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ABSTRACT A graph is said to be vertex bi-primitive, if it is a bipartite graph, and the setwise stabilizer of its
automorphism group acts primitively on two bi-parts. In this paper, we not only classify vertex bi-primitive
2-arc transitive graphs admitting a two-dimensional linear group but also determine the automorphism groups

and the number of non-isomorphic ones of such graphs.

INDEX TERMS Arc-transitive graph, coset graph, vertex bi-primitive.

I. INTRODUCTION
In this paper, we assume that all graphs are finite, simple and
undirected.

Denote by X a finite connected graph with vertex set V (X)
and edge set E(X). Let Arc(X) and Aut(X) be the arc set and
full automorphism group of X, respectively. For a positive
integer s, an s-arc in a graph X is an ordered (s + 1)-tuple
(vo, v1, - -+, vg) of s + 1 vertices such that (vi_1, v;) € A(X)
forl < i < sandvi_; # vy forl < i < s— 1.
For a subgroup G of Aut(X), the graph X is said to be
(G, s)-arc-transitive if G acts transitively on the set of s-arcs
of X. A graph X is said to be s-arc-transitive, if it is
(Aut(X), s)-arc-transitive. Throughout this paper, we will
denote by Z,, the cyclic group of order n, by D>, the dihedral
group of order 2n, and by A, and S, the alternating group and
the symmetric group of degree n, respectively.

Since Tutte (1947) [28] proved that there exist no finite
s-transitive cubic graphs for s > 6, s-transitive graphs has
received lots of attention. For example, Weiss [29] proved
that there exists no 8-arc transitive graphs of valence at least 3.
Praeger [25] started a general analysis of automorphism
groups of 2-arc transitive graphs, and Fang and Praeger [9]
classified finite 2-arc transitive graphs admitting a Suzuki
simple group. Let p and g be primes. Li et al [21] and
Praeger and Xu [26] classified vertex primitive symmetric
graphs of order kp with k < p, and Ivanov and Praeger [17]
classified affine primitive 2-arc transitive graphs. Li [18]
classified vertex primitive and vertex bi-primitive s-transitive
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graphs for s > 4, Fang et al. [8] classified vertex primitive
2-arc regular graphs, and Li ef al. [19] classified vertex prim-
itive and vertex bi-primitive s-arc-regular graphs for s > 3.
Recently, Pan ef al. [23] classified connected 2-arc-transitive
primitive and bi-primitive graphs of fourth-power-free order.

Now we first introduce the so called coset graph (see [24],
[27]). Let G be a finite group, H a subgroup of G, and D a
union of several double-cosets of the form HgH with g ¢ H
such that D = D~!. The coset graph X = Cos(G, H, D) of G
with respect to H and D is defined as the graph with vertex set
V(X) =[G : H], the set of right cosets of H in G, and edge set
E(X) = {{Hg, Hdg} | g € G, d € D}. Itis easy to see that X
is well defined and has valence |D|/|H| = |H : H N HE|.
Further, X is connected if and only if D generates G, and
X is G-arc-transitive if and only if D = HgH, a single
double coset. Denote by Hg the largest normal subgroup of
G in H. Then H; = ﬂgeGHg and if Hz; = 1, we say
that H is core-free in G. In what follows, we always assume
that H is core-free in G whenever we mention a coset graph
Cos(G, H, D).

Next, we introduce the concept of standard double
cover. Let X be a graph. The standard double cover X® of X
is defined as the graph with vertex set {u1, up |u € V(X)} and
edge set {{u1, va}, {uz, v1} | {u, v} € E(X)}. The finite vertex-
primitive 2-arc transitive graphs admitting a two-dimensional
linear group is completed by author in [15]. In this paper,
we classify vertex bi-primitive 2-arc transitive graphs admit-
ting a two-dimensional projective linear group. Furthermore,
we determine the automorphism groups and enumerate the
number of non-isomorphic ones of such graphs.

Finally, we state the main results of this paper.
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TABLE 1. The vertex bi-primitive (G, 2)-arc-transitive graphs.

€] G~ H E
X1  PGL(2,5) PSL(2,5) Dg 3
Xo  PIL(2,27) PYL(2,27) Deg.Z3z 7
X3 PGL(2,p) PSL(2,p)  Dpy1 el
p=11,19
X,  PGL(2,p) PSL(2, p) Dp_1 pd
p=13,37
X5  PGL(2,p) PSL(2,p) A4 4
p = +3,£13 (mod 40)
X  PGL(2,3%) PSL(2,3) A4 4
X7  PGL(2,p) PSL(2, p) 5 5
p = 11,419 (mod 40)
Xg  PGL(2,p) PSL(2,p)  As 6
p = 19 (mod 20)
Xo  PGL(2,q) PSL(2,q)  As 6
q = p? =9 (mod 20)
X0 M(1,q) PSL(2,q) As 6

q = p? =9 (mod 20)
X11 PGL(Q,p)

p = £7 (mod 24)
X12 PGL(Q,p)

p = £7 (mod 16)
X135 PGL(2,9)
X114 Mo
X15  PT'L(2,9)

PSL2p) S
PSL(2, p) Sa 3
PSL(2,9) Sa

PSL(2,9) Sa
PSL(2,9)

wWww

TABLE 2. The automorphism group of (G, 2)-arc-transitive bi-primitive
graphs.

G Aut(X;) n
X:  PGL(Z,5) PGL(2,5) 1
X, PIL(2,27) PTL(2,27) 1
X3 PGL(2,p) PGL(2,p) 1
p=11,19
X4 PGL(2,p) PGL(2,p) 1
p=13,37

X5  PGL(2,p)
p = 3,213 (mod 40)

PGL(2,p) (2] -1

Xo  PGL(2,3/)(f >3)aprime PGL(2,3/) 373
PGL(2,37)(f = 3) PGL(2,3%) 1
PGL(2,3%)(f = 3) PI'L(2,3%) 1

X7  PGL(2,p) PGL(2,p) 1
p = £11, 419 (mod 40)

Xs  PGL(2,p) PGL(2,p) 1
p = 19 (mod 20)

Xo  PGL(2,q) PIL(2,q) 1
q = p? = 9 (mod 20)

X0 M(1,9) PI'L(2,q) 1
q = p? = 9 (mod 20)

X11 PGL(2,p) PGL(2,p) 1
p = %7 (mod 24)

X2 PGL(2,p) PGL(2,p) 1
p = £7 (mod 16)

X3  PGL(2,9) PIL(2,9) 1

X14 Mo PI'L(2,9) 1

X5 PIL(2,9) PI'L(2,9) 1

Theorem 1: Let X be a (G, 2)-arc transitive bipartite graph
of valence k > 3, and let G* be a subgroup of G, which has
the socle PSL(2, ¢), and acts primitively on each partite of X,
where g = p/ for some positive integer f and prime p. Then X
is either a complete bipartite graph, a standard double cover of
vertex primitive graphs, or a coset graph Cos(G, H, HgH ) as
given in Table 1. Furthermore, the automorphism groups and
the number of non-isomorphic ones of such graphs as given
in Table 2.
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Il. PRELIMINARY RESULTS
We first recall some group-theoretic results. By [16, Chapter
I, Lemma 8.21] or [15, Proposition 2.4], one has the follow-
ing proposition.

Proposition 2: Let G be a subgroup of PSL(2, pf ), and let
P # 1 a Sylow p-subgroup of G, and N = Ng(P). Then P is
isomorphic to a subgroup of the additive group GF(p/)*, and
there is a subgroup Z of Gsuchthat N = PZand PNZ =1,
where Z = 1 or Z is a maximal cyclic subgroup of G, |Z|
|P|—land|Z| | p/ — 1.

Note: Let f = sm, G = PSL(2, p®) and P be a Sylow-p
subgroup of G. If both p and m are odd, then |Z| | %. Since

. . .o p—1
the order of maximal cyclic subgroup of PSL(2, phis >

if |Z] = |P| — 1 then p® — 1 | [% It implies that the power
of 2 of pf — 1 is more than the power of 2 of p* — 1, which is
impossible because pf — 1 = (p*)" — 1 = (p* — D[(P*)" ! +
(pS)m—Z I +[7S +1], and (pS)m—l + (px)m—Z I +ps +1
is an odd.

Next, we give some characteristics of coset graph.
By Godsil [12] and Dobson [7], one has the following
proposition.

Proposition 3: Let G be a finite group, H be a core-free
subgroup of G and D a union of several double-cosets HgH
with ¢ ¢ H such that D = D~!. Let X = Cos(G, H, D),
A = Aut(X) and o(g) the automorphism of G induced
by the conjugate of g € G on G. Then Ni(R(G)) =
R(G)Aut(G, H, D) and R(G) N Aut(G, H, D) = I(H), where
Aut(G,H,D) = {a € Aut(G) | H* = H,D* = D} and
I(H)y={o(h) | he H}.

Remark: 1f the coset graph X = Cos(G, H, D) is R(G)-arc
transitive then D = HgH, a single double coset of H in G.
In this case, I(H) is transitive on the neighborhood of the
vertex H in X and so is Aut(G, H, D).

As we known, if we use coset graph Cos(G, H, D) to char-
acterize 2-arc-transitive graphs admitting a given group G,
the most important thing is to find an 2-element g (or proving
no existence of g) satisfying H acts 2-transitively on the set
of cosets [H : H N H8)]. We give a condition to guarantee the
2-arc transitivity and bi-primitivity of the graph.

Lemma 4: Let X be a connected (G, 2)-arc-transitive
graph with valency at least 3, where G < Aut(X) is
bi-primitive on the vertex set V(X). Then there exists a index
two subgroup G* of G, a core-free maximal subgroup H of
G*, and a maximal subgroup L of H with index at least 3
satisfying the following condition.

Condition 1: The normalizer NG(L) has a subgroup R ¢
H such that R = L.Z; and the action of H on [H : L] by
multiplication is 2-transitive, and there exists a 2-element g €
R\ H suchthat (H,g) =G

In particular, X = Cos(G, H, HgH), where g € R\ H.
Conversely, if G has a index two subgroup G*, G* has a
core-free maximal subgroup H, and H has a maximal sub-
group L with index at least 3 satisfying Condition 1/, then the
coset graph Cos(G, H, HgH) with g € R\ H is a connected
(G, 2)-arc-transitive bi-primitive graph with valency |H : L|.
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Proof: Letu € V(X) and H = Gy. By [9, Theorme 2.1],
there exists a 2-element g such that X = Cos(G, H, HgH),
where g € H. Let L = H N H8. Then H acts 2-transitively
on [H : L] by multiplication, implying that L is maximal in
H with |H : L| = Val(X) > 3. Further, as L8 = H¢ NHE =
HS8NH =1L,g € Ng(L). Since (H,g) = G, g ¢ H and
g> € L. ThenR = (L,g) = L.Z, ¢ H is a subgroup of
Ng(L).

For the converse, suppose that G has a index two
subgroup G*, and G* has a core-free maximal subgroup H,
and H has a maximal subgroup L with index at least 3 satis-
fying Condition 1. Then G* is intransitive on V(X) because
if G* is transitive then G = G*.H = G*. Take g € R\ H,
one has g € Ng(L),and L € HNHS. If H = H N HS,
then g normalizes H, and H € (H,g) = H : Z» = G,
which contradicts that |G : H| = |V(X)| > 3. Hence, by the
maximality of L in H, one has L = H N H&. It is easy to
see that Cos(G, H, HgH) is a connected (G, 2)-arc-transitive
vertex bi-primitive graph with valency |H : L|.

For convenience, we always suppose X = Cos(G, H,
HgH), where H = Gy,,u € V(X). Letv = u8 and L =
G,y = H N H&. Then H is 2-transitive on [H : L] by right
multiplication. In particular, L is a maximal subgroup of H
with index > 3. Furthermore, Ng(L) has a subgroup R Q H
such that R = L.Z;.

Next, by [15], we have the lemma about the number of non-
isomorphic ones of such graph.

Lemma 5 [15, Lemma 2.7]: Let G be a finite group.
Assume that G has a core-free subgroup H, and assume
further that H contains the subgroup L = H N H¢& such that
Ng(L) = L.Z, and Ny (L) = L. If L has unique conjugate
class in H, then there is unique non-isomorphic graph X =
Cos(G, H, HgH) such that X is a connected G-arc transitive
graph.

Finally, the lemma is crucial for determining the full
automorphism group Aut(X).

Lemma 6: Let (G, H) be a pair given in Tables 1, and let
X = Cos(G,H,HgH) for some g € R\ H, where R is
as defined in Lemma 4. Then G is normal in Aut(X), and
Aut(X) < Aut(T'), where T = soc(G), the socle of G.

Proof: Let A = Aut(X). Setn = |V(X)|. Then T < G <
A < Sym(n). Suppose that soc(A) # T. Then there exist
groups F1 and F suchthat G < F; < F < A < Sym(n),
T = soc(F1) # soc(F), and F is maximal in F. Note that G
is almost simple and transititve on V(X), all the possibilities
for (F1, F) are list in [22]. For Table 1, inspecting these pairs,
there are not pairs (7', soc(F)) satisfying these conditions.
Therefore, for any X = Cos(G, H, HgH) in Table 1, one has
soc(A) = T, and A < Aut(T). Checking the groups listed
in Table 1, it is easily shown that G < Aut(T),so G JA. [

lll. VERTEX BI-PRIMITIVE GRAPHS
Suppose G is biprimitive on V with two parts A1 and A». Let
G* = Gp, = Ga,.

VOLUME 7, 2019

Lemma 7: Let G* be an almost simple with T = soc(G*),
and let X be a (G, 2)-arc transitive vertex bi-primitive graph.
Then either G is an almost simple, or X is the standard double
cover of a vertex-primitive (G*, 2)-arc transitive graph.

Proof: Assume that G is not an almost simple group.
It follows that C := Cg(T) # 1. Since |G : G*| = 2 and
Co+(T) = 1, we have that C = Z,. Now C < G, and it
then follows that G = G* x Z;. Let I'¢ be the quotient of
I induced by C. By [13, Proposition 2.6], I' is a standard
double cover of I'c. Further G* = G/C < Aut(I'¢). Then
G/C is primitive on V(I'¢), and by [25, Theorem 4.1], "¢ is
(G/C, 2)-transitive. O

Proof of Theorem 1: Let g = p/ . Since G* is primitive on
A;, where i = 1, 2. Suppose that G* acts unfaithfully on A;.
Then the pointwise stabilizer K1 = (G*)a,) # 1 and K| <
G*. Since (G*)”? is primitive, K acts transitively on A,. This
implies that X is a complete bipartite graph K; ; for some ¢t >
3, a contradiction. Thus, G* acts faithfully and primitively on
A1 and Ay, which implies that 7 is transitive on A;(i = 1, 2).
Assume that X is not a standard double cover of vertex
primitive graph. Then by Lemma 7, G is an almost simple
group with soc(G) = soc(G*) = T. Suppose T is primitive on
Aj, T, is a maximal subgroup of 7. By [6, Section 239], T, €
{D@, Z{):pr;l ,As, Sa, Ag, PGL(2, p"), PSL(2, p*)},

where d = (2, qd— 1), 2r = f, sm = f with m an odd prime.

For ¢ = 5, it is obvious that G = PGL(2,5) and
H = A4,7Zs x Zp or Dg. Then V(X) = 10,12 or 20,
respectively. Checking these graph of order 10, 12, there are
not these biprimitive graphs. For H = Dg, one has L = Z,
and Ng(L) = Ds. Obviously, there is an involution g €
Ng(L) \ L such that Ng(H) < (H,g) = G. By lemma 4,
the coset graph X = Cos(G, H, HgH) is a connected 2-arc
transitive biprimitive graph which is a graph defined in row 1
of Table 1, which is isomorphic to the generalized Petersen
graph X = GP(10, 2), which is isomorphic to the coset graph
X = Cos(G, H, HgH).

For ¢ = p/ > 5, suppose that T, = ZJ;:Z[,f,] . Since

d
G* is at least 2-transitive on A;, one has X = K11 441,
a contradiction.
Suppose that T, = Dag+1y. Then T,,, = Dagx. Let O be

a subgroup of the outer audtomorphism group of G*. By [23,
Corollary 3.2], one has H = D2+ .0, and L = D+ .0,

where ¢ is an odd prime and divideds g+ 1. WhenT,, SédtZz or
Z%, we claim that there is no subgroup of G which is isomor-
phic to L.Z;. Suppose that there exists a subgroup R which is
isomorphic to L.ZI%. %et R = IIS.}g) =II€ UOLgT, WhereGg2 elL.
On the one hand, % = ‘|Ll\‘-|1|elT\‘ = lﬁ% = 2'—'| >2
On the other hand, RNT = (LULg)NT = (LNT)U(LgNT) =
Tw U (LgNT). Forany h,t € LgN T, since g2 € L, one
has ht=! € L N T, that is, ht~' € T, which implies that
Tyyh = Tyt It follows that [RNT| < |Ty,y U Typt| < 2|Tyl.
Thus, |RNT| = 2|T,y|,and T,,, <RNT < T,RNT =T,,. 7.
IfT,, 2 7Z> or 72, then there is an element a € T, such that
RNT < Nr({a)) = T,, which is contradict to 2 t |T}, : T, |.
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Thus Ng(L) = L. By the claim and by Proposition 4, no graph
aries. Assume that 7, = Z; or Z%. By the 2-transitivity
of Hon [H : L] = [T, : Tw] = 9, for even g, it is
easy to see that ¢ = 8 with T, = Dy4,T,, = Z;. Since
|Aut(T) : T| = 3, there is no subgroup G of Aut(T) such that
|G : T| = 2, a contradiction. For odd ¢, if T, = Dy then
g =p = 11,19,27 with T, = Z3, and if T, = Dy then
q=p=27withT,, = Zrorq = p = 13,37 with T,,, = Z3.
It follows that G = PGL(2,p),H = Dpy(,L = Zg with
p= 11,19 or G = PGL(2,p),H = Dp_1,L = Zj with

= 13,37 0or G = PT'L,(27),H = Dyg. Z3,L = Z Z3.
For G = PI'L,27),H = D3.73,L = Z .Z3, one has
Ng+(L) = A4.Z3,NG(L) = S4.Z3, and NG(H) Dy6.Dg
by Magma [2]. Let g € Ng(L) \ L be an involution, one has
Ng(H) < (H, g) = G. It follows that the coset graph X =
Cos(G, H, HgH) is a connected 2-arc transitive biprimitive
graph by lemma 4, and X is a graph as in row 2 of Table 1. For
G =PGL(2,p),H = Dpy1(p=11,190r D, ((p = 13,37)
and L = 73, one has Ng+(L) = A4,NG(L) = S4 and
NGg(H) = Djpt1) or Dyp_1y depending on H = Dj4q
or Dp_1. Let g € Ng(L) \ L be an involution. Obviously,
Ng(H) < (H,g) = G. By lemma 4, the coset graph X =
Cos(G, H, HgH) is a connected 2-arc transitive biprimitive
graph, and defined in rows 3-4 of Table 1.

Suppose that 7, = A4. Then ¢ = p =
3, 13,27, 37 (mod 40), implying that Out(T) = Z,, G =
PGL(2,p) and H = T,. If L = Ty, = Z3, then Ng+(L) =
A4 = H,and Ng(L) = S4 = Ng(H). For any g € Ng(L)\ L,
one has (g, H) = Ng(H) # G, no graph appears. Let
L = T, = Z3. Then L is conjugate to a subgroup of
Dyt or Dy—, depending on 3 | ¢ + 1 or ¢ — 1. It follows
that Ng«(L) = Dgyy1 or Dy, and Ng(L) = D441y OF
Dy4—1). There are 2-elements g € Ng(L) \ Ng+(L) such that
(H,g) =G.ByLemma4, X = Cos(G, H, HgH) is a (G, 2)-
arc-transitive graph of valency 4, and X is a graph as in row
5 of Table 1.

Suppose that T, = PSL(2, p*), where sm = f for some
odd prime m. When p* = 2, f = m is an odd prime and
T, = PSL(2,2) = S3. In this case, Ty < D4y is not
a maximal subgroup of T, a contradiction. When p* = 3,
f = mis an odd prime and 7, = PSL(2, 3) = A4. Since
both G} and T, are 2-transitive groups of degree 4, one may
assume G* = T. It implies that G = PGL(2,3/), H = A4
and L = Zs. By the subgroup of PSL(2, g) (see [6]), one
has Ng«(L) < Z Z3f .- Obviously, Ng=(L) = j;, and
Ng(L) = Ng=(L).Z. It follows that there are 2-elements
g € Ng(L) \ Ng+(L) such that (H,g) = G, and X is a
(G, 2)-arc-transitive graph of valency 4 which give rise to
the examples as in row 6 of Table 1. When p* > 3, one
has T,, = PSL(2, p*) is insolvable. By [4, Theorem 5.2, 5.3 ],
G} is an almost simple with soc(G}) = T,, and T{ W s
2-transitive except for p* = 8 with degree 28. For p* = 8§,
one has H = PXL(2, 8), and G* = PXL(2, 2°™) with m odd
prime. Since Aut(G*) = G*, there is no an almost group G
which has a index 2 subgroup G*. Then we may assume that
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G* =T,H = T, = PSL(2, p*). Since H has a 2-transitive
permutation representation, by [4, Theorem 5.3 ] one has
L = ZS tZpa, L =As(p® = 11,9), or L = A4(p® = 5).
LetL = Z* Py Pt We claim that Ng+(L) = L. Set N = ZA
Suppose that L < Ng*(L) By [11, Proposition 3.2], one has
Ng+(L) < Ng=(N) < Z pr - Let Ng=(L) = Zl Zy,

where ¢ > s. By Proposition 2 , one has / | @ — 1) Slnce

L < Ng=(L), and by the note of Proposition 2, [ = T Let
M = Z 51 beasubgroup of L. Since Np.(M) = M, the length

of conjugacy class of M in L has p®. Let 2 be the set of all the
subgroups which conjugacy to M in L. Then we may consider
the action of the subgroup ZI’, of Ng+(L) on €2. Suppose ¢ > s.
Then there is an element g of order p such that M&¢ = M,
which is impossible. Thus, t = s, implying that Ng=(L) =
Next Ng(L) < Ng(PSL(2, p*)) = Ng(H), no graph appears.
Let L = As(p®* = 11,9) or L = A4(p® = p = 5). Similarly,
Ng+(L) = L, and Ng(L) = Ng(PSL(2,p%)) = Ng(H),
no graph appears.

Assume that T, = As. Then ¢ = p = +£1 (mod5),
orq = p* = —1(mod 5) with p an odd prime. By [4, Theorem
5.3], T{(“) is 2-transitive. So we may suppose G* = T
and H = T,. It follows that L € {A4, D1g}. Assume that
g = p = £1 (mod5). Then G = PGL(2,p). If L = Aq4,
then Ng(L) = S4. By Lemma 4, if Ng=(L) = S4, no graph
appear. Since G* contains a subgroup isomorphic to Sz if and
only if 16 | ¢*> — 1. Then L = Ng«(L) < Ng(L) = S4 if
and only if 16 { ¢> — 1. Note that g = p = =1 (mod 5).
Then ¢ = p = =+£11, £19 (mod 40). It follows that there
is a 2-element g € Ng(L) \ Ng=(L) such that (H, g) = G.
By Proposition 4, the coset graph Cos(G, H, HgH) is a con-
nected pentavalent vertex bi-primitive (G, 2)-arc transitive
graph as in row 7 of Table 1. If L = Dy, then Ng(L) = D>g
by the subgroup of PGL(2, ¢) (see [3, Theorem 2]). Since
G* contains a subgroup isomorphic to Dyg if and only if
20 ] g=*1, and G contains a subgroup isomorphic to Dy if and
only if 20 ‘ 2(g £ 1), one has L = Ng+(L) < Ng(L) = D»g
if and only if ¢ # 1 (mod 20) and 20 | 2(q £ 1). Note
that g = p = %1 (mod 5). Then ¢ = p = 9 (mod 20).
Thus, when ¢ = p = £9 (mod 20), there are 2-elements
g € Ng(L) \ L such that (H,g) = G. By Lemma 4,
the coset graph Cos(G, H, HgH) is a connected pentavalent
2-arc transitive biprimitive graph as in row 8 of Table 1.
Assume that g = p? = —1(mod 5). Let L = Ay.
¢*—1=p*—1,onehas Ng+(L) = S4. By [11, Theorem 3.5],
if G = PGL(2, g) then Ng(L) = Ng+(L) = S4, no graph
appears. Again by [11, Theorem 1.3, 1.5], for G = M(1, q)
or PXLy(q), either Ng(L) = S4 or Ng(L) < Ng(PSL(2, p)).
For G = M(1, q), one has Ng(PSL(2, p)) = PGL(2, p). Then
Ng(L) = Ng=(L) = S4,no graph appears. For G = PXL»(q),
one has Ng(PSL(2, p)) = PGL(2, p) x (¢), where ¢ is a field
automorphism of order 2. Then Ng(L) = S4 x (¢). There
is an involution g € Ng(L) \ Ng+(L) such that (H, g) = G.
It follows that the coset graph Cos(G, H, HgH ) is a connected
pentavalent 2-arc transitive biprimitive graph. We claim that

VOLUME 7, 2019



X. Hua: Finite Vertex Bi-Primitive 2-Arc Transitive Graphs Admitting a Two-Dimensional Linear Group

IEEE Access

itis a standard double cover. Let ¥ = {g|g € Ng(L)\Ng+(L),
and gisa2-elements}. Let K = Ng(H)NNg(L) = S5N(S4 x
(¢)) = Sa. Obviously, K transitively acts on X. Furthermore,
forany g = a;¢p € X (a; € S4), there is k € K = S4 such
that (HgH)* = (HapH)* = (Hd*¢H) = (Ha;'¢H) =
H(a;¢)"'H. Since the order of a; is 2 or 4, one may assume
that & is an involution. Then k may induce a inner automor-
phism o (k) of R(G) by conjugate, and then R(G) x o(k) =
R(G) x (k') < Aut(X), where k' = R(k)o (k) € L(G), the left
regular representation L(G). By [13, Proposition 2.6], X is
a standard double cover as the claim. Let L = Djg. Then
G* contains a subgroup of isomorphic to L.Z; if and only

if 20 | g & 1. Recall that ¢ = p> = —1 (mod 5), one
has Ngx(L) = L and g = p2 = 9 (mod 20) because there
is no prime p such that ¢ = p?> = —1 (mod 20). By [11,

Theorem 1.3,1.5, 3.5], Ng(L) = L.Z, < G if and only if
Ng(L) < S5 with G = PXL(2,q) or Ng(L) < Ng(Dg+1)
with 10|g & 1. Obviously, if G = PXL,(g) and Ng(L) < Ss,
then no graph appears because H < S5, implying that there
is no element g € Ng(L) \ H such that (H, g) = G. Thus,
for g = p2 = 9 (mod 20), G = PGL(2, ¢) or M(1, g), one
has Ng(L) = Dyo and there is an involution g € Ng(L) \
H such that (H,g) = G. It follows that the coset graph
X = Cos(G, H, HgH) is a connected (G, 2)-arc transitive
biprimitive graph of valency 6, and X is a graph as in row
9-10 of Table 1.

Assume that 7, = S4. Then ¢ = p = %1 (mod 8) and
G = PGL(2, p),and then H = S4 and L = Dg or Dg. Suppose
that L = Dg. Then Ng=(L) contains a subgroup isomorphic
to L.Z; if and only if 12 ‘ (p £ 1), thatis, p = £1 (mod 12).
Thus, if g = p = £1 (mod8) and p = =+1 (mod 12)
then Ng«(L) = Ng(L), no graph appears. If ¢ = p =
41 (mod 8) and p # £1 (mod 12), then Ng+(L) = L. By [11,
Theorem 3.5], L.Z, < G if and only if 12 | 2(p £ 1), that is
p = %1 (mod 6). So, Ng(L) = L.Zp > Ng+(L) = L if and
only if p = £7, 17 (mod 48). Let g € Ng(L) \ L be an
involution. By [11, Theorem 3.5], (H, g) = G. It follows that
the coset graph X = Cos(G, H, HgH) is a connected (G, 2)-
arc transitive biprimitive graph, and X is a graph as in row
11 of Table 1. Suppose that L = Dg. Then Ng=(L) contains
a subgroup isomorphic to L.Z; if and only if 16 ] ((Z==00}
that is, p = %1 (mod 16). Thus, if g = p = %1 (mod 8)
and p = %1 (mod 16) then Ng+(L) = Ng(L), no graph
appear. If ¢ = p = £1 (mod 8) and p # =1 (mod 16),
then Ng+(L) = L. By [11, Theorem 3.5], L.Z, < G if and
only if 16 | 2(p £ 1), thatis p = +1 (mod 8). So, Ng(L) =
L.Zy > Ng+(L) = L if and only if p = £7 (mod 16).
Let g € Ng(L) \ L be an involution. By [11, Theorem 3.5],
(H, g) = G. It follows that the coset graph Cos(G, H, HgH)
is a connected 2-arc transitive biprimitive graph, and X is a
graph as in row 12 of Table 1.

Assume that 7, = PGL(2, p"). Thenf = 2r and p is an odd
prime because PGL(2, p") = PSL(2, p") for p = 2. When
pr = 3,onehasr = 1,f = 2, T = PSL(2,9) = Ag,
and T, = PGL(2,3) & S4. Since Out(7) = 22, and Mo

VOLUME 7, 2019

or PGL(2, 9) has no subgroup of order 2|7, one has either
G* = T and G = PGL(2,9),PXL(2,9), My or G* =
PYXL(2,9) and G = PI'L(2,9). Suppose G* = T. Then
H = S4,L = S3 or Dg. By Magma [2], whether L = S3 or Dy,
one had Ng=(L) = L. For G = PGL(2,9) or My, again by
Magma [2],if L = S3 then Ng(L) = L, no graph appears, and
if L = Dg then Ng(L) = L.Z;. It follows that the coset graph
X = Cos(G,H,HgH) is a connected (G, 2)-arc transitive
biprimitive graph of valency 3, and X is a graph as in rows 13-
14 of Table 1. For G = PXL(2,9),onehas Ng(H) = H X Z»,
and by Magma [2], one has Ng(L) = L xZp and Ng=(L) = L
no matter what L = S3 or L = Dg. Obviously, Ng(L) <
Ng(H). It follows that there is no 2-element g such that
(H,g) = G, no graph appears. Suppose G* = PXL(2,9).
Then G = PI'L(2,9),H = S4 X Zp, and L = S3 X Z, or
Dg x Zo. If L = S3 X Z3, then by Magma [2], Ng(L) =
Ng+(L), no graph arises. If L = Dg x Z; then by Magma [2],
Ng(L) = L.Z» and Ng+(L) = L. Again by Magma [2], there
exists g € Ng(L) \ L be an involution such that (H, g) = G.
It follows that the coset graph X = Cos(G, H, HgH) is a
connected (G, 2)-arc transitive vertex bi-primitive graph of
valency 3, and X is a graph as in row 15 of Table 1. When
p" > 5, T, is insolvable, by [4, Theorem 5.3 and Note 2],
TuF @ s 2-transitive, so we may suppose Gt = T, and
H =PGL(2, p"). And by [4, Theorem 5.3],L = Z; X Lpr 1.
Let N = Z;. Then we claim N5(L) = L. Suppose that
L < Ng(L). By [11, Proposition 3.2], one has NE(L) <
NEWN) < 2« Ly, Let NG(L) = Zl, : Zy, where 1 > s.
d

By Proposition 2, one has / | (p* —1). Since L < N§(L), and
by the note of Proposition 2, [ = %. LetM = Zy-1 bea
subgroup of L. Since N,(M) = M, the length of coﬁjugacy
class of M in L has p°. Let €2 be the set of all the subgroups
which conjugacy to M in L. Then we may consider the action
of the subgroup ZI’, of Ni(L) on Q. Suppose ¢t > s. Then
there is an element g of order p such that M8 = M, which
is impossible. Thus, t = s, implying that Ng+(L) = L. Note
that |G : G*| = 2, one has G = PGL(2, p/), M(1, p/) or G =
PXL>(p"). If G = PGL(2, p/) or M(1, g), then Ng(L) = L,
no graph appears. If G = PXLy(p/) then Ng(L) = L.Z and
Ng(L) < Ng(PSL(2, p")), there is no elements g € Ng(L)\H
such that (H, g) = G because H < Ng(PSL(2, p")).

Suppose T is not primitive on A;. Then G} N T is
not a maximal subgroup of 7. By [11, Theorem 1.1],
we only consider these pairs (G*, H) = (PGL(2, 7), D13),
(PGL(2, 7), D16), (PGL(2, 9), D29), (PGL(2, 9), D1¢), (M0,
Zs X Z4), (Mo, Zg X Z), (PT'L(2,9), Z10 X Z4), (PT'L(2,9),
Ng(Dg)), (PGL(2, 11), Dyg) or (PGL(2, p), S4), with p =
+11, 19, (mod 40). If G* =PGL(2, 7), PT' L,(9), PGL(2, 11)
or PGL(2,p), then G = G* x Z,. By [13, Proposition
2.6], X is the standard double cover of a vertex-primitive
(G*, 2)-arc transitive graph.

If (G*, H) = (PGL(2,9), Dyy) or (G*, H) = (M1¢, Zs %
Zs4), then by Magma [2], X is a standard double cover of a
vertex-primitive graph.
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If (G*,H) = (PGL(2,9), Dyg) or (G*,H) = (M9, Zg %
Zy), then H = D¢ or Zg % Z;. Because the order of all the
maximal subgroup of H is 8, there is no maximal subgroup L
of index k, where k > 3, a contradiction.

Finally, we determine the automorphism groups and enu-
merate the number of non-isomorphic ones of such graphs.

Let X; be the coset graph corresponding to the i-th row of
Table 1, and let n be the number of non-isomorphic graph X;.
Next, we give the non-isomorphic number and automorphism
group of graph X;. By Lemma 6, G < Aut(X;) < Aut(7).
For the graphs X;(i = 1,2,3,4), one has Aut(X;) = G,
and by Magma [2], there exists unique these graph for every
i=1,2,3,4.

For the graph X5, one has G = PGL(2,p) =
By Lemma 6, Aut(X5) = G. Lete = %1.

Claim 1: n = [p 1 — 1, that is, if 12 | p + & then
n o= Bt _ 1,and1f6 | p+¢eand 12 f p + ¢ then

Aut(T).

n=

Recall that H = A4, L = Z3. Obviously, Ng(H) = S4
and NG(L) = Dy(pe). Set NG(L) = (a,b| @™ = b =
la*=a™). ThenL =73 = (@"3"y and Ng(H) N NG(L) =
Nngun(L) = S3 = (a3, b). Since |NG<L> : No+(L)| =
2, and Ng+(L) < G*, one has Ng+(L) = Dpte = (a?, ba).
By Lemma 4, g is a 2-element in Ng(L) \ Ng=(L).

First, we claim that g # a'. Suppose to the contrary that
g= a'. Then (Ha'H )b = (Ha"'H). Obviously, b may induce
a inner automorphism o (b) of R(G) by conjugate. Then A :=
Aut(X) = R(G) x o(b). Take b’ = R(b)o(b). Note that
o(b) = 2, it is easy to see that b’ € L(G), the left regular
representation L(G) of G on V(X), and then b’ € Cs(R(G)).
It follows that A = R(G) x (b’), and by [13, Proposition 2.6],
X is a standard double cover. Furthermore, g ¢ Nyg#)(L).
Otherwise, (H, g) # G, a contradiction. Thus, g € ¥ =
{a'b| t is an even, and ¢ # 0, p+s 2(‘DJ’E)} and then |Z| =
”+8 — 3. Since §3 < Ng(L), one has S3 fixes ¥ by conjugate.
Assume that 22 +8 is odd, thatis, 4 { p+e. Since the centralizer

of every element of order 2 in Ng(L) is either itself or ap#,

and since a2 ¢ Sz, it follows that the orbit length of S3 on ¥
p+s pre

is 6, and then the number of S3-orbits on ¥ is =— = °

Assume that 2 £ is even that is 4 \p + s Thena b € X.
Ifg = a* = b then (Ha > bH)b (Ha™ = bH). Similarly,
X is a standard double cover. Since (b) is the stabilizer of
S3 on a"z b, one has the length of S3-orbit containing a" b
is 3, and others is 6. Thus, if X is not a standard double
cpciger, then the number of length 6 of S3-orbits on X is
Tg3_3 = p+8 —1.1f g, g’ belong to the same S3-orbit, then
it is easy to see that Cos(G, H, HgH) = Cos(G, H, Hg'H).
Conversely, assume that g, g’ belong to the difference
S3-orbit, and Cos(G, H, HgH) = Cos(G, H, Hg'H). Note
that Aut(X) = G. Then there exists m € Aut(G,H) = S4
such that (HgH)™ = Hg'H. Since for any a G-arc transitive
coset graph Cos(G, H, HgH), I(H) < Aut(G, H, D) is tran-
sitive on the neighborhood of H by Proposition 3. Then one
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may assume that (Hg)™ = Hg'. Recallthatg, g’ € Ng(L), one
has H N H® = H N HS = L. Note that Cos(G, H, HgH) =
Cos(G, H, Hg'H), one has m € Ng(L) NS4 = S3. By the
character of Ng(L), one has the multiplication of any two
elements of order 2 in Ng(L) contains in {a). Then g"g ¢
H N (a) = L. One may assume that g” = g’c?, where ¢ € L.
It follows that g” = ¢~ !¢/c = g’°. This implies that g, g’
belong the same L-orbits. Then the number of length 6 of S3-
orbits on X is the number of non-isomorphic graphs, that is,
n= (” 1—1.

For the graph Xg,

Claim 2: When f = 3, there are two non-isomorphic
graphs, and Aut(X¢) = G or PT’ L3, respectively. When
f >3,onehasn = 3f—;3 and Aut(Xg) =

Note that H = A4, L = Za, NG(H) S4,Ng(L) =
Z X Zp and Ng=(L) = Z3, NygEy(L) = S35 < Ng(L).
Smce g € Ng(L) \ Ng=(L) is a 2-element, one has g is a
element of order 2 in Ng(L). If g € Nygm)(L) = S3, then
(H,g) # G, which contradicts the connectivity of Xg. Set

= {glg € Ng(L), g ¢ Ng+(L)U S3 and g is a 2-element}.
Then || = 3/ — 3. Since S3 < Ng(L), S3 induces an action
by conjugate on 2.
Take M = (x,y) < GLy(3/), where

x::(‘ll ?) y::((ll _01>,aeGF(3f).

Obviously, M is a subgroup of order 2 - 3/ of GL(3)).
Let Z be the center of GL»(3/). By computation, for any two
elements a, b of M, if aZ = bZ then a = b. It implies
that M < GL»(3/)/Z = G. Since Ng(L) < Z N Z3f -

the subgroup of order 2 of Zy _, is unique and Sylow-3

subgroup of G has unique conjligacy class, one has M =
Ng(L),and L = { 11 ).

First, we consider the orbits of S3 on 2. Since Ng(L) has
no elements of order 6 and no subgroup Z3, one has the
length of S3-orbits on 2 is 6, implying that the number of
S3 on Q is %. Let ¢ be a field automorphism of order
f. Obviously, ¢ fixes the set of all the elements of order
2 in M. We may consider the orbits of (¢) on 2. Since
¢ is a field automorphism of GF (3", it fixes the subfield
GF(3). It implies that a@® = a, that is, there are three fixed
points 0, 1, —1 of ¢. Since o(¢) = f is a prime, the length
of (¢)-orbits is 1 or f. Thus, f | 3/ — 3. When f =
the number of S3-orbits on Q2 is 4. By computation, ¢ may
connect three of S3-orbits, and fix the last S3-orbit. Thus,
n = 2. When ¢ fixes S3-orbits, one has ¢ € Aut(G, H, D),
and Aut(X) = PT'L>(3/), and when ¢ connects three of
S3-orbits, Aut(X) = G. (For f = 3, we may check it by
Magma [2].) When f > 3, obviously, (¢) can not fix any the
S3-orbits because the length of S3-orbits and the length of
(¢)-orbits are coprime. Then the number of S3 x (¢)-
orbits on Q is n = —;3 By Lemma 6, Aut(X) <
Aut(T), and ¢ ¢ Aut(G,H,D), one has Aut(X) = G.
If g, g’ belong to the same S3-orbits or {¢)-orbits, one has
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Cos(G, H, HgH) = Cos(G, H, Hg'H). Conversely,
if g,¢ belong to the different S3 x (¢)-orbits, and
Cos(G, H, HgH) = Cos(G, H, Hg'H), then there exists m €
Aut(G, H) = S4 x (¢) such that (HgH)" = Hg'H because
Aut(X) = G. Since for any a G-arc transitive coset graph
Cos(G,H,HgH), I(H) < Aut(G, H, D) is transitive on the
neighborhood of H, one may assume that (Hg)" = Hg/,
implying that m € NAut(G)(L) N Aut(G,H) = S3 x (¢).
Since multiplication of any two elements of order 2 in Ng(L)
contains in Z];, one has g"¢’ € (H N (x)) = L. One may
assume that ¢g" = g'c?, where ¢ € L. It follows that g = g’°.
This implies that g, ¢’ belong the same L-orbits. Then the
number n of non-isomorphic graph equals to the number of
S3 x {(¢)-orbits on €2, thatis, n = 3;—_3.

For the graphs X;(i = 7, 8, 11, 12, 15), one has Aut(X;) =
G by Lemma 6. Obviously, Ny (L) = L, Ng(L) = L.Zp and L
has a unique conjugate class in H. By Lemma 5, there exists
unique non-isomorphic graph.

For the graphs X9 and Xjo, one has H = As, L = Dy,
Ng(L) = Djg. Obviously, Ny(L) = L and L has a unique
conjugate class in H. Then by Lemma 5, there exists unique
non-isomorphic graph, and by Lemma 6, Aut(X;) < Aut(T),
and then Aut(X;) = G or PT'L,(q). Let ¢ be a field automor-
phism of order 2. Then ¢ normalizer H and L, that is, ¢ €
NAut(G)(L) = Ng(L) x (¢), implying that ¢ fix the set of all
the 2-elements in Ng(L). Then ¢ € Aut(G, H, D) < Aut(X;).
Thus, Aut(X;) = PI'L»(g) for i = 8 or 9.

For the graphs Xi3 and Xy4. Obviously, Ng(L) = L,
Ng(L) = L.Zp and L has a unique conjugate class in H.
By Lemma 5, there exists unique non-isomorphic graph. It is
similar to the above, one has Aut(X;) = PI'Ly(9) fori = 13
or 14. (We may also check it by Magma [2].)

Thus, we get the automorphism groups and the number of
non-isomorphic ones of such graphs as in Table 2.
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