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ABSTRACT Transmission line icing is a common natural phenomenon, but it is the most dangerous factor
that severely threatens the safety and stability of the power grid operation. Transmission line icing involves
many factors, including temperature, humidity, wind speed, light intensity, wire tension, pressure, and wind
deflection angle. Because of the high dimensionality, nonlinearity, multi-modality, and heterogeneity of
the data generated by these factors, it is difficult to establish an accurate prediction model based on these
data adopting traditional data mining methods. How to establish an accurate and effective new model of
transmission line icing prediction has become a key problem to be addressed urgently. To address these
problems, the paper collects the datamonitored by the China Southern PowerGridOnlineMonitoring System
from 2011 to 2016 to study the prediction model of the icing level of the transmission lines. Since the values
affecting the icing level are dynamically changing with time, this paper first uses the time series analysis
method to process the icing data and proposes an ensemble empirical mode decomposition (EEMD) method
to adaptively decompose the meteorological and mechanical data, which reduces the impact of noise and
outliers in high-dimensional data, and maximizes the use of the inherent law of time-frequency to effectively
analyze icing data. The feasibility of this method is verified with real data. The experimental results show
that the prediction model based on EEMD time-frequency is more accurate than the prediction model based
on the original data. Compared with the five prediction models as random forest, support vector machine,
BP neural network, Elman neural network, and Bayesian network, the accuracy has increased by 0.47%,
2.93%, 1.85%, 0.92%, and 1.86%, respectively. In addition, this new method is more sensitive to the serious
situation of icing on the transmission lines. Compared with the prediction model based on the original data,
this method improves the accuracy of prediction for icing level 4 and 5 by 17.5%, 16.67%, 50%, 3.13%, and
10.26%, respectively.

INDEX TERMS Transmission line, EEMD, prediction model, ice coating.

I. INTRODUCTION
With the great development of human society, construction
of smart cities has become an irreversible historical trend
of the sustainable development of today’s world and an
effective way to solve numerous urban problems. The smart

The associate editor coordinating the review of this manuscript and
approving it for publication was Tie Qiu.

grid is the ‘‘major artery’’ of the future smart cities and is
the key driving force for the development of smart cities.
Large-scale transmission lines constitute an important part of
the transmission of electric energy in smart grid. Therefore,
improving the reliability and safety of transmission lines is
an important factor in ensuring the safe and stable operation
of the national power system. Transmission line icing is a
common natural phenomenon, but it is the most dangerous
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factor that severely threatens the safety and stability of the
power grid operation. Therefore, there is an urgent need to
conduct real-time multi-dimensional monitoring on the icing
conditions of transmission lines, and to predict icing more
accurately in order to ensure the security of transmission lines
and the robustness of the transmission network.

Smart cities involve many fields as smart buildings, smart
grids, transportation and medical services, urban public ser-
vices, and urban ecological environments. Smart grid has
become the most critical factor for the healthy development
of smart cities. Smart grids will be combined with modern
technologies such as artificial intelligence and Internet of
Things to provide smarter and more convenient services for
smart cities, to enhance relevant technology development and
innovation, and to facilitate to achieve green living in cities.
With the rapid development of China’s economy and science
technology, the demand for electricity has been increasing
gradually, the power grid construction has been accelerated,
and the transmission lines of various voltage levels have
increased annually. The power grid systems have turned to
be more large-scaled and intelligent, as shown in Fig. 1.

FIGURE 1. Transmission line [1,2].

Due to the uneven distribution of cities in China,
the demand for electricity is different, resulting in the larger
dispersion and wider coverage of transmission lines. In order
to reduce the loss of electric energy during transmission, it is
usually transmitted through EHV transmission lines. How-
ever, power stations are generally located in remote areas,
resulting in long transmission distance, and along the way are
usually areas with harsh geographical environment and com-
plicated micro-meteorological conditions. In recent years,
due to the global destruction of the ecosystem, climate change
is abnormal, and extreme weather occurs more frequently.
In particular, most of the transmission lines in the southern
part of China often suffer severe freezing disasters, result-
ing in various icing accidents including broken or tripped
transmission line, the collapse of transmission tower, and the
insulator flash, as shown in Fig. 2. Icing lines cause huge
economic losses to enterprises and brings security risks to the
country and the people [3], [4]. The increasing urban popula-
tion and the complexity of urban management have driven

FIGURE 2. Transmission line ice accidents [6,7].

local governments to use modern information technology to
improve urban life and provide better public services [5].
In order to protect the lives and property of people and build
a stable and friendly society, it is a key issue to be solved
urgently to accurately predict the thickness of the ice on the
transmission line and realize the safe and reliable operation
of the power grid.

Transmission line icing is a common natural disaster, but
has threatened the safe and stable operation of the power grid.
Comparedwith other natural disasters, transmission line icing
is particularly serious for grid security [8], [9]. Therefore,
it is urgent to carry out real-time and multi-dimensional mon-
itoring of the ice thickness of the transmission line and give
accurate and effective prediction of the ice coating that may
occur later soon so as to ensure the robustness of the entire
power system and guarantee the safe and stable operation of
the transmission line. With the accurate prediction of the ice
thickness of the transmission line, the dynamic development
trend of the ice thickness can be real-time detected, and
reliable guidance can be provided for the relevant measures
such as anti-icing and deicing of the transmission line. So that
relevant officers and workers can make more correct deci-
sions, prevent the occurrence of ice disasters more effectively,
and improve the stability of the power system.

In recent years, people have been more concerned about
ice coating of transmission lines, and gradually established a
real-time online monitoring system, which has been devel-
oped rapidly and applied more widely. Since 2008, China
Southern Power Grid has established an online monitoring
system to ensure its safe and stable operation. The system
collects large amount of unstructured data and structured
data. Unstructured data contains image data. The structured
data contains meteorological data and mechanical data such
as temperature, humidity, wind speed, wind direction, rain-
fall, light intensity, and maximum-Minimum pulling force,
wind angle under maximum-minimum pulling force, etc.
Because the data are characterized as high dimensionality,
non-linearity, multi-modality, heterogeneity, etc., it is dif-
ficult to establish an accurate prediction model based on
these data with traditional data mining methods. At present,
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dealing with complex, multimodal ice coating data faces the
following challenges:

1) According to the development trend, the data related
to the thickness of ice coating shows geometric
growth and the data dimension is getting higher and
higher [10], [11]. However, only a small part of the
high-dimensional features can reflect the true char-
acteristics of the data. The ‘‘noise’’ in the data will
obscure the real information [12] and affect the accu-
racy of the prediction model.

2) The nonlinearity, multimodality and heterogeneity of
the data lead to the failure of traditional predictionmod-
els to meet the requirements of sequence mining. The
data density is low, and there may be a high correlation
between the various dimensions [13], which leads to
the traditional prediction model not working well and
the prediction accuracy is low.

3) Data contains unstructured data (picture data) and
structured data (meteorological data and mechanical
data). Traditional feature extraction methods cannot
effectively process multimodal data. The diversity and
complexity of the data lead to a large computational
cost of the prediction model, and the prediction model
is less robust.

To address these problems, this paper focuses on the pre-
diction model of ice thickness of transmission lines. The
time series analysis method is used to process the prediction
model of the ice-covered data of the transmission line, and
the ice-covered data is processed by time series to analyze the
data features [14]. The paper adopts the Ensemble Empirical
Mode Decomposition (EEMD) method, adapted from the
time-frequency domain analysis method, to decompose adap-
tively the nonlinear and multi-modal ice-covered sequences,
and explore its implicit modes to improve the anti-noise
ability. we maximize the use of the inherent regular patterns,
presented by these time-frequency characteristics, to analyze
data effectively, and provide a basis for the establishment of
subsequent models and improve the prediction accuracy of
subsequent models.

II. RELATED RESEARCH
A. ICE COATING PREDICTION
Since the 1950s, China has begun to record detailed accidents
related to ice-covered transmission lines, and has started
related research work. Based on numerous research on ice
coating phenomenon, ice coating mechanism, ice coating
environment factors, ice formation conditions, various laws
of icing conditions of electric circuits are summarized, and
various models are proposed. Sun Caixin et al. proposed
the heat balance equation of wire icing by analyzing the
influence of various meteorological data on the thickness
of ice on the transmission line under the critical condition
of the wire [15]. Qing-Feng et al. studied the relation-
ship between ice coating on transmission lines and local
meteorological factors, and obtained a prediction model of

transmission line ice coating [16]. Xingliang and Qiang stud-
ied the ice-covered experiments of different diameter conduc-
tors under various environmental parameters, and obtained a
simulation model of ice coating on transmission lines [17].
Guiming established a mechanical model of the thickness
of the ice on the transmission line and derived the formula
for calculating the thickness of the ice on the transmis-
sion line [18]. Foreign researchers are also concerned about
the ice coating of transmission lines and has made great
achievements. The first seminar on ice coating for trans-
mission lines was held in the United States, with the aim
of allowing experts and scholars from various countries to
exchange experiences on ice-covered research on transmis-
sion lines [19], [20]. The power departments of the United
States, France, the United Kingdom and other countries have
established observatories to monitor the icing of transmission
lines. Japanese research institutes have conducted research
on wires in wind tunnels, and analyzed the factors affect-
ing the effects of ice coating on transmission lines. Canada
conducted research based on data from natural ice observa-
tion stations and test sites to establish a regression model
between each micro-meteorological parameter and the rate
of ice coating. Y Ogawa et al. developed a quasi-distributed
online monitoring system based on weighing method using
fiber Bragg grating [21]. J Hosek et al. studied the impact of
meteorological data on the dynamic capacity calculation of
transmission lines [22]. Wang et al. studied the approximate
analytical solution of a finite span and finite torsional stiff-
ness [23]. Savadjiev and Farzaneh established a regression
model between ice growth rates and various meteorological
parameters [24].

Many countries have invested heavily in the research of ice
coating on transmission lines, and conducted large-scale and
in-depth research to explore the law of ice coating on trans-
mission lines to reduce the impact of ice-covered disasters on
transmission lines. According to the principle of ice forma-
tion on the transmission line and the law of fluid motion in the
actual environment, the various ice-coating predictionmodels
for transmission lines that the researchers have established
are broadly divided into three categories:1) mathematical
physics model; 2) statistical model; 3) intelligent prediction
model. Mathematical physics model includes mathematical
equations for icicle growth simulation and icing formation,
such as the Goodwin model [25], the Makkonen model [26],
and the Imai model [27]. The statistical model establishes
the mapping relationship between the ice thickness of the
transmission line and the environmental factor, regardless
of the physical process of icing, such as the multiple linear
regression model [28]. Mathematical physics models and
statistical models are not suitable for solving nonlinear, com-
plex, high-dimensional, multi-modal ice prediction problems.
The intelligent computing model based on modern machine
learning technology [29]–[31] has been widely used in trans-
mission line ice prediction, and has achieved some results.
The problem studied in the paper is the intelligent prediction
model based on machine learning.
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B. TIME SERIES
In recent years, as data storage and processor capabilities
have increased, data has been stored in time-series man-
ner in many applications [32]. For example, biomedical data
(blood pressure, electrocardiogram), meteorological data, tra-
jectory data, stock trading data, and etc. The rapid growth
of time series data provides researchers with an opportunity
to mine and analyze time series. The mining of time series
has attracted a lot of interest from researchers and has been
proven to provide effective information in all areas. In dif-
ferent fields there are many different goals, as sub-sequence
matching, anomaly detection, pattern recognition, indexing,
clustering, classification, visualization, prediction, and so on.

The time series is a dynamic ordered sequence that changes
with time. At the time point
T = {t1t2, . . . , tn}, the data point of length n is a collection

of X = {x1x2, . . . , xn}. Usually the definition of time series
X is as follows:

X = {(x1, t1) , (x2, t2) , . . . (xn, tn)} (t1 < t2 < . . .< tn) (1)

FIGURE 3. Time Series Example.

where xi= (xi1xi2, . . .xik ) refers to a data point in a
k-dimensional space, ti refers to the time stamp of the cor-
responding xi, Fig. 3 is the time series of monitored tem-
peratures at Terminal CC2089 from 2011-2016 by China
Southern Online Monitoring System. For the convenience of
calculation, the time series is generally defined as follows:

X = {(x1) , (x2) , . . . (xn)} (2)

Time series mining can detect valuable information and
meaningful hidden distribution patterns. Time series is
defined from three perspectives: 1) The statistic perspective:
the dynamic ordered sequence of corresponding indicators
over time is often affected by various accidental factors
at a certain moment; 2) The mathematical perspective: the
sequence X = {(x1) , (x2) , . . . (xn)} formed by the effec-
tive observation value xi= (xi1xi2, . . .xik ) at time ti reflects
the observed value of the recorded process; 3) The system
perspective: the observed value xi of a certain time ti rep-
resents the state value of the system. The time series is

different from ordinary static data, which evolves with time,
reflects the whole dynamic characteristics and regularity of
things, and the values of the sequences are not related to
each other and are a pure random sequence. Time series are
nonlinear and susceptible to various accidental factors, with
mutations and uncertainties, but there are certain statistical
laws on the time series as a whole, such as seasonality and
periodicity. Most of the time series in nature and engineering
are high-dimensional, nonlinear, complex data types, and
neither is cyclical and stationary, and the frequency changes
with time.

In the time series data mining, it is necessary to analyze the
characteristics of the time series effectively, and adopt appro-
priate methods to deal with different types of time series and
to mine more valuable information. For example, when faced
with high-dimensional feature time series, the appropriate
feature representation method, the dimensionality reduction
method, and time series adaptive decomposition method can
be used.

C. TIME DOMAIN FEATURE EXTRACTION
The time series is superficially disorganized, but the under-
lying laws can be found by analyzing some basic statisti-
cal features. The simplest time domain feature extraction
involves many statistic tools, such as mean, variance, and
other high-order statistics that have been used for time series
clustering [33]. Of course, there are other more complex time
domain features, such as the Lyapunov exponent [34], which
has been used in machine learning. Shapelets are also widely
used in classification [35] and unsupervised learning [36].
In addition, there are a series of general features in time
series [37]. These features can effectively reflect the time-
domain characteristics of time series to some extent and
discover the laws of their implication.

1) SEASONAL
Time series are data collected on a regular basis and are
seasonal in many time series data. This is a common feature
of time series and is very important for the prediction of
sequences. Given the original time series X, we define X∗
by Box-Cox [38] conversion:

X∗ =

{
Xλ−1
λ

λ 6= 0
lnX λ = 0

(3)

where λ is a conversion parameter. The conversion parameter
is to reduce the correlation between the observation error and
the predictor, and the seasonality can be calculated by the
following formula:

Seasonality (X) = 1−
Var (X∗ − S − T )
Var (X∗ − T )

(4)

where S and T represent seasonality and trends, respectively.

2) TREND
A time series trend is described as long-term behav-
ior, excluding seasonal or random effects, which can be
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calculated by the following formula:

Trend (X) = 1−
Var (X∗ − S − T )
Var (X∗ − S)

(5)

3) NOISE
Time series have only a very small part of the higher dimen-
sional features that can reflect the changing feature of the
object, while other unrelated dimensions not only give less
valuable information, but also can bring huge noise, which
will cover up the real information and affect the accuracy of
the model. A moving average filter can be used to quantify
the noise.

4) OUTLIERS
In statistics, outliers are data points that represent significant
deviations from other data in the sample. Often, outliers in
a single data can alert statisticians to experiment anoma-
lies or errors that may not be easily detected, and which
greatly affect the accuracy of the model. Because of this, it is
important to calculate and evaluate outliers to ensure proper
analysis of the data.

5) SKEWNESS
Skewness is used to describe the degree of distribution of
asymmetric statistical data. The magnitude of the absolute
value of skewness reflects the degree of deviation of the entire
time series. For a time-series X, it is calculated as follows:

Skewness (X) =

∑n
i=1 (Xi − µ)

3

nσ 3 (6)

where µ represents the average value, σ represents
the standard deviation, and n represents the time series
length.

6) KURTOSIS
The kurtosis represents the steepness of the entire time series.
For a time-series X, it is calculated as follows:

Kurtosis (X) =

∑n
i=1 (Xi − µ)

4

nσ 4 − 3 (7)

where µ represents the average value, σ represents
the standard deviation, and n represents the time series
length.

7) AUTOCORRELATION
Autocorrelation, also known as sequence correlation or cross-
correlation, is a mathematical representation of the similarity
degree of a given time series itself between successive time
intervals. Given a time series X, we can calculate the autocor-
relation level by Box-Pierce [33] statistics.

Autocorrelation (X) =
1
h

h∑
i=1

ri(X )2 (8)

where h is the maximum interval (usually h is 15% of the
length of the time series). The calculation of r_i (X) is as

follows:

ri (X) = corr i (Xt ,Xt+i)

=

n−i∑
t=1

(
Xt − X̄t

)
(Xt+i − Xt+i)√

n−i∑
t=1

(Xt − Xt )
2

√
n−i∑
t=1

(Xt+i − Xt+i)
2

(9)

where n represents the length of the time series, and the
stronger the time series randomness, the lower the result of
the Box-pierce statistical value.

D. FREQUENCY DOMAIN FEATURE EXTRACTION
The most commonly used feature extraction methods based
on frequency domain are Fourier transform and wavelet
transform. For example, M Vlachos et al. use periodic fea-
tures to cluster MSN query logs and ECG time series data
by Fourier transform [39], [43]. Deng Kaixu et al. used
wavelet transform to predict the trend of financial transaction
data [40], [44].

1) FOURIER TRANSFORM
The Fourier transform is decomposing according to the fre-
quency of the time series (or signal), to some extent similar to
the notes that themusic chord can be represented as amplitude
(or loudness), as shown in Fig. 4. The Fourier transform of
the time series itself is a complex-valued frequency func-
tion whose absolute value represents the component of the
frequency in the original function, the complex portion of
which represents the relative offset of the frequency based on
the sine wave. The Fourier transform obtains the frequency
domain characteristics of the time series by mathemati-
cal operations associated with time-frequency. The Fourier
transform is not limited to the time function. For uniform

FIGURE 4. Fourier transform.
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expression, the domain of the original function is usually
called the time domain. Furthermore, the frequency domain
can also be converted to the time domain, called the inverse
Fourier transform. However, the Fourier transform does not
explain the meaning of the instantaneous frequency, and the
effect achieved when dealing with non-stationary time series
is not ideal.

FIGURE 5. Wavelet Transform.

2) WAVELET TRANSFORMS
The wavelet transform can give the frequency of a signal in
a specific time to achieve multi-scale decomposition of the
signal, as shown in Fig. 5. There are many types of wavelets,
which can be divided into stationary wavelets, tightly sup-
ported wavelets, simple mathematical expression wavelets,
simple filter wavelets, etc. The simplest is Haar wavelet.
Like a basis function in the Fourier transform, the wavelet
function acts as wavelet transform’s basis function. Once the
wavelet basis ψ(x) is fixed, the wavelet basis {ψ((x-b)/a),
(a, b) ∈R^+×R} can be transformed and expanded. It is
convenient to take a special value to define the wavelet basis,
a=2^(-j) and b=k•2^(-j) where k and j are integers. This
choice of a and b is called key sampling and gives a sparse
basis. Wavelet transform has greatly improved the processing
of non-stationary time series, but it still can’t decompose
the signal adaptively, and the selection of wavelet base is
difficult.

3) EEMD TIME-FREQUENCY FEATURE EXTRACTION METHOD
In the analysis and processing of nonlinear non-stationary
signals, NE Huang et al. proposed a new time-frequency
feature extraction method called Empirical Mode Decompo-
sition (EMD) [41], [45].The Fourier transform requires time
series to have stationary and linearity. As an alternative,
wavelet is a multi-scale transform that can be used to analyze
non-stationary signals, but still assumes linear conditions.
To deal with these problems, EMD decomposes the signal

into a set of better-performing Eigen mode functions [42]
[(imf)]_j=([(imf)]_j1,[(imf)]_j2,. . . [(imf)]_jn), to obtain a rela-
tively stable instantaneous frequency, as shown in Fig. 6.

FIGURE 6. Empirical Mode Decomposition EMD.

Empirical mode decomposition is an adaptive tool for
analyzing nonlinear and non-stationary signals. No prepro-
cessing is required because it is a signal capable of analyzing
non-zero mean values and is suitable for analyzing ride waves
with no zero value between two consecutive extreme values.
Unlike the Fourier transform and thewavelet transform, EDM
has no fixed basis function, which is similar to PCA and ICA.
The basis of decomposition depends on the signal.

Although EMD excellently solves the problem of
non-stationary and nonlinear information feature extraction,
it still has some problems as modal aliasing and spurious
components. In order to overcome the shortcomings of EMD,
Wu and Huang proposed a method of collective empirical
mode decomposition (EEMD) [46] to improve EMD, and
proposed a white noise-assisted analysis method, as shown
in Fig. 7. The method superimposes white noise on the
observed signal to equalize the distribution of the extreme
points of the signal, without any prior knowledge the various
scales of the signal can be clearly separated, and the adaptive
decomposition can be achieved. The EEMD can decompose
the modal components in the original sequence to obtain an
intrinsic mode function (IMF) with the same characteristics.
Because EMD uses the cubic spline interpolation algorithm
multiple times in the fitting of the envelope, the envelope
is overshoot or undershoot, and there is modal confusion
(multiple scale features in the same IMF, or scale charac-
teristics vary greatly) and endpoint effects (because there
is no guarantee that the endpoint of the signal must be an
extreme point, the envelope is not guaranteed to be accurate,
and the error will extend inside the signal as the iteration
proceeds). EEMD utilizes the EMD’s scale separation ability
and statistical features to segment the signal by uniformly
adding white noise throughout the time-frequency space to
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FIGURE 7. EEMD program flow chart.

solve the problem of modal aliasing and false components
in EMD.

The EEMD splits the signal throughout the time-frequency
space by the white noise. Any independent test has a high
probability of producing an unrecognizable result. The reason
is that the test is a mixed signal with added white noise.
Of course, the amount of white noise that needs to be added is
a value that needs to be artificially determined.White noise of
different amplitudes has a significant effect on the problem of
modal confusion. Different noise is added to each test signal,
the average of all test results is used, and the test data set is
large enough to minimize the effects of noise. In this case,
we can treat the average after multiple decompositions as the
final result, which is the signal itself that remains basically
unchanged in many tests. At the same time, repeated and
multiple addition tests are used to avoid the effects of noise.
The EEMD algorithm steps are as follows:

1) Add normally distributed Gaussian white noise to the
original signal x(t);

2) Decompose the mixed signal of the normally dis-
tributed Gaussian white noise into several Eigen mode
components IMF and margin Rn by EMD;

3) Continuously add new white noise signal during the
repetition of steps (1) and (2), repeat N times, and
continuously add the resulting IMF;

4) Calculate the average of the IMF set as the final result.
Different white noise additions will cause different
decomposition results. Under normal circumstances,
if the added white noise amplitude is too low, the
problem of modal confusion cannot be suppressed.
If the addition amplitude is too high, it will greatly
increase the times of the average is solved. And the
high-frequency components in the signal are not easily
decomposed, and the amplitude should obey the Gaus-
sian distribution.

III. ICE COATING MODEL BASED ON
EEMD DECOMPOSITION
Time series analysis has been widely used in processing
dynamic data and has made great achievements. Time-series
analysis method for ice coating data can effectively reduce
the influence of noise and outliers. It can also maximize the
use of the inherent law presented by time-frequency features
and effective analyze data so as to provide a basis for the
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establishment of subsequent prediction models. Time series
analysis can ignore the effects of noise and outliers to obtain
stable performance. Fig. 8 shows the time-frequency features
of the temperature time series decomposed by EEMD in the
ice coating data. All the IMF components after extraction are
from high to low. The order is arranged to display. Usually
the higher the frequency is, the higher the energy level is. The
residual signal can be discarded because the energy is too low.

FIGURE 8. Time-frequency features of time series.

Since the relevant factors affecting the ice thickness of the
transmission line are dynamically changing with time, this
model uses EEMD to adaptively decompose the meteorolog-
ical data and mechanical data in the ice coating data, and to
decompose the original data into relatively single frequency
and stable components so as to reduce the impact of various
factors on the prediction of icing prediction. Then the image
data and historical ice-level data are involved to establish a
prediction model, which effectively improves the efficiency
and accuracy of the prediction model. The flowchart is shown
in Fig. 9. The specific implementation steps are as follows:

1) Pre-process all ice-coating data to eliminate noise and
incomplete data;

2) Apply EEMD to decomposing meteorological and
mechanical time series in ice coating data into a series

FIGURE 9. Adaptive Feature Extraction Algorithm Flow.

of high-to-low frequency components IMFs (IMF1,
IMF2,..., IMFn) and Rn, where Rn is the correspond-
ing decomposition margin. The component is used to
capture the instantaneous frequency and time domain
mapping of the time-varying signal. These IMFs com-
ponents are relatively more stable than the original time
series, and there is no sudden sharp change in the time
domain;

3) Exclude all meteorological data and mechanical data
from the residuals after EEMD decomposition, and
take image data and historical ice-level as the input of
the prediction model;

4) The result of step (3) is used as the input of the pre-
diction model to establish a prediction model of the
transmission line, and the final prediction result can be
obtained. Themethod considers five predictionmodels,
namely RF, SVM, BP, Elman and BN.

IV. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS
This section details the specific design of the transmission
line ice prediction model based on EEMD feature extrac-
tion and compares the results of the final prediction. Firstly,
the specific design and implementation process of the method
are introduced. Then the time series of EEMD decomposition
is analyzed. The time series after decomposition is used to
establish the prediction model and the results are discussed
and analyzed. Finally, the decomposition results and other
prediction results are obtained. A comparative evaluation was
carried out to verify the feasibility of the method. The envi-
ronment configuration of the experiment is as follows: oper-
ating system (Windows 7, 64-bit), CPU (Inter(R) Core (TM)
i7-4770 3.40GHz), installed memory (32GB), programming
software is MATLAB R2014a and Weka 3.8.

The data used in the paper is from the data monitored
by China Southern Online Monitoring System Terminal
CC2089 from 2011 to 2016. The data set can be divided into
four parts, namely basic information data, picture data, mete-
orological data and mechanical data. The basic information

40702 VOLUME 7, 2019



H. Li et al.: Transmission Line Ice Coating Prediction Model Based on EEMD Feature Extraction

data includes the terminal name and the recording date and
time. These basic information data will not be used when
the model is built. The meteorological data includes tem-
perature, humidity, rainfall, light intensity, etc. Mechanical
data includes maximum and minimum tension, tensile force,
wind yaw angle, and etc. In addition, each data sample has a
corresponding level of ice coating. The level is divided into
6 grades from 0 to 5, where 0 indicates that the transmission
line is not covered with ice, and 1-5means that the icing grade
of the transmission line is getting worse and worse, as shown
in Fig. 10. The icing grade is defined by the calculation model
of the Electric Power Academy. The following pictures are
provided by the relevant research team of Bruce Ling’s Lab
from Stanford University.

FIGURE 10. Transmission line ice coating grade. (a) Grade 0. (b) Grade1.
(c) Grade2. (d) Grade 3. (e) Grade 4. (f) Grade 5.

There are 1942 samples in this experiment, of which
2/3 (1295) were selected as training data, and 1/3 (647) were
selected as test data. The number of each icing grade to be
tested is shown in Table 1. Among them, the proportion of
icing grade 0 is very large, and the data of other icing grades
is less. But the higher the icing grade is, the more destructive
the damage is to the grid. This is particularly true when it
comes to grade 4 and grade 5, which have a great damage

TABLE 1. Number of Each Ice-Covered Grade of Test Data.

on the power system and should draw more attention from
workers.

In this section, the ice-coating data based on EEMD feature
extraction is modeled and compared with the model estab-
lished by the original ice-coating data to verify the effec-
tiveness and feasibility of the method. Among them, five
kinds of common prediction models, random forest, support
vector machine, BP neural network, Elman neural network
and Bayesian network, are selected. The prediction accuracy
of various different prediction models is shown in Table 2.

TABLE 2. Comparison of Different Prediction Models Based on Ice
Coating Data.

From the table, we can see that the prediction accuracy
rates of the five prediction models based on the original data
are: 91.65%, 80.22%, 83%, 85.94% and 90.57% respectively.
The accuracy of the ice-covered prediction model based
on EEMD feature extraction has been improved by 0.47%,
2.93%, 1.85%, 0.92% and 1.86% respectively, as shown
in Fig. 11.

The number of correct predictions for each icing grade of
different prediction models is shown in Table 3. The table
shows the specific correct number of predictions for each
icing level based on the raw data and the EEMD-based data
prediction model. On the whole, the icing prediction model
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FIGURE 11. Accuracy improvement of each prediction model based on
EEMD feature extraction.

FIGURE 12. Correct prediction numbers of different predictive models.

of EEMD feature extraction performs better with higher
accuracy.

In order to further assess the performance of the prediction
model based on EEMD feature extraction, the paper eval-
uates RF, SVM, BP, Elman, BN prediction models by five
performance indicators, RMSE, MAE, MAPE, R and NSEC,
as shown in Table 4–5.

The table shows that the MAE values of each model
based on the EEMD feature extraction are reduced, and the
performance indicators are improved by more than 30%.
The RMSE values of RF, SVM, Elman and BN are 0.8870,
0.6508, 0.7511 and 0.7542 respectively. Compared with the
prediction model based on the original data, most mod-
els have relatively low MAPE and the performance have
increased by more than 20%. In terms of R and NSEC,
while different prediction models based on raw data and
EEMD-based feature extraction have their own advantages,
the prediction model based on EEMD feature extraction is
better with lower error rates.

The transmission line icing grades 4 and 5 indicate that ice
is extremely severe and the damage to the entire power system
is more serious. This experiment counts the number of correct
predictions for icing grades 4 and 5 based on raw data and
EEMD-based feature extraction, as shown in Fig. 12.

TABLE 3. Number of Correct Predictions of Different Ice Level.

As can be seen from the Fig.12, the data of correct pre-
dicting based on raw number for icing grades 4 and 5 of the
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TABLE 4. Evaluation Values of Each Model Based on Raw Data.

TABLE 5. Evaluation Values of Each Model Based on EEMD Feature
Extraction.

RF, SVM, BP, Elman and BN models are 40, 24, 20, 32 and
39 respectively. The correct number of predictions based
on EEMD feature extraction, for icing grades 4 and 5 are:
47, 28, 30, 33 and 43. Compared with the prediction model
based on original data, the method improved the prediction
accuracy of icing grades 4 and 5 by 17.5%, 16.67%, 50%,
3.13% and 10.26% respectively. Therefore, each prediction
model based on EEMD feature extraction is more sensitive
to the serious situation of ice coating on transmission line.
Prediction accuracy is higher when the ice coating level is
higher, which has a better guiding role in preventing severe
ice disaster.

V. CONCLUSION AND FUTURE WORK
The paper analyzes the ice coating factors affecting trans-
mission lines as a time series, and proposes a prediction
model based on time series analysis of transmission line

ice coating to reduce the influence of noise and outliers in
high-dimensional data. The method can adaptively decom-
pose the meteorological data and mechanical data in the
ice coating data, and maximizes the internal law of the
time-frequency features to effectively analyze the icing data,
which provides a basis for the establishment of the prediction
model. Finally, the model is compared with the model based
on original ice-coating data. The experimental results show
that the proposed method has higher prediction accuracy and
is suitable for various predictionmodels. In addition, the sums
of correct predictions for icing grades 4 and 5 of based on
original ice-coating data model and the EEMD-based feature
extraction model are also calculated. The statistical results
show that the method is more sensitive to the serious problem
of ice coating on the transmission line, and the prediction
accuracy is higher.

In terms of future work, it would be valuable and mean-
ingful to continue this study. We can continue to explore
some grid data processing methods. We can predict the icing
level of transform lines by two stages: 1) structured and
unstructured data feature extraction by local binary patterns;
2) radial basis function (RBF) Kernel based predicting for the
processed data. Another obvious future research direction is
to extract new feature from the unstructured and structured
data and establish new prediction methods based on this
work.
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