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ABSTRACT As a result of the dependence worldwide on satellite technology, it is now necessary to use
advanced multi-target tracking algorithms for space debris tracking systems to maintain custody of space
objects around the earth. One principal challenge is the correct association of observations with objects. This
paper presents a multi-sensor, space-debris tracking algorithm using δ-generalized labeled multi-Bernoulli
(δ-GLMB) filtering. The algorithm provides a solution to the key challenges (e.g., detection uncertainty,
data association uncertainty, and clutter) in multiple object tracking. An efficient implementation of
the multi-sensor δ-GLMB filter is proposed. In order to avoid exhaustively computing all the terms,
we propose to use the ranked assignment algorithm with an extended assignment matrix for multiple
sensors to determine the most significant terms. A measurement-based birth model is used to identify
the previously unknown space objects. Sensors can have the same or different observation volumes. The
expectation–maximization (EM) algorithm is used to approximate densities across observation volumes.
The performance is demonstrated using the simulation results.

INDEX TERMS Space debris, δ-GLMB, multi-sensor, space situational awareness.

I. INTRODUCTION
The concept of space situational awareness (SSA) typically
refers to three segments of knowledge: Near-Earth objects
detection, space weather, and space surveillance and tracking
of objects in Earth orbit [1], [2]. The near-Earth environment
is populated with orbital debris after more than 50 years
of space activity [3]. Accidental collisions may degrade the
performance of a spacecraft or even cause fragmentation [4].
The rapid increase in the amount of space debris signals the
potential for the collision cascade effect, commonly known as
the ‘‘Kessler Syndrome.’’ Research shows that there is a need
to focus on the debris detection for satellite safety and satellite
collision avoidance [5]–[7]. Possible approaches to improve
capabilities include: improving current system exploitation to
discern small objects, upgrading tracking and sensor man-
agement algorithms to extend continuous monitoring, and
building more sensor networks for increased spatial/temporal
detection [5]. A multi-sensor space debris tracking approach
is proposed in this paper to improve the tracking performance.

Multi-object tracking involves the estimation of the trajec-
tories and the number of targets from noised measurements.

The associate editor coordinating the review of this manuscript and
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False alarms, misdetections and data association uncertainty
are the main challenges in multi-object tracking systems. The
random finite set (RFS) [8], [9] is a popular multi-target esti-
mation paradigm with applications in cell biology [10]–[12],
traffic monitoring [13]–[16], field robotics [17]–[19], com-
puter vision [11], [20]–[22], sonar [23], sensor network and
distributed estimation [24]–[29], simultaneous localization
and mapping [30]–[33], etc.

The multi-object state is modeled as a RFS. Because
of the complexity of the Bayes filter, the Probabil-
ity Hypothesis Density (PHD) [34], [35], Cardinalized
PHD (CPHD) [36], [37] andmulti-Bernoulli filters [38], [39]
have been developed as approximations. An analytic solu-
tion, the δ-Generalized Labeled Multi-Bernoulli (δ-GLMB)
filter and its efficient implementation were proposed in [40]
and [41], respectively. Another efficient implementation with
joint prediction and update and Gibbs sampling is detailed
in [42]. Marginalized δ-GLMB (Mδ-GLMB) filter and
Labeled Multi-Bernoulli (LMB) filter were proposed in [43]
and [44], respectively, as two efficient approximations.

Finite Set Statistics (FISST)-based methods have been
applied to the space debris problem in [6] and [45]–[55].
Reference [45] presents the application of several variations
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of the RFS-based joint target detection and tracking
filter for processing radar measurements. [47] presented
a space object tracking approach with CPHD filter-
ing and a measurement-based birth model. A labeled
multi-Bernoulli filter for space object tracking was pro-
posed in [6]. Reference [56] used GM-CPHD filtering and
the consensus algorithm to achieve global space object
tracking. Reference [57] presented a consensus LMB filter-
ing for distributed space debris tracking. References [56]
and [57] both presented a distributed space debris track-
ing approach. A recently published paper achieves dis-
tributed space debris tracking with a consensus algorithm and
marginalized δ-GLMBfiltering [58]. The distributed tracking
system is scalable and robust. However, the tracking accuracy
is worse than the centralized tracking system.

Multiple-node networks are widely used in tracking sys-
tems. Many algorithms have been proposed for multi-sensor
fusion in the last thirty years [2], [26], [27], [59]–[65]. Multi-
ple sensors can be used to reduce uncertainty about the object
states and existence. The advantages of distributed and hier-
archical systems include that they are scalable with respect
to the network size and the bandwidth requirements are less
than a centralized system. In a network that has no require-
ment for scalability and has large bandwidth and computation
power, the centralized system is the best choice because it
has the most accurate estimation. Centralized processing of
measurements is currently employed as part of the U.S. Air
Force Joint Space Operation Center (JSpOC). It is planned
that the future system currently under development, i.e. the
JSpOC Mission System (JMS) will also employ centralized
data fusion [66].

However, in this paper we offer an alternative approach
that will grow with the scale of the problem. Furthermore,
most fusion algorithms assume that the sensors have the same
observation volume and that targets do not go outside of this
observation volume. However, this is not the case for space
debris tracking. The relative positions between space debris
and the Earth are not fixed except for those on geostationary
equatorial orbit (GEO).

Preliminary results of centralized labeled RFSfilteringwas
proposed in [67]. The method of [67] can only perform target
tracking when the targets are inside of the observation vol-
ume. Therefore the information fusion can only be carried out
for sensors with the same observation volume. Furthermore,
the algorithm was only tested for targets assumed to follow
a constant velocity dynamic model. This paper presents a
multi-sensor space debris tracking algorithm with δ-GLMB
filtering. An extended association map is created with mea-
surements from every sensor in the update for multi-sensor
δ-GLMB. The ranked assignment algorithm is used to trun-
cate the multi-target densities. The measurement-based birth-
model is used to capture previously unknown targets. The
probability of detection outside the observation volume is set
to zero; the estimation is essentially the prediction since the
measurements are not available outside the observation vol-
ume. The Expectation Maximization (EM) algorithm is used

to approximate densities across the observation volumes.
With these modifications, the data fusion can be performed
for sensors with different observation volumes as well as
sensors with same observation volume.

The paper is organized as follows. Background on labeled
RFS and the δ-GLMB filter is described in section II.
The space debris dynamic model and Bayesian prediction
method are provided in section III. Section IV details the
multi-sensor δ-GLMB filtering. Numerical results are pre-
sented in Section V showing comparisons between a single
sensor and multiple sensors with similar or complemen-
tary observation volumes. Concluding remarks are given
in Section VI.

II. BACKGROUND
This section describes the multi-target tracking formula-
tion of labeled RFS and the propagation of δ-GLMB
filtering. Subsection II-A summarizes labeled RFS and
Bayesian multi-target filtering, followed by the measure-
ment likelihood function and the transition kernel in sub-
section II-B and II-C. The δ-GLMB recursion is described
in subsection II-D.

In this paper, we use

δY (X ) ,

{
1, if X = Y
0, otherwise.

(1)

The inclusion function is

1Y (X ) ,

{
1, if X ⊆ Y
0, otherwise.

(2)

The inner product is 〈f , g〉 ,
∫
f (x)g(x)dx and the exponen-

tial is hX , 5x∈Xh(x).
For the rest of this paper, lowercase letters (e.g. x, x) are

used to represent single-object states, while uppercase letters
(e.g. X ,X) are used to represent multi-object states. Bolded
symbols (e.g. x,X,π ) are used to distinguish labeled states
and their distributions from unlabeled ones. Blackboard bold
(e.g. X,N) is used to represent spaces.

A. LABELED RFS AND BAYESIAN
MULTI-TARGET FILTERING
An RFS is a finite-set-valued random variable. Every
dynamic state x ∈ X has a unique label ` ∈ L = {αi : i ∈ N}.
Let the projection L((x, `)) = ` be denoted by L : X ×
L → L, then the function 1(X) , δ|X|(|L(X)|) is called
the distinct label indicator which means that X has the same
cardinality as its labels L(X) = {L(x) : x ∈ X} [40], [41].
Assume that there are N (k) targets at time k with states

xk,1, . . . , xk,N (k) and state space X × L, and M (k) measure-
ments zk,1, . . . , zk,M (k) with observation space Z. Then the
multi-target state and multi-target observation is

Xk = {xk,1, . . . , xk,N (k)} (3)

Zk = {zk,1, . . . , zk,M (k)} (4)
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Let πk (·|Zk ) denote the multi-target filtering density and
πk+1|k denote the multi-target prediction density. Then the
target density is propagated according to

πk (Xk |Zk ) =
gk (Zk |Xk )πk|k−1(Xk )∫
gk (Zk |Xk )πk|k−1(Xk )δX

(5)

πk+1|k (Xk+1) =
∫

fk+1|k (Xk+1|Xk )πk (Xk |Zk ) δXk (6)

where fk+1|k (·|·) is the multi-target transition density to time
k + 1, gk (·|·) is the multi-target likelihood function at time k .
The underlying models of target births, deaths and motions
are encapsulated in the multi-target transition density while
the underlying models for detections and false alarms are
encapsulated in the multi-target likelihood function.

For convenience, we denote g , gk , f , fk+1|k , π+ ,
πk+1|k , π , πk , B , Lk+1, L+ , L ∪ B.

B. MEASUREMENT LIKELIHOOD FUNCTION
Each state (x, `) ∈ X has the probability pD(x, `) to be
detected and generates a measurement with likelihood func-
tion g(z|x, `), and has a probability 1 − pD(x, `) to be
miss-detected. The measurement set Z is a superposition of
detected objects and Poisson clutter with intensity function κ .
An association map is denoted by θ : L→ {0, 1, . . . , |Z |}

such that θ (i) = θ (i′) > 0 implies i = i′. The set2 of all such
association maps is used to denote the association space. The
subset of association maps with domain I is denoted by2(I ).
The multi-object likelihood is given by [40], [41]

g(Z |X) = e−<κ,1>κZ
∑

θ∈2(L(X))

[ψZ (·; θ )]X· (7)

where

ψZ (x, `; θ ) =


pD(x, `)g(zθ (`)|x, `)

κ(zθ (`))
, if θ (`) > 0

1− pD(x, `), if θ (`) = 0
(8)

C. MULTI-TARGET TRANSITION KERNEL
Each state (x, `) ∈ X has the probability pS (x, `) to survive
and evolve to the next step with new state (x+, `+), or has the
probability of 1− pS (x, `) to die. The birth density is

fB(Y) = 1(Y)ωB(L(Y))[pB]Y (9)

where pB and ωB are given parameters of the birth density.
The multi-target state at the next time step X+ includes

two parts: the new born targets and the surviving targets. The
multi-target transition density is [40], [41]

f(X+|X) = fS (X+ ∩ (X× L)|X)fB(X+ − (X× L)) (10)

where

fS (W|X) = 1(W)1(X)1L(X)(L(W))[8(W; ·)]X (11)

8(W; x, `) =

{
pS (x, `)f (x+|x, `), if (x+, `) ∈W
1− pS (x, `), if ` /∈ L(W)

(12)

D. DELTA-GENERALIZED LABELED MULTI-BERNOULLI
The δ-GLMB filter has the form of

π (X) = 1(X)
∑

(I ,ξ )∈F (L)×4
ω(I ,ξ )δI (L(X))[p(ξ )]X. (13)

Here each I represents a set of track labels and each ξ repre-
sents a history of association maps,4 is a discrete space. The
pair (I , ξ ) ∈ F(L)×4 is a hypothesis. The associated weight
means the existence probability of the hypothesis. p(ξ ) is the
density of the kinematic state.

Assume that the multi-target prediction density for the cur-
rent time is a δ-GLMB of the form (13), then the multi-target
posterior probability density is a δ-GLMB given by

π (X|Z ) = 1(X)
∑

(I ,ξ )∈F (L)×4

∑
θ∈2(I )

ω(I ,ξ,θ )(Z ) · δI

×(L(X))[p(ξ,θ )(·|Z )]X (14)

where

ω(I ,ξ,θ )(Z ) ∝ ω(I ,ξ )[η(ξ,θ )Z ]I (15)

η
(ξ,θ)
Z (`) = 〈p(ξ )(·, `), ψ(·, `; θ )〉 (16)

p(ξ,θ)(x, `|Z ) =
p(ξ )(x, `)ψZ (x, `; θ )

η
(ξ,θ)
Z (`)

(17)

Assume that the multi-target filtering density is a δ-GLMB
of the form (13), then the multi-target prediction density is a
δ-GLMB given by

π+(X+)=1(X+)
∑

(I+,ξ )∈F (L+)×4
ω
(I+,ξ )
+ δI+ (L(X+)) [p

(ξ )
+ ]X+

(18)

where

ω
(I+,ξ )
+ = ω

(ξ )
S (I+ ∩ L)ωB(I+ ∩ B) (19)

ω
(ξ )
S (L) = [η(ξ )S ]L

∑
I⊇L

[1− η(ξ )S ]I−Lω(I ,ξ ) (20)

p(ξ )S (x, `) =
〈pS (·, `)f (x|·, `), p(ξ )(·, `)〉

η
(ξ )
S (`)

(21)

p(ξ )+ (x, `) = 1L(`)p
(ξ )
S (x, `)+ 1B(`)pB(x, `) (22)

η
(ξ )
S (`) = 〈pS (·, `), p(ξ )(·, `)〉 (23)

III. SPACE DEBRIS DYNAMIC MODEL AND
BAYESIAN PREDICTION
It is very difficult to calculate the Markov transition density
function of space objects because the space dynamic model
is much more complicated than the constant velocity or the
constant turn model. However, we can approximate the tran-
sition density function of space debris with the help of the
software Turboprop [68] and the unscented transform [69].
Turboprop can be called as a function in MATLAB and has
a package of functions to calculate the trajectories of space
objects. The elements in Turboprop include the Earth Orien-
tation and atmospheric drag model, the lunar gravity models
LP100K, GLGM-2 and LP150Q, the Earth gravity models
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JGM-3, GGM02C and WGS-84, JPL planetary ephemerides
DE403 and DE405 and solar radiation pressure model.

The coordinate system used in this paper is an Earth-
centered, Earth-fixed (ECEF) geographic and Cartesian coor-
dinate system. The point (0, 0, 0) is defined as the center of
mass of the Earth and the axes are aligned with the interna-
tional reference pole and international reference meridian.

The Jet Propulsion Laboratory Development Ephemeris
(JPL DE) are generally created to support spacecraft mis-
sions to the planets. JPL DE designates a series of models
consisting of representations of accelerations, velocities and
positions of major Solar System bodies.

The acceleration caused by the solar radiation pressure
is [70]

r̈SRP = pSRcR
A
m

r
|r|

(24)

where pSR is the pressure of solar radiation in Pa. cR is the
solar radiation coefficient and is taken as 1.5. m (0.05 kg
in this paper) is the mass of the space debris. A (0.01 m2

in this paper) is the cross-sectional area facing the Sun. r
is the vector from the center of the Sun to the space debris.
Solar radiation behaves like a flux of particles emitted by the
sun [71]. Solar radiation is the dominant source of radiation
pressure. Even though vector r is from the center of the Sun
to the space debris, the coordination system used in this paper
is ECEF system.

The mass concentration model is a gravity field where the
total acceleration is determined by point masses. The total
acceleration is

r̈pointmass = −G
∑
i

mir̄i
r3i

(25)

where r̄i is the vector from the point mass to the space debris,
ri is the magnitude of r̄i and mi is the mass of i-th point,
and G = 6.67428 × 10−20km3/(kg · sec2). This paper
takes the Sun, the Earth, Venus, Jupiter and the Moon into
consideration.

The gravity field is modeled using U , an aspherical poten-
tial function

U (x, y, z) =
µ

r

∞∑
n=2

n∑
m=0

(
R
r
)n Ān,m[

z
r
]{C̄n,mĒm + S̄n,mF̄m}

(26)

where

r =
√
x2 + y2 + z2 (27)

Ēm = Ē1Ēm−1 − F̄1F̄m−1, Ē0, Ē1 =
x
r

(28)

F̄m = F̄1Ēm−1 − Ē1F̄m−1, F̄0, F̄1 =
y
r

(29)

R is the radius of the central body, µ is the gravitational
parameter and n and m are the degree and order of the
spherical harmonic model respectively. C̄n,m and S̄n,m are
normalized coefficients for the magnitude of the spherical

harmonics. Ān,m[α = z
r ] is a normalized, derived Legendre

function.
The acceleration from atmospheric drag is computed with

the equations

ẍdrag = −
CD
2
A
m
ρVa,x |Va|

ÿdrag = −
CD
2
A
m
ρVa,y|Va|

z̈drag = −
CD
2
A
m
ρVa,z|Va| (30)

where CD is the coefficient of drag and A
m is the area-to-

mass ratio of the space debris. Va,x ,Va,y and Va,z are the
velocity components of the space debris with respect to the
atmosphere and |Va| is the magnitude.
The unscented transform is used in the nonlinear projection

ofmean and covariance estimations. The unscented transform
approximates the probability density function (PDF) by a set
of sigma points. Assume that each single target density p(x)
is a Gaussian mixture of the form

∑N
i=1 ωiN (x;mi,Pi) and

the Gaussian item is n-dimensional, then the state of space
debris is propagated as shown in Table 1.

TABLE 1. State propagation of space debris.

The sigma-points are chosen as follows:

χ (0)
= m, W (0)

=
κ

n+ κ
, j = 0

χ (j)
= m+(

√
(n+ κ)P)j, W (j)

=
1

2(n+ κ)
, j = 1, . . . , n

χ (j)
= m− (

√
(n+ κ)P)j, W (j)

=
1

2(n+ κ)
,

j = n+ 1, . . . , 2n

where n represents the dimension of state vector which is
6 in this paper,

∑2n
j=0W

(j)
= 1,

(√
(n+ κ)P

)
j is the jth row

or column of square root of
√
(n+ κ)P, κ is the scaling

parameter which is 2 in this paper.

IV. MULTI-SENSOR δ-GLMB FILTERING
Subsection IV-A summarizes the multi-sensor measurement
likelihood function. Subsection IV-B details the multi-sensor
δ-GLMB update. The ranked assignment problem for
multi-sensor δ-GLMB is presented in subsection IV-C. Sub-
section IV-D presents the computation of the multi-sensor
δ-GLMB parameters. The EM algorithm for updating with
non-uniform detection probability is presented in subsec-
tion IV-E. Subsection IV-F details the measurement-based

36994 VOLUME 7, 2019



B. Wei, B. D. Nener: Multi-Sensor Space Debris Tracking for Space Situational Awareness With Labeled Random Finite Sets

birth model. Subsection IV-G discusses the problem of syn-
chronization and inconsistency.

A. MULTI-SENSOR MEASUREMENT
LIKELIHOOD FUNCTION
For clarity of illustration, we only show the situation of two
sensors, however, extension to cases with more sensors can
be easily made.

Enumerating Z1 = {z1,1, . . . , z1,|Z1|}, Z2 = {z2,1, . . . ,
z2,|Z2|}, I = {`1, . . . , `|I |}, then an association map for sensor
j is a function θj: L → {0, 1, . . . , |Zj|} such that θj(i) =
θj(i′) > 0 implies i = i′. An association map for two sensors
is a function (θ1, θ2): L→ {0, 1, . . . , |Z1|} × {0, 1, . . . , |Z2|}
such that (θ1, θ2)(i) = (θ1, θ2)(i′) with (θ1(i)|θ2(i)) > 0 and
(θ1(i′)|θ2(i′)) > 0 implies i = i′.
At time k , the multi-object likelihood is given by

g(Z1,Z2|X)

= g(Z1|X)g(Z2|X)

= e−〈κ1,1〉κZ11
∑

θ1∈21(L(X))
[ψZ1 (·; θ1)]

X

·e−〈κ2,1〉κZ22
∑

θ2∈22(L(X))
[ψZ2 (·; θ2)]

X

= e−〈κ1,1〉κ1e−〈κ2,1〉κ2
∑

θ1∈21(L(X)),
θ2∈22(L(X))

[ψZ1,Z2 (·; θ1, θ2)]
X

=e−〈κ1,1〉κ1e−〈κ2,1〉κ2
∑

(θ1,θ2)∈
21,2(L(X))

[ψZ1,Z2 (·; (θ1, θ2))]
X

(31)

where

ψZ1,Z2 (x, `; (θ1, θ2))

=



pD1 (x, `)g1(zθ1(`)|x, `)
κ1(zθ1(`))

·
pD2 (x, `)g2(zθ2(`)|x, `)

κ2(zθ2(`))
,

if
{
θ1(`)>0,
θ2(`)>0

(1− pD1 (x, `)) ·
pD2 (x, `)g2(zθ2(`)|x, `)

κ2(zθ2(`))
,

if
{
θ1(`)=0,
θ2(`)>0

pD1 (x, `)g1(zθ1(`)|x, `)
κ1(zθ1(`))

· (1− pD2 (x, `)),

if
{
θ1(`)>0,
θ2(`)=0

(1− pD1 (x, `)) · (1− pD2 (x, `)),

if
{
θ1(`)=0,
θ2(`)=0

.(32)

B. MULTI-SENSOR δ-GLMB FILTER UPDATE
Since the prediction for the multi-sensor δ-GLMB filter is the
same as for a single sensor, we only present the update for
multi-sensor δ-GLMB.

If the current multi-target prediction density is a δ-GLMB
of the form (13), then the multi-sensor multi-target filtering
density is a δ-GLMB given by

π (X|Z1,Z2)

= 1(X)
∑

(I ,ξ )∈F (L)×4

∑
(θ1,θ2)∈21,2(I )

ω(I ,ξ,(θ1,θ2))(Z1,Z2)

·δI (L(X))[p(ξ,(θ1,θ2))(·|Z1,Z2)]X (33)

where

ω(I ,ξ,(θ1,θ2))(Z1,Z2) ∝ ω(I ,ξ )[ηξ,(θ1,θ2)Z1,Z2
]I , (34)

p(ξ,(θ1,θ2))(x, `|Z1,Z2) =
p(ξ )(x, `)ψZ1,Z2 (x, `;(θ1, θ2))

η
(ξ,(θ1,θ2))
Z1,Z2

(`)
(35)

η
(ξ,(θ1,θ2))
Z1,Z2

(`)= 〈p(ξ )(·, `), ψZ1,Z2 (·, `; (θ1, θ2))〉

(36)

Equation (33) has a similar form as equation (14). The main
difference lies in the measurement set, association map and
measurement likelihood function. Instead of measurement set
Z for single sensor, the measurement set for multi-sensor
is (Z1,Z2). The association map for single sensor is θ . The
associationmap formulti-sensor is (θ1, θ2). Themeasurement
likelihood function for multi-sensor is presented in IV-A.

C. RANKED ASSIGNMENT PROBLEM FOR
MULTI-SENSOR DELTA-GLMB UPDATE
Each hypothesis (I , ξ ) with weight ω(I ,ξ ) generates a new set
of hypotheses (I , (ξ, (θ1, θ2))), with corresponding weights
ω(I ,ξ,(θ1,θ2))(Z1,Z2) ∝ ω(I ,ξ )[ηξ,(θ1,θ2)Z1,Z2

]I . The most significant
hypotheses can be chosen without exhaustively computing all
the new components if the association maps can be generated
in decreasing order of ηξ,(θ1,θ2)Z1,Z2

. Ranked assignment can be
used to solve this problem.

With the new definition of the association map for two sen-
sors, let (Z1)∪· (Z2)∪· (Z1×Z2) denote the measurements from
two sensors (Z1,Z2). (Z1) denotes that only measurements
from sensor1 are assigned to targets. (Z2) denotes that only
measurements from sensor2 are assigned to targets. (Z1×Z2)
denotes that measurements from sensor1 and sensor2 are all
assigned to targets, i.e. (Z1 × Z2) , {(z1, z2) : z1 ∈ Z1,
z2 ∈ Z2}.

An |I | × |(Z1,Z2)| assignment matrix S can be used to
represent each association map. S consists of 0 or 1 entries.
Each column and row of S sums to either 0 or 1. For i ∈
{1, . . . , |I |}, j ∈ {1, . . . , |(Z1,Z2)|}, Si,j = 1 means that only
the jth measurement is assigned to track `i.
In an optimal assignment problem, the cost matrix is the
|I | × |(Z1,Z2)| matrix C (I ,ξ )

Z1,Z2
with elements:

(C (I ,ξ )
Z1,Z2

)i,j

=−ln



〈p(ξ )(·, `i), pD1 (·, `i)g1(zj|·, `i)(1− pD2 )(·; `i)〉
〈p(ξ )(·, `i), (1− pD1 )(·, `i)(1− pD2 )(·; `i)〉κ1(zj)

,

for { i∈{1,...,|I |}j∈{1,...,|Z1|}
〈p(ξ )(·, `i), (1− pD1 )(·; `i)pD2 (·, `i)g2(zj|·, `i)〉
〈p(ξ )(·, `i), (1− pD1 )(·; `i)(1− pD2 )(·, `i)〉κ2(zj)

,

for { i∈{1,...,|I |}j∈{1,...,|Z2|}
〈p(ξ )(·, `i), pD1 (·, `i)g1(zj|·, `i)pD2 (·, `i)g2(zj|·, `i)〉
〈p(ξ )(·, `i), (1− pD1 )(·; `i)(1−pD2 )(·, `i)〉κ1(zj)κ2(zj)

,

for { i∈{1,...,|I |}
j∈{1,...,|Z1|×|Z2|}

(37)
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where (C (I ,ξ )
Z1,Z2

)i,j is the cost of assigning the jth measurement
to track `i.
The first part and the second part of the cost matrix are the

cost of assigning the measurement only from the first sensor
and the second sensor, respectively, to the track. The third part
is of the cost matrix is the cost of assigning the measurement
both from the two sensors to the track.

The combined costs of every measurement to target assign-
ments can be used to represent the cost of an assignment
matrix which can be written as the Frobenius inner product

tr(STC (I ,ξ )
Z1,Z2

) =
|I |∑
i=1

|(Z1,Z2)|∑
j=1

(C (I ,ξ )
Z1,Z2

)i,jSi,j (38)

Substituting (32) into (36), it follows that

η
(ξ,(θ1,θ2))
Z1,Z2

(`)

=



〈p(ξ )(·, `), pD1 (·, `)g1(zθ1(`)|·, `)pD2 (·, `)g2(zθ2(`)|·, `)〉
κ1(zθ1(`))κ2(zθ2(`))

,

if
{
θ1(`)>0
θ2(`)>0

〈p(ξ )(·, `), pD1 (·, `)g1(zθ1(`)|·, `)(1− pD2 (·, `))〉
κ1(zθ1(`))

,

if
{
θ1(`)>0
θ2(`)=0

〈p(ξ )(·, `), (1− pD1 (·, `))pD2 (·, `)g2(zθ2(`)|·, `)〉
κ2(zθ2(`))

,

if
{
θ1(`)=0
θ2(`)>0

〈p(ξ )(·, `), (1− pD1 (·, `)) · (1− pD2 (·, `))〉,

if
{
θ1(`)=0
θ2(`)=0

(39)

Then

[η(ξ,(θ1,θ2))Z1,Z2
(`)]I

=

∏
`∈I

η
(ξ,(θ1,θ2))
Z1,Z2

(`)

=

∏
{
θ1(`)>0
θ2(`)>0

η
(ξ,(θ1,θ2))
Z1,Z2

(`)
∏

{
θ1(`)>0
θ2(`)=0

η
(ξ,(θ1,θ2))
Z1,Z2

(`)

×

∏
{
θ1(`)=0
θ2(`)>0

η
(ξ,(θ1,θ2))
Z1,Z2

(`)
∏

{
θ1(`)=0
θ2(`)=0

η
(ξ,(θ1,θ2))
Z1,Z2

(`) (40)

The cost is related to the filter hypothesis weight
ω(I ,ξ,(θ1,θ2))(Z1,Z2) ∝ ω(I ,ξ )[ηξ,(θ1,θ2)Z1,Z2

]I by

[η(ξ,(θ1,θ2))Z1,Z2
(`)]I =exp(−tr(STC (I ,ξ )

Z1,Z2
))
∏
`∈I

〈p(ξ )(·, `), (1− pD1 )

×(·, `)(1− pD2 )(·, `)〉 (41)

The ranked assignment problem can be used to choose the
least cost assignment matrices. The optimal assignment algo-
rithm with cost matrix C (I ,ξ )

Z1,Z2
can generate an enumeration of

association maps in non-decreasing order of [η(ξ,(θ1,θ2))Z1,Z2
(`)]I

and hence weights ω(I ,ξ,(θ1,θ2))(Z1,Z2) ∝ ω(I ,ξ )[ηξ,(θ1,θ2)Z1,Z2
]I .

Murty’s algorithm is used in this paper to solve the ranked

assignment problem [72]. An efficient algorithm for truncat-
ing the GLMB filtering density based on Gibbs sampling can
be found in [42]. Even though the implementation proposed
in [42] is more efficient than the Murty’s algorithm used in
this paper, the goals of this paper are the demonstration of
tracking of space debris outside the observation volume and
tracking with a multi-sensor network.

D. UPDATING PARAMETERS
For linear Gaussian multi-target models, pD1 (x, `) = pD1 ,
pD2 (x, `) = pD2 , g(z|x, `) = N (z;Hx,R), whereH and R are
the observation matrix and the observation noise covariance,
respectively. A linear Gaussian multi-target model is used to
represent the single target density p(ξ )(·, `):

J (ξ )(`)∑
i=1

ω
(ξ )
i (`)N (x;m(ξ )

i (`),P(ξ )i (`)) (42)

For i ∈ {1, . . . |I |}, j ∈ {1, . . . , |Zs|},where s denotes which
sensor is used, the cost is

(C (I ,ξ )
Z1,Z2

)i,j = −ln
(pDs ∑J (ξ )(`i)

k=1 ω
(ξ )
k (`i)q

(ξ )
k (zsj; `i)

(1− pDs )κs(zsj)

)
(43)

The updated association history is

η
(ξ,θs)
Zs (`) =

J (ξ )(`)∑
i=1

ω
(ξ,θs)
Zs,i (`) (44)

The updated location density is

p(ξ,θs)(x, `|Zs)

=

J (ξ )(`)∑
i=1

ω
(ξ,θs)
Zs,i (`)

η
(ξ,θs)
Zs (`)

N (x;m(ξ,θs)
Zs,i (`),P(ξ,θs)s,i (`)) (45)

where

q(ξ )i (zs; `) = N (zs;Hsm
(ξ )
i (`),HsP

(ξ )
i (`)HT

s + Rs)

ω
(ξ,θs)
Zs,i (`) = ω(ξ )

i (`)


pDsq

(ξ )
i (zθs(`); `)

κs(zθs(`))
, if θs(`) > 0

(1− pDs ), if θs(`) = 0

P(ξ,θs)s,i = [I − K (ξ,θs)
s,i (`)Hs]P

(ξ )
i (`),

K (ξ,θs)
s,i (`) =


P(ξ )i (`)HT

s [HsP
(ξ )
i (`)HT

s + Rs]
−1,

if θs(`) > 0
0, if θs(`) = 0

m(ξ,θs)
Zs,i (`) =


m(ξ )
i (`)+ K (ξ,θs)

s,i (`)(zθs(`) − Hsm
(ξ )
i (`)),

if θs(`) > 0

m(ξ )
i (`), if θs(`) = 0

For i ∈ {1, . . . |I |}, j ∈ {1, . . . , |Z1| × |Z2|}, the cost is

(C (I ,ξ )
Z1,Z2

)i,j = −ln
(pD2pD1

∑J (ξ )(`i)
k=1 ω

(ξ )
k (`i)q

(ξ )
k (z1jz2j; `i)

(1− pD1 )(1− pD2 )κ1(z1j)κ2(z2j)

)
(46)
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The updated association density is

η
(ξ,θ1×θ2)
Z1×Z2

(`) =
J (ξ )(`)∑
i=1

ω
(ξ,θ1×θ2)
Z1×Z2,i

(`) (47)

The updated location density is

p(ξ,θ1×θ2)(x, `|Z1 × Z2)

=

J (ξ )(`)∑
i=1

ω
(ξ,θ1×θ2)
Z1×Z2,i

(`)

η
(ξ,θ1×θ2)
Z1×Z2

(`)
N (x;m(ξ,θ1×θ2)

Z1×Z2,i
(`),P(ξ,θ1×θ2)Z1×Z2,i

(`))

(48)

where

q(ξ )i (z1jz2j; `i) = q(ξ )i (z1j; `i)q
(ξ )
i (z2j; p(ξ,θ1)(x, `i|Z1))

= N (z1j;H1m
(ξ )
i (`i),H1P

(ξ )
i (`i)HT

1 + R1)

·N (z2j;H2m
(ξ,θ1)
Z1,k

(`i),H2P
(ξ,θ1)
i HT

2 + R2)

ω
(ξ,θ1×θ2)
Z1×Z2,i

(`) = ω(ξ )
i (`)


pD1pD2q

(ξ )
i (zθ1(`)zθ2(`); `)

κ1(zθ1(`))κ2(zθ2(`))
if
{
θ1(`)>0
θ2(`)>0

(1− pD1 )(1− pD2 ) if
{
θ1(`)=0
θ2(`)=0

P(ξ,θ1×θ2)Z1×Z2,i
= [I − K (ξ,θ1×θ2)

Z1×Z2,i
(`)H2]P

(ξ,θ1)
i (`)

m(ξ,θ1×θ2)
Z1×Z2,i

(`) =


m(ξ,θ1)
Z1,i

(`)+ K (ξ,θ1×θ2)
i (`)(zθ2(`)

−H2m
(ξ,θ1)
Z1,i

(`))

m(ξ )
i (`).

K (ξ,θ1×θ2)
Z1×Z2,i

(`) =


P(ξ,θ1)i (`)HT

2 [H2P
(ξ,θ1)
i (`)HT

2 + R2]
−1,

if
{
θ1(`)>0
θ2(`)>0

0, if
{
θ1(`)=0
θ2(`)=0

If the measurement model parameters are a function of the
label `, pD = pD(`),H = H (`),R = R(`) can be substituted
into the above equations.

E. THE EM ALGORITHM FOR UPDATING WITH
NON-UNIFORM DETECTION PROBABILITY
The multi-sensor δ-GLMB filter is performed on the assump-
tion that all sensors have the same observation volume. Nor-
mally, a δ-GLMB filter with uniform detection probability
does not provide any information for targets outside of its
observation volume because no measurements are available.
However, since the observation model only affects the predic-
tion, not the update, estimation of targets can still be provided
because the prediction is always available. We set the detec-
tion probability to zero for areas outside of the observation
volume in this paper. pDin and pDout are used to represent the
detection probability for inside and outside of the observation
volume, respectively. A similar approach for space object
tracking in a limited field of view was proposed in [73].
We assume that the single-target density is a Gaussian

mixture when computing the parameters. Since UKF is used
in this paper for the space debris transition function, each
Gaussian item is represented by a set of sigma-points. If all

sigma-points are inside or outside the observation volume,
the detection probability for this Gaussian item is set to pDin
and pDout , respectively. Otherwise, the EM algorithm is used
to build a new GM to approximate the predicted densities
inside and outside of the observation volume.

FIGURE 1. The predicted intensity function is shown by a GM. The blue
circle is one Gaussian item. V1 represents the part inside the observation
volume and V2 represents the outside part.

An illustration of this scenario is shown in figure 1. The
predicted intensity function is shown by a GM. The blue
circle is one Gaussian item. V1 represents the part inside the
observation volume and V2 represents the outside part.

The EM algorithm is an efficient method to find the
maximum-likelihood estimate of the unknown parameters of
an underlying distribution from a given data set. Usually,
the data set hasmissing values or is incomplete. Each iteration
of the EM algorithm has two procedures: The Expectation
step (E-step) and the Maximization step (M-step). The E-step
creates a function for the expectation of the log-likelihood
evaluated using the current estimate for the parameters.
In the M-step, the likelihood function is maximized under the
assumption that the missing data are known.

If the sigma-points of one Gaussian item are on both sides
of the observation edge, then N = 1000 points are sampled
from this Gaussian distribution. Depending on whether the
points are inside the observation volume or not, these points
are divided into two groups: Pointsin and Pointsout . The EM
algorithm is used for Gaussian mixture parameter estimation.
Each Gaussian item is represented by two new Gaussian
mixtures, i.e.:

J (ξ )(`)∑
i=1

ω
(ξ )
i (`)N (x;m(ξ )

i (`),P(ξ )i (`))

=

J (ξ )(`)∑
i=1

ω
(ξ )
i (`)

( H (ξ )(`)∑
h=1

ω
(ξ )
h (`)N (x;m(ξ )

h (`),P(ξ )h (`))

+

K (ξ )(`)∑
k=1

ω
(ξ )
k (`)N (x;m(ξ )

k (`),P(ξ )k (`))
)
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FIGURE 2. Estimation for objects inside and outside the observation
volume.

This new Gaussian mixture then can be used in the δ-GLMB
update. An illustration of the method is shown in figure 2.

The parameters in the density approximation include the
number of Gaussian items, the weights, the covariance matri-
ces, and the means which are chosen as follows.
(1) The number of the Gaussian components: It is very

difficult to derive the number of Gaussian components
even though it is very important. In practice, a reason-
ably large number (Jmax = 10 in this paper) is chosen
as the maximum number of new Gaussian items in the
approximation. The EM algorithm is used for situa-
tions with a different number of Gaussian components
(Jmin = 1, . . . , Jmax = 10). Then the Bayesian infor-
mation criterion (BIC) is used to determine the best
number of Gaussian components. The BIC is a criterion
for model selection among a finite set of models.
Using the estimation of targets outside of the obser-
vation volume, the proposed multi-sensor δ-GLMB
can be used for sensors with different observation
volumes [74]. The model with the lowest BIC is cho-
sen. BIC is defined as follows:

BIC(J , θ,P) = −2log L(θ, J |P)+M ln(N )

where J is the number of Gaussian items, θ is the
estimated parameters which maximize the likelihood
function, P is the sampled data, L(·) is the maximized
value of the likelihood function, M is the number of
parameters estimated and N is the number of sampled
points.

(2) The weights for the Gaussian items are the same and
set as Wj =

1
J .

(3) The means of Gaussian position components can be
chosen by uniformly sampling the observation volume.
And themeans of Gaussian velocity components can be
set to zeros.

F. MEASUREMENT-BASED BIRTH MODEL
A birth model is required in space debris tracking in a similar
way to initial orbit determination when initiating new targets.
If background knowledge about the environment of the sys-
tem is known, the birth-model can be built with fixed-birth
locations and small spatial uncertainties. Since fixed-birth
locations minimize the incidence of false tracks, they are ben-
eficial in scenarios with high clutter rate. In most space debris
tracking scenarios, prior information of space debris locations
is not available. Consequently, a measurement-based birth
model is required for δ-GLMB filtering.

An adaptive birth model for Gaussian mixture PHD and
CPHD filtering was proposed in [75]. The adaptive birth
distributions for δ-GLMB filtering should also concentrate
around measurements not originating from existing tracks.
The birth distribution at time step k depends on the measure-
ments at time step k − 1 and is denoted by

πB,k =
{
r (`)B,k−1(z), p

(`)
B,k−1(x|z)

}|Zk−1|
`=1

where p(`)B,k−1(x|z) denotes the probability density of birth

track ` and r (`)B,k−1(z) is its weight. The probability density is
represented by a Gaussian item in this paper. Since bearings
and range measurements are used in this paper, measurement
can be used to calculate target positions in the X, Y and Z
directions and used as the mean values for birth positions.
Mean values for velocities are set to zero. The values for the
covariance are based on experience. A small value results in
faster track confirmation but can lead to lost tracks. A large
value results in slower track confirmation but can generally
initiate new tracks.

G. SYNCHRONIZATION AND INCONSISTENCY
Multi-sensor tracking systems suffer from the problem of
synchronization and inconsistency. It becomes more difficult
to achieve synchronization as the number of nodes in the sys-
tem increases. The effect of communication delay becomes
more severe in larger multi-sensor networks. Even small
time delays can deteriorate the performance of the system
or even destabilize it. Coordination can be achieved for the
discrete-time delayed systems with linear dynamics [76]. The
output synchronization of nonlinear systems with communi-
cation time delays was discussed in [77]. A new framework
was proposed in [78] to address the synchronization of com-
plex networks.

V. NUMERICAL RESULTS
We demonstrate the efficacy of multi-sensor δ-GLMB to
track space debris through three experiments. The first exper-
iment shows that the proposed δ-GLMB filter can provide
estimation for targets outside of the observation volume.
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The second experiment shows the δ-GLMB tracking perfor-
mance for sensors with complementary observation volumes.
The third experiment shows that the multi-sensor δ-GLMB
filter significantly improves the tracking performance over
single sensor δ-GLMBfiltering and the centralized CPHDfil-
ter. Three sensors with complementary observation volumes
are used in the second experiment. Sensors in The target state
can be represented by a vector, xk = [px py pz vx vy vz]T

with position and velocity on x, y and z direction. The state
transition model is:

xk+1 = f (xk )+ wk

The transition density function is obtained with the
help of Turboprop and is denoted by f (·). wk ∼

N (·; 0,Q) is the transition process noise with Q =

diag([σ 2
px , σ

2
py, σ

2
pz, σ

2
vx , σ

2
vy, σ

2
vz]), σpx = σpy = σpz = 1 km,

σvx = σvy = σvz = 0.01 km/s. The birth model to generate
the simulation scenario is a Labeled Multi-Bernoulli RFS
with parameters πB = {r

(i)
B , p

(i)
B }

5
i=1 where r (i)B = 0.02 and

p(i)B (x) = N (x;m(i)
B ,PB) with

m(1)
γ = [8368.9 km,−191.1 km, 0.0217 km,

0.1577 km/s, 6.8986 km/s, 0 km/s]T

m(2)
γ = [8386.9 km,−236.09 km,−111.47 km,

0.214 km/s, 5.966 km/s, 3.448 km/s]T

m(3)
γ = [8406.9 km,−201.6 km,−166.6 km,

0.2134 km/s, 4.8651 km/s, 4.8658 km/s]T

m(4)
γ = [8347.8 km,−208.9 km, 95.56 km,

0.1894 km/s, 5.9807 km/s,−3.4534 km/s]T

m(5)
γ = [8326.6 km,−206.24 km, 170.8 km,

0.2216 km/s, 4.889 km/s,−4.889 km/s]T

Pγ = diag([10 km, 10 km, 10 km,

0.01 km/s, 0.01 km/s, 0.01 km/s])

Note that the birth model is only used to generate target
trajectories and this information is not available to nodes.

A Poisson RFS with intensity κk (z) = λcVu(z) is used to
model the clutter. The uniform density over the observation
volume is denoted by u(·), V is the ‘‘volume’’, and λc is the
average number of clutter returns per unit volume, 400 in this
paper.

In the demonstration, the observation task is performed
with three nodes. The sensor’s observation is a noisy bearing
and range vector given by

zk =



√
p2x,k + p

2
y,k + p

2
z,k

arctan
(
py,k
px,k

)
arctan

 pz,k√
p2x,k + p

2
y,k




+ εk

where εk ∼ N (·; 0,Rk ) with

Rk1 = diag([σ 2
r1, σ

2
α1, σ

2
β1]),

σr1 = 0.12 km, σα1 = 0.02◦ σβ1 = 0.01◦

Rk2 = diag([σ 2
r2, σ

2
α2, σ

2
β2]),

σr2 = 0.22 km, σα2 = 0.01◦ σβ2 = 0.01◦

Rk3 = diag([σ 2
r3, σ

2
α3, σ

2
β3]),

σr3 = 0.05 km, σα3 = 0.02◦ σβ3 = 0.02◦

1 = 1s is the sampling period. The detection probability
inside the observation volume pDin = 0.98. The survival
probability for the first and the second experiment is pS1 =
0.999 and pS2 = 0.99, respectively.
The δ-GLMB filter is capped to 10000 components.

Results are shown over 100 Monte Carlo trials. The Optimal
Sub-Pattern Assignment (OSPA) metric is used to evaluate
the performance [79]. OSPA is a mathematically consistent
metric used for performance evaluation in multi-object track-
ing situations. The Euclidean distance is set to p = 2 and the
cutoff parameter is set to c = 1.5 km in this paper.

A. SINGLE SENSOR WITH LIMITED
OBSERVATION VOLUME
This experiment is to show that the δ-GLMBfilter with detec-
tion probability set to zero outside the observation volume can
provide estimation for targets when they go outside the obser-
vation volume. Five targets are presented here as an example.
The observation region for node1 is V1 = [0 2800] km ×
[−10◦ 15◦] × [−10◦ 10◦]. The estimation for δ-GLMB with
uniform detection probability setting is shown in Figure 3a.
The estimation for δ-GLMB with detection probability set to
zero outside the observation volume is shown in Figure 3a.
The solid blue lines represent the true tracks and the black
dots represent the estimations.

It can be seen that both filters provide accurate estimation
for targets inside the observation volume. However δ-GLMB
with uniform detection probability setting does not provide
estimation for targets outside of the observation volumewhile
the δ-GLMB proposed in this paper can.

When the δ-GLMB filter has a uniform detection probabil-
ity setting, there is no estimation for the target if there is no
measurement captured. Because there is no measurement to
update the prediction, the weight for the corresponding item
will drop and the filter will assume that the target dies. With
the detection probability setting and the EM algorithm used
in this paper, when the target goes outside the observation
volume and there is no measurement available, the prediction
part can be preserved and the estimation is essentially the
prediction.

B. CENTRALIZED δ-GLMB TRACKING FOR SENSORS WITH
COMPLEMENTARY OBSERVATION VOLUMES
This subsection is to show the effectiveness of centralized
δ-GLMB Tracking for sensors with complementary obser-
vation volumes. Fusion algorithms with uniform detection
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FIGURE 3. δ-GLMB estimation with different detection probability setting. (a) δ-GLMB estimation with uniform detection probability.
Estimation is only provided for targets inside the observation volume. (b) δ-GLMB with detection probability set to zero outside the
observation volume. Estimation is also available for targets outside the observation volume.

probability settings must consider the observation volume
overlaps, which makes the fusion much more difficult when
more sensors are used. With the approach used in this
paper, estimation for objects outside the observation vol-
ume is available. Then the fusion can be performed in
the same way as for sensors with the same observation
volume.

Three sensors observing from the same location are used
in this experiment. The location is L = (0◦, 0◦). The obser-
vation volumes for the three sensors are

V1 = [0 2800] km× [−10◦ 15◦] × [−30◦ 30◦]

V2 = [0 2800] km× [15◦ 25◦] × [−30◦ 30◦]

V3 = [0 2800] km× [25◦ 35◦] × [−30◦ 30◦]

This ensures that all of the space debris is inside the combined
observation volume of all of the sensors. The OSPA perfor-
mance of a single sensor and the centralized system are shown
in figure 4. This figure shows that a single sensor δ-GLMB
can provide good estimation for objects when they are inside
the observation volume. However, the estimation results are
poor when there are no measurements for objects outside
of the observation volume and only the prediction model is
available. Since all of the space debris is in the combined
observation volumes of all sensors, the tracking performance
from centralized δ-GLMBcan provide good estimation all the
time.

FIGURE 4. OSPA distance for single sensor δ-GLMB filtering and
centralized δ-GLMB filtering with complementary observation volumes.

C. MULTI-SENSOR δ-GLMB TRACKING FOR SENSORS
WITH SIMILAR OBSERVATION VOLUMES
This experiment is to show that the multi-sensor δ-GLMB
can significantly improve the tracking performance. All three
nodes are on the surface of the Earth. The latitude and longi-
tude of node1, node2 to node3 are

L1 = (0◦, 0◦), L2 = (30◦N , 0◦), L3 = (30◦S, 0◦),
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FIGURE 5. Cardinality estimation from single δ-GLMB filtering and
centralized δ-GLMB filtering with similar observation volumes.

FIGURE 6. Cardinality estimation standard deviation for single δ-GLMB
filtering and centralized δ-GLMB filtering with similar observation
volumes.

respectively. Node1 is on the x-z plane initially. All three
nodes rotate with the Earth. The surveillance regions for
node1, node2 and node3 in this experiment are:

V1 = [0 2800] km× [−10◦ 15◦] × [−10◦ 10◦]

V2 = [0 4500] km× [−10◦ 15◦] × [−88◦ − 65◦]

V3 = [0 4500] km× [−10◦ 15◦] × [65◦ 85◦]

respectively.
The mean values of the cardinality estimation for single

sensor δ-GLMB filtering and the centralized δ-GLMB filter-
ing are shown in Figure 5. We can see that both filters show
good performance for cardinality estimation.

The standard deviations for single sensor δ-GLMB fil-
tering and the centralized δ-GLMB filtering are shown
in figure 6 and show that the estimated cardinality variance

FIGURE 7. OSPA distance for single δ-GLMB and centralized δ-GLMB with
similar observation volumes and their localization and cardinality
components.

performance from the centralized δ-GLMB filtering is better
than the single sensor δ-GLMB filtering.

The OSPA distance for single sensor δ-GLMB filtering
and centralized δ-GLMB filtering are shown in figure 7. It is
shown in the figure that multi-sensor δ-GLMB filtering out-
performs the single sensor δ-GLMB filtering on the overall
miss distance and on both the localization and cardinality
components.

FIGURE 8. OSPA distance for single centralized CPHD and centralized
δ-GLMB and their localization and cardinality components.

The comparison between centralized CPHD filtering and
centralized δ-GLMB filtering is shown in figure 8. It can
be seen that the centralized δ-GLMB filter shows much
better performance than the centralized CPHD filter on the
overall miss distance. Both filters show very good per-
formance on the cardinality component. The centralized
δ-GLMB filter outperforms the centralized CPHD filter on
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the localization component. The improved localization per-
formance is attributed to two factors: (a) the δ-GLMB filter
can better localize targets because of a more accurate filtering
density propagation, and (b) the spooky effect of CPHD:
when a target is undetected, the PHD mass in this vicinity
is shifted to the vicinity of the detected targets.

VI. CONCLUDING REMARKS
This paper details the implementation of a multi-sensor
δ-GLMB filter for space debris tracking. This proposed algo-
rithm is general enough to accommodate non-linear target
dynamics, clutter intensity, non-uniform detection probabil-
ity and unknown and time-varying number of targets. The
key innovation lies in the numerical implementation of the
centralized δ-GLMB update and the truncation of densities
without exhaustively computing all the components. The
proposed algorithm can provide state information for tar-
gets outside of the observation volume. Experiments confirm
that the proposed system shows excellent performance for
multi-sensor space debris tracking. The space-debris tracking
problem is of concern to all countries. While it is clear that
organizations with significant resources can afford to use a
centralized system, the method proposed in this paper is less
resource intensive.
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