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ABSTRACT The problem of adaptive traffic signal control in the multi-intersection system has attracted
the attention of researchers. Among the existing methods, reinforcement learning has shown to be effective.
However, the complex intersection features, heterogeneous intersection structures, and dynamic coordination
for multiple intersections pose challenges for reinforcement learning-based algorithms. This paper proposes
a cooperative deep Q-network with Q-value transfer (QT-CDQN) for adaptive multi-intersection signal con-
trol. In QT-CDQN, a multi-intersection traffic network in a region is modeled as a multi-agent reinforcement
learning system. Each agent searches the optimal strategy to control an intersection by a deep Q-network that
takes the discrete state encoding of traffic information as the network inputs. Towork cooperatively, the agent
considers the influence of the latest actions of its adjacencies in the process of policy learning. Especially,
the optimal Q-values of the neighbor agents at the latest time step are transferred to the loss function of
the Q-network. Moreover, the strategy of the target network and the mechanism of experience replay are
used to improve the stability of the algorithm. The advantages of QT-CDQN lie not only in the effectiveness
and scalability for the multi-intersection system but also in the versatility to deal with the heterogeneous
intersection structures. The experimental studies under different road structures show that the QT-CDQN
is competitive in terms of average queue length, average speed, and average waiting time when compared
with the state-of-the-art algorithms. Furthermore, the experiments of recurring congestion and occasional
congestion validate the adaptability of the QT-CDQN to dynamic traffic environments.

INDEX TERMS Deep reinforcement learning, multi-intersection signal control, Q-learning, Q-value
transfer, cooperative.

I. INTRODUCTION
Traffic congestion has become a major strategic problem
facing the sustainable and harmonious development of cities.
Dues to the limitation of urban space, to relieve traffic con-
gestion by road expansion has become difficult. Traffic signal
control is one of the most effective ways to improve the
capacity of road intersections. The adaptive control of sig-
nal lights can optimize the traffic of regional road network,
reduce congestion and carbon dioxide emissions [1]. The
adaptive control strategy regards the transportation system
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as an uncertain system that realizes dynamic optimization
and adjustment of signal timing to address the stochastic
characteristics of traffic network through the feedback of
measured state variables, such as traffic flow, delay time and
queue length [2].

In recent years, a variety of machine learning methods are
used for the control of urban traffic signal, such as fuzzy logic
[3]–[6], neural networks [7]–[9], evolutionary algorithms
[10]–[13] and dynamic programming [14]. Yang et al. [5]
developed two adaptive two-stage fuzzy controllers for traffic
signals under different traffic density at an isolated intersec-
tion. Bi et al. [3] proposed a type-2 fuzzy logic controller for
coordinated arterial traffic signal control with the objective
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of minimizing vehicular average delay. Fuzzy logic signal
controllers generally establish a set of rules based on expert
knowledge, from which appropriate actions of the traffic sig-
nal are selected based on inputs. However, the establishment
of rules excessively depends on expert knowledge. Moreover,
it is difficult to generate a set of effective rules when the
number of phases increases at multiple intersections. Shen
and Kong [8] investigated the combination of artificial neural
network and fuzzy theory for a road network traffic intel-
ligent coordination control with bus priority, although the
performance of neural network and fuzzy logic is sensitive to
the initialization and training process. Genetic algorithm was
adopted in [10] for the optimization of traffic flow within an
urban traffic light intersection. However, such an algorithm
is not suitable for online problems such as intersection signal
control, since it requires expensive computation cost to con-
verge to the optimal solution. Besides, dynamic programming
is widely used in traffic signal control. In [14], an action-
dependent heuristic dynamic programming was proposed for
traffic signal control at two intersections. With the expansion
of the problem scale, dynamic programming requires effec-
tive mechanisms to address excessive computation cost and
the intractability of computing the transition probability for
the operating environment.

Many studies use the framework of reinforcement learn-
ing (RL) to find the optimal control strategies [15], [16].
Reinforcement learning learns the optimal strategies by per-
ceiving the state of environment and receiving uncertain
information from environment. The goal is to find the optimal
strategy to maximize the discounted cumulative reward via
continuous interaction with its environment. Traffic signal
control is actually a sequential decision-making problem.
Extensive research has been conducted using reinforcement
learning for isolate intersection and multi-intersection traf-
fic signal control. For multiple intersections, the existing
methods can be classified into two categories, i.e., the
centralized control methods and the decentralized control
methods. The algorithms employing the centralized control
train a global agent to control the traffic signal of the entire
road network [17], [18]. However, they are not free from the
‘‘curse of dimensionality’’, since the dimensionality of the
state and action space will grow exponentially as the num-
ber of intersections increases. The algorithms employing the
decentralized control formulate the multi-intersection signal
light control as a multi-agent system, in which each agent
controls a single intersection and only observes and percieves
parts of the traffic environment [19]–[26].

Traditional reinforcement learning method builds up state
space by human-crafted intersection features. To avoid the
excessive volume of state space, it usually simplifies state
representation. However, this strategy will result in the loss
of some important information. For example, the strategy of
expressing the state space by vehicle queue length [18], [19]
ignores the information of the moving vehicles and the posi-
tion and speed of the vehicles. The average vehicle delay [17]
strategy only reflects the history traffic data and cannot satisfy

the real-time traffic demand. These strategies are based on
partial information of the intersections, so they will not
always guarantee to generate optimal decisions.

Recently, deep reinforcement learning has attracted much
attention due to the effectiveness of deep Q-network (DQN)
[27], [28]. Further, many researchers have introduced deep
reinforcement learning to adaptive traffic signal control,
including single intersection signal control [29]–[32] and
multi-intersection signal control [33], [34]. Deep reinforce-
ment learning utilizes the automatic feature extraction abil-
ity of deep models to extract intersection state information
from raw real-time traffic data. The models of convolu-
tional neural network (CNN) [35] and deep stacked auto-
encoder (SAE) [36] enable agents to make full use of
intersection state information for optimal decision-making.
However, there are less research on deep reinforcement
learning for cooperative traffic light control at multiple
intersections. Thus the effectiveness of such methodolo-
gies for cooperative multi-intersection control remains to be
studied.

In this paper, based on multi-agent system, we pro-
pose a cooperative deep Q-network with Q-value transfer
(QT-CDQN) for adaptive multi-intersection signal control.
The main contributions are twofold: 1) To balance the traffic
flow at each intersection from the perspective of regional
control, the influence of the neighboring intersections is taken
into account by integrating Q-value transfer strategy into the
cooperative Q-network; 2) To extract the intersection state
information effectively, a CNN estimation network is estab-
lished to automatically extract the features from the original
traffic state and approximate the optimal Q-values. Impor-
tantly, the proposed QT-CDQN can be extended to different
number of intersections without the curse of dimensionality
for the state-action space, and there is no restriction on the
structure of each intersection.

The remainder of this paper is organized as follows.
Section II gives the reviews of reinforcement learning
and deep reinforcement learning for traffic signal control.
Section III introduces reinforcement learning and the DQN
algorithm. Section IV gives the details of the proposed coop-
erative deep Q-network with Q-value transfer focusing on the
multiple intersections. Section V presents the experimental
studies on different conditions and compares the performance
with the state-of-the-art algorithms. Section VI concludes the
paper.

II. RELATED WORK
Algorithms utilizing reinforcement learning and deep rein-
forcement learning have many attractive properties. On one
hand, reinforcement learning is a goal-oriented learning
method from the environment, which focuses on interaction
with the environment. On the other hand, deep learning pos-
sesses strong hierarchical feature extraction ability and non-
linear approximation ability. In this section, we first review
the traffic signal control algorithms based on reinforcement
learning and deep reinforcement learning. Then we analyze
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the existing challenges and discuss the motivations of this
paper.

Most traffic signal control studies based on reinforcement
learning focus on the traffic scenes at a single intersection
[37]–[41]. The intersection state space will grow exponen-
tially as the number of intersections increases, and it is not
feasible to express the values of all actions for each possible
state. Thus, traditional tabular-based reinforcement learning
algorithms are difficult to be extended to multiple intersec-
tions. To address this problem, the algorithms employing
multi-agent reinforcement learning are proposed for adaptive
traffic signal control in regional traffic scenario [42]. The
control strategies of such algorithms can be classified into the
independent mode and the integrated mode.

In the independent mode, each intersection has an RL agent
working independently of other agents. Abdoos et al. [19]
modeled a relatively large traffic network as a multi-agent
system. Each agent is responsible for controlling the traffic
signal at one intersection. It uses only local information of the
intersection, i.e., average queue length, to estimate the states.
This method based on independent mode does not consider
the influence of neighboring intersections. In the integrated
mode, the agents coordinate the signal control actions with
their neighbors by different strategies. In [20], two types of
agents, i.e., central agent and outbound agents, are designed.
The outbound agents control traffic signals by the longest-
queue-first algorithm and collaborate with the central agent
by providing relative traffic flow. The central agent learns
value function driven by its local and neighboring traffic con-
ditions. In this way, only the central agent is coordinated and
the outbound agents work independently. Kuyer et al. [43]
proposed a coordinated traffic signal control method based
on collaboration diagrams. The neighboring agents interact
with each other to obtain local state information. However,
the max-plus algorithm adopted to find the optimal joint
action is inclined to converge to local optimum and com-
putationally intensive. In a word, the insufficient utilization
of regional traffic status information and the poor scalability
limit the application of this kind of algorithms in multi-
intersection signal control.

Due to the encouraging performance of deep Q-network
(DQN) on uncertain sequential decision problem [27], [28],
deep reinforcement learning has recently been applied to
adaptive traffic signal control. Deep stacked auto-encoder
(SAE) has been introduced into reinforcement learning to
estimate the optimal Q-values at the single intersection, and
the traffic state is represented by the number of queued
vehicles and the reward is taken as the queue difference
between different roads in orthogonal directions [29]. Gen-
ders et al. [30] adopted deep convolutional neural network
(CNN) to extract features of vehicle position and speed, and
to approximate the optimal Q-value. The constructed deep
reinforcement learning agent is then trained by Q-learning
with experience replay for single intersection traffic con-
trol. Although the algorithm achieves better performance,
it suffers from the instability due to the potential correlations

between the action values and the target values. To address
the instability problem, a strategy of target network was used
by Gao et al. [31]. Besides, Jeon et al. [44] argued the traffic
parameters inmost previous RL studies cannot fully represent
the complexity of an actual traffic state, and they directly used
video images of an intersection to represent traffic state.More
recently, Van der Pol et al. [33] applied multi-agent deep rein-
forcement learning to control the signals of simple multiple
intersections without left turnings. In [33], a Q-function for
smaller source problems involving two agents is trained and
then the Q-function is transferred to other problems. Finally,
the max-plus algorithm is used to find the optimal joint action
in a coordinated fashion at multiple intersections. The max-
plus algorithm is applied to cooperative multi-agent systems
represented as coordination graphs, but it does not guarantee
to converge to the optimal solution. Besides, transferring Q
function for different sub-problems requires that the state
dimension and the number of phases at each intersection are
identical, which needs to restrict or approximate the structure
of intersections.

To address the difficulties mentioned above, we aim to
devise a cooperative deep Q-learning with Q-value transfer
that is expected to make full use of state information of
intersection and the influence of the neighboring intersec-
tions. Themulti-intersection traffic network in a region is first
modeled as a multi-agent system. Each agent only controls
one intersection through a deep Q-network and transfers the
latest optimal Q-value obtained from its neighbors to its own
loss function during the training process. In this way, this
method can optimize the overall traffic signal plans for the
regional traffic scenario and balance the congested traffic for
each intersection. Moreover, this algorithm can be extended
to more intersections without the restriction on intersection
structure.

III. DEEP REINFORCEMENT LEARNING
In reinforcement learning, the environment can be modeled
as a Markov Decision Process (MDP). An MDP is defined as
a five-tuple 〈S,A,P,R, γ 〉, where S is a finite set of discrete
states in the environment, A is a finite set of actions available
for the agent, P is the state transition probability matrix, R
denotes the reward function and γ ∈ [0, 1] is a discount
factor used tomeasure the importance of the future and imme-
diate rewards. A reinforcement learning agent continuously
interacts with the environment and learns an optimal policy
by a trial-and-error process. At each time step t , the agent
receives a state input st ∈ S based on the observations of the
environment. Then the agent selects and executes an action at .
The state of the environment can be transformed to the next
state st+1 ∈ S according to the transition probability matrix.
And the agent receives an immediate reward rt according to
a reward function R. If the agent’s behavior leads to positive
environmental reward, then the tendency of producing this
behavior by the agent will be strengthened, and vice versa.
The goal is to maximize the cumulative discounted reward.
The discounted future reward Rt at time t is defined as
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follows:

Rt =
∞∑
k=t

γ k−trk = rt + γRt+1 (1)

It is impossible to obtain all rewards to calculate future
discount rewards for each state, and different actions in each
state will lead to different rewards. Therefore, an action-
value Q-function is introduced to estimate the potential value
for selecting action a at state s. Q-function is a prediction
of the expected, accumulative and discounted future reward.
Specifically, it can be formulated as:

Q(st , at ) = E[rt + γ rt+1 + γ 2rt+2 + . . . |st , at ] (2)

Q-learning is a typical algorithm in RL. It is a model-
free reinforcement learning algorithm which does not need
to build the model of the environment’s transition, but rather
directly estimates the value of taking an action a at state s.
The update mechanism of Q-value is formulated as follows:

Qt+1(st , at ) = Qt (st , at )+ α[yt − Qt (st , at )] (3)

where yt is the target value. Because it is not known in
advance, the agent uses the immediate reward value and the
maximum Q-value of the next state as the approximation
of the target value. That is yt = rt + γmax

a′∈A
Qt (st+1, a′).

α ∈ (0, 1] is the learning rate defining the level of dependence
between the past knowledge and the new knowledge. The
Q-learning algorithm stores the Q-value associated with each
state-action pair in a look-up table. Therefore, it is also called
tabular Q-learning. And it can guarantee to converge to the
optimal value if the agent keeps visiting state-action pairs for
an infinite number of times [45].
While tabular Q-learning works well for the problems with

small-scale state and action space, it has difficulties in solving
real-world problems with continuous large-scale state and
action space. Under the circumstances, it is impossible to
enumerate all state-action pairs.
To address this problem, existing researches usually adopt

function approximation [46] or hierarchical reinforcement
learning [47]–[49]. Reinforcement learning can be combined
with various function approximation methods, such as linear
and nonlinear function approximation. The linear approxi-
mation fits the Q-function through a series of linear combi-
nations of features. While nonlinear function approximation
typically utilizes neural networks for function approximation.
In recent years, deep neural networks such as convolutional
neural network (CNN), recurrent neural network (RNN), and
stacked auto-encoder (SAE) have been widely used as non-
linear function approximators for large-scale reinforcement
learning tasks [28], [50].
Deep reinforcement learning builds a mapping from the

state vector to the Q-value for each possible action by
a deep neural network, instead of estimating the Q-value
of each state-action pair separately. Moreover, deep neu-
ral network can extract features from high-dimensional
raw data automatically without prior knowledge and it is

effective for large-scale state space problems. This paper
adopts a deep Q-learning network (DQN) to approximate the
Q-function. In DQN, the deep network is implemented by
a CNN.
When using a neural network to approximate Q func-

tion, the Q-learning algorithm is not stable. The reasons
are twofold: 1) The sequentially generated training data
are correlative and they don’t satisfy the assumption of
independent and identical distribution. 2) A slight change
in Q-value would cause an oscillation of policy, which in
turn will change the distribution of incremental training
data.
The strategies of experience replay and target network

freezing have been developed for alleviating these prob-
lems [27], [28]. Experience replay builds a memory pool
of past experiences. At each time step, the experience
(st , at , rt , st+1) generated by the agent is stored in the expe-
rience pool M . The deep Q-learning network is trained by
using the data uniformly sampled from the experience pool
instead of using the real time data. This strategy can disrupt
the correlation between samples. The target network is an
additional network. It has the same structure but different
parameters with the evaluation network. The evaluation net-
work estimates the Q-value of the current state-action pair,
i.e., Qt (st , at ), while the target network computes the target
value yt . That is, the target network is used to estimate
max
a′∈A

Qt (st+1, a′). Thus the deepQ-learning can bemore stable

by freezing the parameters of the target network for a period
of time.

IV. PROPOSE QT-CDQN FOR MULTI-INTERSECTION
SIGNAL CONTROL
In this section, the model based on multi-agent reinforcement
learning for multi-intersection control is given first, then the
cooperative deep reinforcement learning with Q-value trans-
fer (QT-CDQN) is proposed and the training process is given
in detail.

A. MODELING BASED MULTI-AGENT REINFORCEMENT
LEARNING
For the convenience of describing the problem of multi-
intersection signal control, here we take a heterogeneous
four-intersection road network as an example. The structure
of the road network is shown in Fig. 1, where the intersection
3 is a four-legged signalized intersection and the others are
three-legged signalized intersections. Each intersection has
a signal light. There are three roads entering the intersection
for three-legged intersection, where each road consists of two
lanes. For each road, the inner lane is for vehicles going
straight or turning left and the outer lane is for vehicles going
straight or turning right.
To perform the multi-intersection signal control via coop-

erative deep reinforcement learning, each intersection is first
modeled as an agent. The state space S, the action space A
and the reward R are defined as follows.
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FIGURE 1. The structure of road network for the four intersections.

1) STATE SPACE
The main information needed for traffic signal control is
the vehicle status information, that is, the position and the
speed of the vehicles on each lane entering the intersection.
In this paper, the discrete traffic state encoding is used to
represent the traffic state space. For each lane entering the
intersection, a segment of length l starting from the stopping
line is discretized into small units of length c, as illustrated
in Fig. 2(a). The selection of c should be moderate. If the
value of c is much larger than the average vehicle length, it is
easy to neglect the dynamic behavior of individual vehicle.
If too small, it will result in extensive computation. Vehicle
position and speed for the road k at the intersection i are
recorded by using vehicle position matrix Pki and vehicle
speed matrix V k

i respectively. If there is a vehicle head on
a cell, the corresponding value of the matrix Pki is set to 1,
otherwise it is set to 0. The normalized value of vehicle
speed with respect to the road speed limit is taken as the
value of the corresponding cell of matrix V k

i . For the four-
legged intersection i, the vehicle position matrix Pi and speed
matrix Vi are expressed by Pi = [P0i ,P

1
i ,P

2
i ,P

3
i ]
T and Vi =

[V 0
i ,V

1
i ,V

2
i ,V

3
i ]
T respectively. At time step t , the state of

FIGURE 2. The discrete state encoding of traffic information in the road.
(a) snapshot of traffic in a certain road. (b) matrix of vehicle position.
(c) matrix of normalized vehicle speed.

intersection i is recorded as sit = (Pi,Vi) ∈ Si, where Si
represents the state space of intersection i.

2) ACTION SPACE
At time step t , after observing the state sit of intersection i,
the agent selects one action ait ∈ Ai, where Ai represents the
action space of intersection i, and then executes the selected
action. In this paper, the agent’s possible actions are the traffic
signal phase configurations. The intersections with different
structures have different action spaces, as shown in Table 1.
There are three different phases for three-legged intersec-
tions, and four different phases for four-legged intersections.
The time for each phase is a fixed minimum unit time interval
with length τg. At time step t + 1, the agent observes the new
state sit+1, which is affected by the latest action a

i
t , and selects

the next action ait+1. Note that the agent may adopt the same
action at time steps t + 1 and t .

TABLE 1. Stage plans for the four intersections.

3) REWARD
The reward function is the reward signal obtained in the
process of interacting with environment. After the agent
observes the state of the environment sit , it selects an
action ait to perform. Then the agent receives a scalar
reward to evaluate the selected action. The goal of the
agent is to find a policy that maximizes the cumulative
rewards.

There are various reward functions for traffic signal con-
trol, such as the changes of the length of queued vehicles,
cumulative vehicle delay and vehicle throughput. This paper
takes the changes of average queue length of vehicles at the
intersection as the reward function. Let L it and L

i
t+1 be the

average queue length of vehicles entering intersection i at
time step t and t + 1, respectively. Then the reward r it at time
step t is defined as follows:

r it = L it − L
i
t+1 (4)

If the reward value r it is positive, it means that the action
taken at time t has a positive effect on the environment and
the average queue length of vehicles decreases.
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B. COOPERATIVE DEEP REINFORCEMENT LEARNERS
WITH Q-VALUE TRANSFER
In this section, a cooperative deep Q-network with
Q-value transfer (QT-CDQN) for adaptive multi-intersection
signal control is proposed. QT-CDQN first models a multi-
intersection road network in a region as a multi-agent system.
Each agent controls an intersection through a deep Q-network
and tries to find the global optimal strategy in the dynamic
environment. To make the agents control the signal coopera-
tively, they take into account the influence of the latest actions
from their adjacencies. The structure of the QT-CDQN is
illustrated in Fig. 3.

FIGURE 3. The structure of the QT-CDQN for the four intersections.

In QT-CDQN, the optimal Q-values of the neighbor agents
at the latest moment are transferred to the loss function of
the Q-network for policy learning, so that the multi-agent
system can control the signal lights for multiple intersections
cooperatively. The action selection of an intersection depends
not only on its ownQ value, but also on the Q value of its adja-
cent intersections. Such a cooperative mechanism helps to
balance the traffic flow between intersections and to improve
the overall performance of the regional road network.

After transferring the Q-values of the neighbor agents,
the Q-values for each agent are updated as in (5):

Qit+1(s
i
t , a

i
t ) = Qit (s

i
t , a

i
t ; θi)+ α(t)[r

i
t

+ γmax
a′∈Ai

Qit (s
i
t+1, a

′
; θ ′i )− Q

i
t (s

i
t , a

i
t ; θi)]

+

∑
j∈N

ωi,jQ
j
t−1(s

j
t−1, a

j
t−1; θj) (5)

where θi and θ ′i are the parameters of evaluation network and
target network respectively, N is the number of neighbors
for agent i, ωi,j is the weights of the Q-value from agent j.
Different weights can be set according to the effect of the
neighbor agent j on the agent i. The closer the distance to the
neighboring intersection and the more cars at the neighboring
intersection, the greater the impact is.

In QT-CDQN, the separate CNN is adopted to estimate
the Q value for state-action pairs at each intersection. The
CNN is named as evaluation network. The CNN of each
intersection has the same structure and different parameters.

Algorithm 1 Cooperative Deep Q-Learning With Q-
Value Transfer for Multi-Intersection Signal Control
Initialize DQNi with random weights θi
Initialize target network with weights θ ′i = θi
Initialize ε, γ,M ,N , τg, min_size, max_size, step,
sim_len (hyper-parameter:the training time for each
episode)
Initialize Qi0 = 0
for episode = 1 to N do

for t = 1 to sim_len do
Observe current intersection state sit ;
The agenti randomly selects an action ait with
probability ε and selects an action
ait = argmax

a′∈Ai
Qi(sit , a

′
; θi) with probability 1-ε;

Execute action ait and observe agent ′i s reward r
i
t

and next state sit+1;
t = t + τg;
if len(Mi) == max_size then

deleteMi[0]; //delete the oldest experience

Append experienceit = (sit , a
i
t , r

i
t , s

i
t+1,Q

i
t ) to

Mi;
if step>min_size then

Randomly sample batch_size experiences
from Mi;
Update θi using the loss function by
RMSProp
{r it + γ [max

a′∈Ai
Qit (s

i
t+1, a

′
; θ ′i )+∑

j∈N ωi,jQ
j
t−1(s

j
t−1, a

j
t−1; θj)]−

Qit (s
i
t , a

i
t ; θi)};

// update the parameters of the target
network every M steps
EveryM steps:

set θ ′i = θi
step++;

if ε > 0.1 then
ε = ε − 0.000625;

The input of the network is the discrete state encoding of
traffic information at the intersection and the output is the
vector formed by the estimated Q-values for all actions under
the observed state. The CNN estimation network can auto-
matically extract the features from original traffic state of
intersection and approximate the Q-value function by using a
gradient-based training algorithm. More specially, the CNN
consists of two convolution layers and two fully connected
layers. The first convolution layer takes 16 filters of size
4 × 4 with stride 2. The second convolution layer takes 32 fil-
ters of size 2 × 2 with stride 1. The last two fully connected
layers have 128 and 64 hidden nodes, respectively. In these
layers, the activation function adopts rectified linear unit
(ReLU). In the output layer, softmax activation function is
used and the number of neurons is equal to the size of the
action space of the corresponding intersection.
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FIGURE 4. The structure of evaluation network and target network of agent i .

In order to alleviate the problem of the policy oscillation
caused by a slight change in Q-values, a target network is
introduced as an auxiliary network for each intersection. The
target network has the same network structure and different
parameters as the evaluation network as shown in Fig. 4.
The target network estimates the target Q-values yit , where
yit = r it+γmax

a′∈Ai
Qit (s

i
t+1, a

′
; θ ′i ). By freezing the parameters of

the target network within a certain number of steps, the deep
Q-learning algorithm becomes more stable.

Considering the effect of the adjacent intersections,
the optimal Q-value of neighboring agents at the latest
time step is transferred to the loss function of the current
Q-network. The loss function of each agent is defined as
follows:

MSE(θi) =
1
m

m∑
t=1

{r it + γ [max
a′∈Ai

Qit (s
i
t+1, a

′
; θ ′i )

+

∑
j∈N

ωi,jQ
j
t−1(s

j
t−1, a

j
t−1; θj)]− Q

i
t (s

i
t , a

i
t ; θi)}

2

(6)

where m is batch size, maxQit (s
i
t+1, a

′
; θ ′i ) is the optimal

target Q-value for all actions under the state sit+1. θ
′
i is target

network parameters for agenti. Qit (s
i
t , a

i
t ; θi) is the output of

evaluation network.
At each time step t , the state sit observed by agent i is input

into the evaluation network. Agent i chooses one action ait
to execute by using ε-greedy method according to the output
value Qit , and the agent receives a reward r it and enters the
next state sit+1. Then the experienceit = (sit , a

i
t , r

i
t , s

i
t+1,Q

i
t )

is stored in an experience memory pool Mi. The maximal
capacity of each experience pool is denoted as max_size.
When the experience pool is full, the earliest experience will

be discarded and the latest experience will be stored. Training
begins only when there are at least min_size experiences in
the experience pool. To train the evaluation network more
effectively, the parameter θi of CNNi is updated by stochastic
gradient descent algorithm RMSProp using batch_size expe-
riences sampled from Mi randomly. The schematic diagram
of the training process is also shown in Fig. 4. For training
agent i cooperatively, the optimal Q-value of neighboring
agents at the latest time step will be transferred to the loss
function of agent i. Therefore, after agent i samples fromMi,
it is necessary to sample the corresponding experiences from
the experience memory pools of neighboring agents.

In the training process, a decreasing ε-greedy strategy is
adopted for action selection. The agent randomly chooses one
action with probability ε (exploration) and chooses the action
with the maximum Q-value with probability 1− ε (exploita-
tion). The value of ε decreases as the training episode goes
on, which means that the role of the agent gradually turns
from exploration to exploitation. RMSProp gradient descent
algorithm with learning rate of 0.0002 is used in each estima-
tion network. We firstly froze the parameters θ ′ of the target
network during the training process, and they are updated
to the latest values from the evaluation network by copying
parameter θ to θ ′ for every M time steps. When the eval-
uation network can approximate the action value function
sufficiently, the optimal control is achieved by selecting the
maximum value of the output in the current state. The pseudo
code of the proposed QT-CDQN is shown in Algorithm 1.

V. EXPERIMENTAL STUDIES
A. EXPERIMENTAL SETTINGS
To validate the performance of the proposed QT-CDQN for
adaptive multi-intersection signal control, the experiments
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TABLE 2. Comparison results of different algorithms at four intersections under different vehicle densities obtained by 15 independent runs.

TABLE 3. The best, worst and middle results in 15 independent runs and the variance of 200 episodes in each run at four intersections. The rank for
15 runs is arranged according to the value of AQL.

are conducted on two different network scenarios:
a 2× 2-grid network (four intersections) and a 2× 3-grid net-
work (six intersections). All experiments are conducted using
the Simulation of Urban Mobility (SUMO). Experiments
are implemented using the Python API provided by SUMO.
The CNN is implemented by Tensorflow. The experiments
are executed on an Ubuntu PC with an Intel CPU (i5-2400,
@3.1GHz), 16GB RAM and a Tesla P40 GPU.

B. PARAMETER SETTINGS AND PERFORMANCE METRIC
For the two road network, as shown in the asymmetric and
heterogeneous four intersections of Fig. 1 and the symmetric
six intersections of Fig. 5, we set the length of road to 200 m
and the length of vehicle to 4 m. In the discrete traffic state
encoding, the length of the discretized segment l and the
length of small unit c are taken as 120 m and 5 m respectively.
Normally, the traffic flow volume is constant in simulation.
The ratio of traffic density is set to 1:1.5:2 in low, medium
and high traffic conditions. The basic traffic density of four
intersections is set to 3000 veh/h, and that of six intersections
is set to 5000 veh/h.

All the experiments are trained for 2000 episodes and each
episode is 4500 seconds of simulated traffic. The minimum
unit time τg for each phase is taken as 6 seconds. The
batch_size is 32. The min_size and max_size of experience
memory are taken as 5 ×103 and 2 × 105 respectively. The

FIGURE 5. The structure of road network for the six intersections.

exploration rate ε decreases from 1 to 0.1 as the training
episode goes on.

The performance metrics adopted in this section includes
average queue length (AQL), average speed (AS) and average
waiting time (AWT).

C. EXPERIMENTAL RESULTS AND ANALYSES
1) RESULTS AND COMPARATIVE ANALYSES FOR
DIFFERENT ALGORITHMS
To test the performance of the QT-CDQN, the results
are compared with other algorithms including coordinated
deep reinforcement learners (CDRL) [33], multi-agent deep
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FIGURE 6. Overall performance comparisons for adaptive signal control in the scenario of multi-intersection for different metrics. (a), (b) and (c)
represent the real-time changes of the AQL, AS and AWT for the four intersections under a certain traffic density respectively. (d), (e) and (f) represent
the real-time changes of the AQL, AS and AWT for the six intersections under a certain traffic density respectively. The curves are obtained by running
200 episodes on the trained networks.

Q-learning (MADQN) [31] and distributed Q-learning (Dis-
tributed QL) [51]. In CDRL, a Q-function for smaller
source problems involving two agents is trained and then
the Q-function is transferred to other problems. Finally,
the algorithm represented the cooperative multi-agent sys-
tems as coordination graphs, adopt max-plus to find the
optimal joint action coordinately. CDRL is based on transfer
learning trained for the same structures which is infeasible
for the heterogeneous intersection structures. Therefore, the
experiment of CDRL is only conducted at the scene of six
intersections. MADQN designs an agent for each intersec-
tion. Each agent is trained by deep Q-learning algorithm inde-
pendently and there is no cooperation among these agents.
The distributed Q-learning (Distributed QL) designs a con-
troller for each intersection. Each controller is trained by
tabular Q-learning. And the controllers cooperate each other
by considering the vehicles coming from the neighbor inter-
sections in state space.

We use different traffic densities (low, medium and high) to
test the adaptive control ability of the QT-CDQN. TABLE 2
presents the comparison results of different algorithms for
four intersections and six intersections respectively. The
results are obtained by running 200 episodes on the trained
networks. All data presented are averaged over 15 indepen-
dent runs. The best result is shown in bold. As the traffic den-
sity increases from low to high, the average queue length and
waiting time obtained by the four algorithms increase, and

the average speed decreases. For the two road networks with
different traffic densities, the QT-CDQN achieves the best
results in most cases for the three metrics of AQL (vehicle),
AS (m/s) and AWT (s) except for the metric AWT in several
cases. TABLE 3 presents the best, worst and middle(the 8th
rank) results in 15 independent experiments and the variance
of 200 episodes in each run for four intersections and six
intersections. It can be seen from TABLE 3 that the variance
obtained by the QT-CDQN in each run is less than those
obtained by the other algorithms for different metrics in most
cases. The results are obtained under constant traffic flow,
therefore the results can reflect the stability of road network
controlled by QT-CDQN.

Fig. 6 shows the overall performance comparisons for
adaptive signal control in the scenario of four intersections
and six intersections for different metrics. Specially, it shows
the real-time changes of the AQL, AS and AWT under
a certain traffic density, and the curves are also obtained
by running 200 episodes on the trained networks. It can
be seen that the performance of QT-CDQN is more stable
throughout the signal control process. Fig. 7 shows the perfor-
mance comparisons of each intersection for different metrics
in the scenario of four intersections and six intersections.
For four intersections, QT-CDQN achieves the best perfor-
mance at each intersection for different metrics except for the
intersection 1 under the metric AWT. For six intersections,
QT-CDQN achieves the best performance at each intersection
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FIGURE 7. Performance comparisons of each intersection for different metrics in the scenario of multi-intersection. (a), (b) and (c) represent the AQL,
AS and AWT for the four intersections respectively. (d), (e) and (f) represent the AQL, AS and AWT for the six intersections respectively.

FIGURE 8. Convergence curves with or without Q-value transfer in the training process for different metrics: AQL, AS and AWT. (To make the contrast
more obvious, the curves are drawn from 500th episode). The light semi-transparent areas show the minimum and the maximum, the dark areas
show the confidence interval with α = 0.05 and the thick curves show the mean. These data are gathered in the 15 runs. The abscissae are the
percentage of consumed episodes.

for different metrics except for the intersection 2 and 6 under
the metric AWT.

2) EFFECT OF Q-VALUE TRANSFER ON THE CONVERGENCE
OF TRAINING PROCESS
To analyze the effect of Q-value transfer in cooperative
deep Q-network, the QT-CDQN is compared with the
model ignoring the interaction among multiple intersections.

Fig. 8 shows the convergence curves with or without Q-value
transfer in the training process for different metrics. In the
figure, the light semi-transparent areas show the minimum
and the maximum, the dark areas show the confidence inter-
val with α = 0.05 and the thick curves show the mean.
The data are gathered during the 15 independent runs. It can
be seen that the curves of AQL and AWT for the two algo-
rithms decline sharply and then tend to be stable, while the
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FIGURE 9. Adaptability comparisons through recurring congestion and incident congestion in the scenario of six intersections. (a), (b) and (c)
represent the AQL, AS and AWT comparisons for recurring congestion respectively. (d), (e) and (f) represent the AQL, AS and AWT comparisons for the
incident occasional respectively.

curve of AS rises firstly and then stabilizes with the training
process going on. However, for different network structures,
the proposed QT-CDQN with Q-value transfer among multi-
ple intersections for adaptivemulti-intersection signal control
can achieve better results with faster convergence speed and
better stability. These results validate the effectiveness of the
cooperative deep Q-learning with Q-value tranfer. Besides,
Q-value transfer has an impact on training time. TABLE 4
shows the training time with or without Q-value transfer.
In each training, the training time mainly includes the time of
sampling from experience pools and the time of updating net-
work by stochastic gradient descent algorithm. It can be seen
fromTable 4 that the training time of QT-CDQNwithQ-value
transfer in each training is longer than that of without transfer.
The time differences mainly come from the sampling time.
In the training process, QT-CDQN not only samples from
the current agent’s experience pool, but also samples from
the neighboring experience pool to obtain the neighboring
Q-value. Thus, additional time is needed to obtain the sample
index of experiences for neighboring agent and sample the
corresponding experiences. However, the Q-value transfer
has little effect on real-time signal control since the training
time can satisfy the real-time requirement. For example, QT-
CDQN takes about 0.033 seconds to update the network every
time for six intersections. For a trained network, the network
is updated online about every one minute, so Q-value transfer
has little effect on the training time.

TABLE 4. Comparison results of training time with or without Q-value
transfer in each training.

3) QT-CDQN FOR RECURRING CONGESTION AND
OCCASIONAL CONGESTION
In this section, the experiments are conducted on the six-
intersection road network to test the ability of QT-CDQN in
dealing with recurring congestion and incident congestion on
road networks.

In the experiments, the recurring congestion is added to
the road from intersection 3 to intersection 4. The recurring
congestion occurs between 15:00 and 19:00. In this duration,
the vehicle density has been continuously increased. The
curves of the different metrics before and after recurring
congestion are shown in (a), (b) and (c) of Fig. 9. The instan-
taneous AQL and AWT increase dramatically, while AS also
decreases dramatically. It can be seen that the CDRL has the
worst adaptability to recurring congestion. Compared with
the other three algorithms, the proposed QT-CDQN has the
best adaptability to recurring congestion, and produces more
stable results for the three metrics, especially at the fourth
intersection.
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In addition, the occasional congestion is also conducted.
The occasional congestion occurs at the 24th minute.
An increase in vehicle density for 6 minutes is implemented
on the road from intersection 3 to intersection 4. The curves
of the different metrics before and after occasional conges-
tion are shown in (d), (e) and (f) of Fig. 9. It can be seen
that the proposed QT-CDQN shows the best adaptability to
occasional congestion through a sudden increase of vehicles,
especially at the fourth intersection.

VI. CONCLUSIONS
This paper proposes a cooperative deep Q-network with Q-
value transfer (QT-CDQN) for adaptive multi-intersection
signal control. The QT-CDQN can extract the state informa-
tion at the intersections effectively and enable multiple inter-
sections to coordinate signal control according to regional
traffic status. Importantly, the proposed QT-CDQN frame-
work can be extended to the road networks with different
structures and numbers of intersections. Experimental stud-
ies under various test environments show that QT-CDQN
is competitive and efficient in terms of different metrics.
Moreover, the experiments validate the adaptability of QT-
CDQN to recurring congestion and occasional congestion.
In the future work, the proposed algorithm can be extended
to multi-objective signal control and can be combined with
traffic assignment algorithms. In addition, multi-task rein-
forcement learning is expected to address the problem of
multi-intersection signal control.
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