the identification system. In this study, we compared and analyzed the two runs EEG signals of resting-
state of eye open/closed (REO/REC). The time intervals between two runs were at least two weeks. Here are
17 participants joined in this study. Each of them took two runs experiment. Each run contains four sessions,
each session includes 150 seconds of REO/REC. Spectral and statistical analyses were used to extract feature.
Three classifiers, Euclidean distance, SVM, and LDA, were used to get classification accuracies and to
compare the performance between features of each run and two runs. The results of two runs PSD values of
both REO and REC conditions show that there is a similarity within each subject and a difference between
subjects. The classification accuracies of three methods of each run are almost 99%. The classification
accuracies using two runs data as training set can also reach up to 97% while using each of two-run data as
training set is nearly 80%. Thus, the features of most subjects have cross-time robustness and could be used
as identification. This study will have an important role in EEG-based identification system.

INDEX TERMS Electroencephalography(EEG), identification, resting-state, robustness.

I. INTRODUCTION
Personal identification has a great impact on the security
of personal information. It also affects social public safety,
national security and many other aspects. Traditional identi-
fication ways using accounts and passwords could not guar-
antee the information security, since the password is too
easy to leak today. To some extent, biometrics identifica-
tion can compensate for this disadvantage. It uses inherent
complicit features of users and is considered as an alter-
native identification way [1]. Widely used reliable systems
based on biometric modalities such as fingerprint, gait, voice
and iris, which are uniqueness, ubiquitous, easy acquisi-
tion, and persistence, are crucial to information security
nowadays [9].

The associate editor coordinating the review of this manuscript and
approving it for publicationwasNavaniethaKrishnaraj Krishnaraj Rathinam.

Electroencephalography (EEG), which is used to record
the electrical activity of the brain, has received much atten-
tion and interest in many areas. It is also regarded as an
alternative promising way for biometrics identification. Com-
paring with other biometric modalities, EEG signals can-
not be reproduced and imitated by imposters especially
when people are under hijacked or other dangerous sit-
uations. This makes EEG-based biometrics identification
more reliable and securer. Currently, resting-state sponta-
neous EEGs, including resting of eye open (REO) and eye
closed (REC), are most used EEG signals for personal
identification [2], [13], [17] [19].

EEG-based identificationmethods employmany approaches
to extract temporal-spatial features and optimize classifiers
to improve the performance of biometrics identification
system [3], [15], [16], [20]. EEG-based identification sys-
tems have been investigated for decades [27], [31], [32].
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First study focusing on the difference of EEG morphology
of monozygotic can be traced back to 1936, and the results
of latter study had shown similarity on spectral features of
EEG signals between twins.

Spectral features are mostly used in EEG-based identifi-
cation. In 1999, Poulos et al. first tried to conduct a system
of identity authentication based on EEG signals [20], [21].
They used four different subjects’ EEG data and employed
a Learning Vector Quantizer networks as the classifier.
AR parameters of the alpha rhythm activity were esti-
mated from EEG signals. The classification accuracy can
reach 84%,which shows EEG signals has genetic information
and different subjects have their own spectral characteristics.

Ward and Obeid [29] reviewed various biometrics
identification methods over past few years and listed some
challenges and future perspectives. Although biometrics
identification seems to be an alternative way to traditional
methods, some problems are also existing, such as data
acquisition, protocol design, performance evaluation and
stability of system. In this review, the author also emphasized
the importance of time-robustness for the performance of
biometrics identification system.

A stable identification system must have the ability that it
can apply the template generated by previous dataset to future
datasets. The results in previous works, however, showed
that the robustness of EEG signals will get worse with time
goes by, and few literatures conducted longitudinal exam-
inations to investigate the stability of system performance.
Npflin, M. et al. conducted two runs experiments and
extracted the features of PSD, peak height and peak fre-
quency. Resting-state EEG data of 20 subjects with eye closed
are used, and the performance of identification system have
a significant decreased. Jae-Hwan Kang, J. H.et al. used
public dataset which includes EEG signals of 109 subjects
and employed spectral analysis, nonlinear analysis and net-
work analysis to extract various EEG features [8]. The results
show there is a significant decreased between resting-state of
different subjects.

In this paper, we aim to investigate the time robustness
of EEG-based identification using EEG signals of resting of
eyes open (REO)/eyes closed (REC) as biometric features.
We acquired signals of two independent runs. The interval
of two runs was at least two weeks. We try to analysis the
time robustness through comparing the classification per-
formances using different parts of the whole dataset. Here,
we extract different spectral EEG features as the inherent
biological characteristic. We also implement visualization
and statistical analysis for spectral analysis. Three classifi-
cation methods, including Euclidean distance, support vec-
tor machines (SVM) [10] and linear discriminant analysis
(LDA), are adopted to evaluate the identification performance
of spectral features.

Most of previous works focused on REC and single classi-
fier [11], [22]–[24], here we focus on cross-time robustness
for the inherent subject-to-subject features. Thus, besides the
analysis of spectral features with single-run EEG signals, we

FIGURE 1. Each run of the experiment includes three sessions and each
session consists of two sub sessions, which are resting-state of eye
open(REO) and resting-state of eye closed (REC).

mainly compared and analyzed the performance of mixed
spectral feature with two-run EEG data. We also try to com-
pare the difference of spectral features between runs. In the
present study, the results reveal that there has a significant
difference between single run EEG signal of different sub-
jects and strong similarity between two runs EEG signals of
most subjects, and the result also shows several subjects have
dissimilarity between two runs EEG signals.

II. METHODS AND MATERIALS
A. PARTICIPANTS
There are 17 subjects (8 males) participated in this experi-
ment with average age of 21(±3). They are all volunteers
from Tianjin University and have normal vision (or corrective
vision). All participates have signed the consent form which
includes notice in experiment, using of data and their indi-
vidual rights before conducting the experiment. The whole
experiment for each participant include two runs and the time
interval of two runs experiment was at least two weeks.

B. PARADIGM
Fig 1 shows the experimental setup. Each run of the exper-
iment consists of three sessions. Subjects can relax at the
interval of two sessions and press ‘space’ to start next session
of the experiment at any time. For each session, there are
three subsessions within each session which are preparation
stage, experimental stage and relaxation stage. In first stage
of preparation, subjects sit in front of the screen and wait
for audio hint for begin. The second stage which is named
as ‘Experimental stage’ includes two conditions: resting-state
of eyes open (REO) and resting-state of eyes closed (REC).
‘Experiment stage’ begins and ends with audio hint. Each
condition of this stage lasts 150 seconds.

C. DATA ACQUISITION
EEG signals was acquired using an EEG Cap with
64 Ag/AgCl electrodes placed at the standard positions of the
international 10-20 system. The top of the head is set as the
reference and ’AFz’ channel is set as ground. A 64-channels
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amplifier (Neuroscan) were used here for data acquisition
with the sample rate of 1000 Hz. Only 20 channels (Fz, F3/4,
F7/8, Cz, C3/4, Pz, P3/4, PO7/8, TP7/8, Oz, O1/2, M1/2)
were recorded for data analysis. The study was approved by
the local ethical committee at Tianjin University.

D. PREPROCESS
All preprocess of EEG analysis was conducted using
MATLAB R2013b with the EEGLAB toolbox
(v13.4.4.4bversion). The EEG data were firstly re-referenced
to the average of left and right mastoids (’M1’ and ’M2’) first.
Then, we filtered the EEG data with a pass filter of 1-40Hz
to increase the signal-to-noise ratio, and were down-sampled
from 1000Hz to 100Hz. For both REO and REC, we extracted
the EEG data behind from the label of 50 seconds to
150 seconds according to the audio hint for each session of
both REO and REC as an epoch. The EEG data from the label
of 0 seconds to 50 seconds, which is not used as features,
were used as baselines. Each epoch was then divided into
10 segments (a fragment of 10seconds) in order to increase
the EEG sample amount of EEG data of same each subjects
and this is helpful for the next analysis and classification The
data size of each subject after preprocess is C×T×S, where
C means channels (C = 18) and S denotes all trials of one
experiment (S = 30). T denotes the length of a single trial
(T = 1000).

III. FEATURE AND CLASSIFICATION
A. SPECTRAL ANALYSIS
We introduced the method of power spectral density (PSD)
to extract the spectral feature. Power spectral density(PSD)
is a typical method to describe the distribution of power in
EEG signal analysis [6]. The PSD of EEG signals is estimated
in each epoch for each channel by performing a fast Fourier
transform (FFT) with a Hamming window.

We estimated the average PSD of all channels with fol-
lowing bands: 1. theta band (4-8Hz), 2. alpha band (8-13Hz),
3.low beta band (13-20Hz), 4. high beta band (20-30Hz),
5. gamma band (30-40Hz), 6.all frequency bands (1-40Hz),
and we used these features for further analysis and
classification [7], [12], [14].

Spectral estimation is to estimate the distribution of power
over frequency based on a finite set. the autocorrelation
function is the average measure of the characteristics of the
signal in the time domain. It is used to describe the correlation
between the values of the EEG random signal X(t) at any two
different times. We define autocorrelation functionRx (τ ) as:

Rx (τ ) = E [X (t)X (t + τ)] (1)

If the τ= 0, Rx (0) represent the mean square value of X(t):

Rx (0) = lim
1
T

∫ T

0
X2 (t) dt (2)

With stochastic process, frequency range often be defined
by Fourier transform. For time series, whether the Fourier

transform exists depends on whether it is absolutely inte-
grable. Constraint condition is defined as follows:∫

∞

−∞

|X (t)| dt <∞ (3)

For stationary stochastic process, autocorrelation function
meets this formula. So we can get the FFT of autocorrelation
function, Sx (ω) represent the change of signal of power with
itself frequency. It can be defined as:

Sx(ω) = lim
T→∞

{
E
[
1
T
|XT (w)|2

]}
(4)

For estimation of the spectrum, the periodgram is the
easiest method. This method is to do the Discrete Fourier
transform (DFT) of stochastic process sampling and calculate
square of amplitude. Welch’s method is an improvement to
periodgram. It divides the data into some segments which can
overlap, then estimate each segment and average. Here, we set
parameters overlap 50% and hamming window.

B. CLASSIFICATION
For personal identification, we compared three commonly
used classification methods, which are Euclidean distance,
SVM and LDA. Euclidean distance and LDA are basic and
common methods in personal identification of resting-state
EEG signals. SVM proved to be useful in small-sample in
some fields.

1) EUCLIDEAN DISTANCE
The Euclidean Distance between two EEG trials X1 (t)={
x11,x

2
1,x

3
1, · · · ,x

n
1

}
and X2 (t)=

{
x12,x

2
2,x

3
2, · · · ,x

n
2

}
} are

defined as :

d (X1(t),X2(t)) =

√∑n

i=1

(
x i1 − x

i
2

)2
(5)

where d (X1 (t) ,X2 (t)) in (5) is Euclidean distance of sig-
nal X1 (t) and X2 (t), i and j represent time and trial in xij
respectively.

2) LDA
Linear discriminant analysis (LDA) is a generalization of
Fisher’s linear discriminant. LDA approaches the problem
by assuming that the conditional probability density func-
tions P

(
Ex
∣∣ y)= 0 and P

(
Ex
∣∣ y)= 1 are normally distributed

with mean and covariance parameter
(
Eµ0,60

)
and (Eµ1,61).

Consider the observations Ex for each sample of an event with
known class y,

6b =
1
c

∑c

i=1
(µi − µ) (µi − µ)

T (6)

where µ is the mean of the class means and i is the label of
classes. The Eω in this case will be calculated by:

S =
EωT6B Eω

EωT6 Eω
(7)

where 6 mean the covariance of each class and Eω is an
eigenvector of 6−16b to corresponding eigenvalue.
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3) SVM
Support vector machines (SVM) are supervised learning
models in machine learning with associated learning algo-
rithms which analyze data used for classification [4], [5].
Given training data xi∈Rm,i= 1, . . . ..,l, and y ∈Rl as an
indicator vector such that yi ∈ {1,−1}, solves the following
formulation:

min
ω,b,ξ

1
2
ωTω + C

∑l

i=1
ξi

subject to yi
(
ωT∅ (xi)+ b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, . . . .., l, (8)

where ∅ (xi) maps xi into a higher-dimensional space and
C> 0is the regularization parameter. Due to the possible high
dimensionality of the vector variable ω, we transform it to
following dual problem:

min
α

1
2
αTQα − eTα

subject to yTα = 0,

0 ≤ αi ≤ C, i= 1, . . . ..l, (9)

where e=[1, . . . .., 1]T and Qij≡yiyjK
(
xi,xj

)
, and

K
(
xi,xj

)
≡ ∅(xTi )∅(xj) is the kernel function. Using primal-

dual relationship, the ω satisfies:

ω =
∑l

i=1
yiαi∅(xi) (10)

and the decision function is:

sgn
(
ωT∅ (xi)+ b

)
= sgn(

∑l

i=1
yiαiK (xi, x)+ b) (11)

LIBSVM were used in MTLAB to solve the issues, such
as SVM optimization problems, theoretical convergence,
multi-class classification and so on, for subsequent analysis.
LIBSVM is a library for support vector machines by
Chang and Lin [34].

4) ACCURACY
For comparison of classification performance, the accuracy
formulation was used as follows:

Accuracy =
# correctly predicted index

# total testing index
× 100% (12)

IV. RESULT
In this section, the experimental results are presented using
methods described above. 18-channel PSD values of each
single trial and the Pearson’s correlation coefficient among
trials are presented to show the spectral features within and
between subjects. Classification accuracies are also presented
here to show the results with different classifier. In the fol-
lowing, we will firstly present the mentioned results of both
conditions (REO and REC) using only first-run data, and
then we will show the results of both runs. At the end of
this section, we will present the cross-time accuracy of both
conditions, where we use the first-run experimental dataset
as training dataset and the second-run experimental dataset
as testing dataset.

FIGURE 2. (a) 18-channel PSD of four subjects under condition REO.
(b) 18-channel PSD of four subjects under condition REC.

A. SINGLE RUN DATASET
Figure 2 shows the PSD values of 18 channels for four
subjects at 1-40Hz (left: resting-state of eyes open (REO),
right: resting-state of eyes closed (REC)). The average values
of 30 trials of each channel were calculated and arranged
into a matrix. The X-axis of the figure indicates frequency
from 0 Hz to 50 Hz, and Y-axis indicates 18 channels of each
subject, which means that each line represents the averaged
PSD values of one channel (channels’ order: F7, F3, FZ,
F4, F8, C3, CZ, C4, TP7, TP8, P3, PZ, P4, PO7, PO8,
O1, OZ, O2).

As Fig 2 shows, there are significantly high energy between
1-5 Hz bands and around 10Hz for both REO and REC condi-
tions. The frequency band at around 10Hz of REC condition
is higher than that of REO condition and the frequency band
at around 20Hz also shows a difference. These frequency
bands are also commonly used frequency bands for individual
classification of resting EEG.

Figure 3 depicts the trial-to-trial Pearson’s correlation
coefficient of same four subjects both for REO and REC
conditions. Firstly, the PSD values of channel-averaged sig-
nal were calculated for each single trial to extract the trial-
to-trial Pearson’s correlation coefficient. Here we show the
correlation results of four subjects. Each subject has thirty
trials. It shows a good correlation within subject, which was
significantly higher than between subjects.
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FIGURE 3. (a) Pearson correlation coefficient of REO (b) Pearson
correlation coefficient of REC.

The training data and testing data were all extracted from
the first-run experiment, and 10-fold cross-validation was
used to classify. We used average PSD values of 18-channel
for each trial as the feature. Figure 4 shows the classification
accuracy using three different methods (Euclidean Distance,
LDA and SVM) of two conditions (REO and REC). The three
bars on the left shows the results in condition REO, and the
right part shows the accuracies in condition REC. Different
color indicates different classification method. Classification
accuracy in each condition can all reach more than 95%. REO
condition has higher classification accuracies than REC con-
dition. SVM and LDA have better classification performance
than ED.

B. TWO-RUN DATASET
For personal identification, time-robustness is very impor-
tant. Thus we recorded from two runs experiment. The inter-
val of two runs was at least two weeks. Up analysis are all
results of the first run experiment. From this subsection, we
will also analyze the second-run data. We will first show the
spectral features of each subject in each run, and then we will
rebuild the training and testing datasets using mixed datasets
from two runs.

Similar to the previous description, the averaged
18-channel PSD values of each subjects were selected

FIGURE 4. Classification accuracy of two conditions (REO and REC) by
three methods (ED, SVM and LDA). Training set and test set are from
single run experiment.

as features as shown in Figure 5. It depicts 18-channel
PSD values of four subjects over time in different conditions.
The up two rows show the PSD values in resting of eyes
open (REO) condition and eyes closed (REC) condition
among first-run and second-run experiment. For the resting
of eyes opened, the energies at 5 Hz and 10 Hz are rela-
tively high than other frequencies both for first and second
runs. For the resting of eyes closed, the energy of about
5Hz in two cross-time experiments is lower than that of
eyes opened. The energy at 10Hz is obviously higher than
that of eyes opened, and moreover, high energy appears at
around 20Hz.

Figure 6 shows Pearson’s correlation coefficient of
PSD values between first-run and second-run experiments.
The left subfigure shows the results for condition REO, and
the right part represent the coefficient of condition REC. Each
line represents the Pearson’s correlation coefficient between
subjects using the averaged PSD values of 18 channels as
the feature. X-axis represents the features extracted from the
first-run dataset for each subject, and Y-axis represents the
features extracted from the second-run dataset. Coefficient
values under 0.8 will be presented the same color as 0.8.
Different color represents different coefficient value. As we
expected, the correlation coefficient of same subject is much
higher than it of different subjects under two conditions. The
results show that there are significant similarities between
two runs dataset of same subject.

Figure 7 depicts the classification accuracy of three meth-
ods using two runs dataset. We use 10-fold cross-validation
and mix two experimental data for training and testing.
We calculate the average PSD values of 18 channels for each
subject and 30 trials were used for each subject finally. Three
classification methods all here achieved more than 90% in
both two conditions (REO and REC). Considering that the
training and test sets contain data from the first and the second
runs, this result is not surprising. To a certain extent, this
indicates that the PSD features of the resting state have cross-
time robustness, and their features are also well tested for
different classifiers The results obtained by using the three
classifiers show that the PSD values also has certain stability
for different classifiers.
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FIGURE 5. 18-channel PSD of four subjects of two runs data. X-axis represent frequency (Hz) at 1-40Hz. (a) 18-channel PSD
of REO in first run. (b) 18-channel PSD of REC in second. (c) 18-channel PSD of REC in first run. (d) 18-channel PSD of REC
in second run.

C. TWO RUNS DATASET
Here we try to use first-run dataset to train and second-run
dataset for test to investigate whether there is robustness
across time between two independent runs.

Figure 8 depicts the classification accuracy for cross-time
data. We use first-run data as a training set and second-run
as a test set. Then exchange them, the second-time data as
a training set, and the first-time data as a test data. We still
use PSD values as features to classify and analysis. As can be
seen from the figure, for the full-band power spectral density
of 1-40Hz, the classification accuracy obtained by three
methods are poor, only 30%-40%. Then we made a selection
of the frequency domain range, characteristics of five bands
(theta, alpha, low beta, high beta, gamma) are used as features
to classify and made combination of these frequency domain
bands. The result can reach up to 80%.

V. DISCUSSION
In this paper, we conduct the analysis of spectral features with
single-run EEG signals and spectral features between runs.
We also compare the classification accuracies using different
classifiers with different features.

A. PSD FEATURE
For single-run PSD of different subjects, there is a differ-
ence during the frequency range of 1-40Hz. As we can see

from Fig 2, the PSD of same subject has a similarity between
18 channels and there is an obvious boundary between differ-
ent subjects. The difference mainly concentrated around 5Hz
and 10Hz of REO. Some subjects have high energy around
at 5Hz, 10Hz or both of them. The PSD of forehead channels
of most subjects at 1-5Hz is significantly higher than other
channels. Compared with REO, REC also has a significant
difference at 20Hz. The PSD at 1-5 Hz of most subjects is
lower than it under condition REO.

Most cross-time analysis researches limited their anal-
ysis with single-experimental resting-state data of public
databases [25], [26]. In this article, we conducted two exper-
iments on some subjects for analysis and the interval of two
experiments at least twoweeks. Our ultimate goal is to find an
independent identification method for resting state. That is,
we can get a good performance by using one independent run
data for training and another independent run data for testing.
To achieve this goal, we calculated PSD values of two runs
data of two conditions and the result shows that there seems
be a significant similarity between two runs. The correlation
of PSD between the two runs data which showed in Fig 5 is
mainly concentrated at 1-10Hz for condition REO and also
at 20Hz for condition REC.

Noted that subject four has a high PSD at 20 Hz of con-
dition REO between two runs data, which is different from
PSD of other subjects in Fig 5. The PSD of subject one and
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FIGURE 6. (a) Pearson correlation coefficient of REO between two runs
data. (b) Pearson correlation coefficient of REC between two runs data.

FIGURE 7. Classification accuracy of two condition (REO and REC).
Two-run dataset was used here. We mixed them and used part of mixed
dataset as training set or test set.

four are much lower than other two subjects at around 10Hz
for all channels. For condition REC, the PSD of subject four
at 20Hz is significantly lower than other subjects. this is a
little different from the results we got in previous section. The
results reveal that the PSD of all channels have a similarity
within the same subject and difference with different subjects.

B. PEARSON CORRELATION COEFFICIENT
For single-run Pearson correlation coefficient of each sub-
ject, the red zone of diagonal means the coefficient much
close to ’1’, which represent strong correlation between

FIGURE 8. Classification accuracy of two condition (REO and REC). Two
runs data were used to classify. One run was used as training set and
another was used as test set.

trials within subject. For condition REO or REC, the result
in Fig. 3 shows that there is a strong correlation between trials
of average channels within subject and lower correlations
with other subjects. This means that we can use the average-
channel PSD of each subject as features for the following
analysis and classification.

Next, we calculated the Pearson correlation coefficient
of two runs data. The PSD of average channels are used
as features and each subject of each run has 30 trials. The
results in Fig 6 shows a certain correlation between two runs
data for most subjects. The result is better than what we
expected before. For condition REO, only first run data of
subject 11 shows lower correlation with second run data. But
it also has a high correlation coefficient (more than 0.8). For
condition REC, the result is not as good as condition REO,
the correlation coefficients of four subjects are not the high-
est on the diagonal and the coefficients of two subjects
(subject 11 and subject 12) even below 0.8.

C. CLASSIFICATION RESULTS
Threemethods were used here to classify. Aswe expected, for
classification result of single run dataset, all threemethods get
good results which can reach more than 95%. These results
are also consistent with the results which mentioned in some
researches. It also reveals that there is a significant difference
between single run data of different subjects.

Fig 7 shows the classification accuracy of two runs dataset
of different subjects. Here, we use 10-fold cross-validation.
Two runs dataset are used as training data and test data.
which include data from both the first run and the second run.
The classification accuracy rate can reach more than 90%,
considering that training set and test set both consist of first
and second experimental data. To some extent, the classifi-
cation results are accord with our expectations that there is
indeed a certain time robustness between experimental data
from different times for each subject.

The PSD features at different times, however, seems to
have some differences. The result in Figure 8 shows the
best classification accuracies that we use one run dataset as
training set and another as test set.
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FIGURE 9. Average-channel PSD of two misclassified subjects (6 and 9). X-axis is frequency (Hz) at 1-40Hz. (a) (b) Two
runs data (30 trials) of subject 6. (b) (d) Two runs data (30 trials) of subject 9.

We first use PSD of 1-40Hz as features to classify and the
result shows poor accuracy just about 50% This seems not
a good result. Then we try to optimize the features by using
the various bands and their combinations. The goal is to find a
frequency band that can better represent the common features
between the same subject while increasing the gap between
the different subjects. The classification result can reach 80%
when using PSD of range 5-35Hz as features.

In order to investigate the reasons why we get the lower
classification accuracy in two runs dataset, we have a simple
analysis of the classification results. For most of the subjects,
most of their trials were correctly classified while some other
subjects, almost lost all trials. Here, we choose two subjects
which are all misclassified in classification. Figure 9 shows
PSD values of two subjects (subject six and subject nine)
under condition REC. As we can see, two runs PSD val-
ues of two subjects have a significant similarity. They all
have a high PSD value at around 1-10Hz and 20Hz and
the distribution of frequency energy is very similar. We can
also prove this results in Fig 6 that There is a significant
similarity between two runs data of two subjects (S6 and S9).
In the future work, we will focus on the analysis of these
subjects, experiments will be conducted on the same subject
to determine whether it is a problemwith the signals itself and
other features of the signals will also be analyzed to achieve
identification.

VI. CONCLUSION
In this paper, we focus on the cross-time robustness of REO
and REC between two runs experiments. The Power Spec-
tral Density was used here to extract features of dataset.
We used Pearson correlation coefficient to weight the sim-
ilarity between trials. Three methods (ED, SVM and LDA)
were used to analysis and classification. The results show
that for single run dataset, there is a significant difference
between PSD of all subjects under condition REC and REO.
So, we conducted the second run experiment on a number
of 17 subjects and compared the similarity between two runs
data of same subject. The results show that there is an obvious
similarity for most subjects of REO and REC. The results
indicate that there is a cross-time robustness of REO and REC
between same subject and the identification system that using
one run data as a template while using others to verification
independently is feasible.
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