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ABSTRACT A graph is said to be vertex bi-primitive, if it is a bipartite graph, and the setwise stabilizer of its
automorphism group acts primitively on two bi-parts. In this paper, we not only classify vertex bi-primitive
2-arc transitive graphs admitting a two-dimensional linear group but also determine the automorphism groups
and the number of non-isomorphic ones of such graphs.

INDEX TERMS Arc-transitive graph, coset graph, vertex bi-primitive.

I. INTRODUCTION
In this paper, we assume that all graphs are finite, simple and
undirected.

Denote by X a finite connected graph with vertex set V (X )
and edge set E(X ). Let Arc(X ) and Aut(X ) be the arc set and
full automorphism group of X , respectively. For a positive
integer s, an s-arc in a graph X is an ordered (s + 1)-tuple
(v0, v1, · · · , vs) of s + 1 vertices such that (vi−1, vi) ∈ A(X )
for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i ≤ s − 1.
For a subgroup G of Aut(X ), the graph X is said to be
(G, s)-arc-transitive if G acts transitively on the set of s-arcs
of X . A graph X is said to be s-arc-transitive, if it is
(Aut(X ), s)-arc-transitive. Throughout this paper, we will
denote by Zn the cyclic group of order n, by D2n the dihedral
group of order 2n, and by An and Sn the alternating group and
the symmetric group of degree n, respectively.

Since Tutte (1947) [28] proved that there exist no finite
s-transitive cubic graphs for s ≥ 6, s-transitive graphs has
received lots of attention. For example, Weiss [29] proved
that there exists no 8-arc transitive graphs of valence at least 3.
Praeger [25] started a general analysis of automorphism
groups of 2-arc transitive graphs, and Fang and Praeger [9]
classified finite 2-arc transitive graphs admitting a Suzuki
simple group. Let p and q be primes. Li et al. [21] and
Praeger and Xu [26] classified vertex primitive symmetric
graphs of order kp with k < p, and Ivanov and Praeger [17]
classified affine primitive 2-arc transitive graphs. Li [18]
classified vertex primitive and vertex bi-primitive s-transitive
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graphs for s ≥ 4, Fang et al. [8] classified vertex primitive
2-arc regular graphs, and Li et al. [19] classified vertex prim-
itive and vertex bi-primitive s-arc-regular graphs for s ≥ 3.
Recently, Pan et al. [23] classified connected 2-arc-transitive
primitive and bi-primitive graphs of fourth-power-free order.

Now we first introduce the so called coset graph (see [24],
[27]). Let G be a finite group, H a subgroup of G, and D a
union of several double-cosets of the form HgH with g /∈ H
such that D = D−1. The coset graph X = Cos(G,H ,D) of G
with respect toH andD is defined as the graph with vertex set
V (X ) = [G : H ], the set of right cosets ofH inG, and edge set
E(X ) = {{Hg,Hdg}

∣∣ g ∈ G, d ∈ D}. It is easy to see that X
is well defined and has valence |D|/|H | = |H : H ∩ Hg

|.
Further, X is connected if and only if D generates G, and
X is G-arc-transitive if and only if D = HgH , a single
double coset. Denote by HG the largest normal subgroup of
G in H . Then HG =

⋂
g∈G H

g and if HG = 1, we say
that H is core-free in G. In what follows, we always assume
that H is core-free in G whenever we mention a coset graph
Cos(G,H ,D).

Next, we introduce the concept of standard double
cover. Let X be a graph. The standard double cover X (2) of X
is defined as the graph with vertex set {u1, u2 | u ∈ V (X )} and
edge set {{u1, v2}, {u2, v1} | {u, v} ∈ E(X )}. The finite vertex-
primitive 2-arc transitive graphs admitting a two-dimensional
linear group is completed by author in [15]. In this paper,
we classify vertex bi-primitive 2-arc transitive graphs admit-
ting a two-dimensional projective linear group. Furthermore,
we determine the automorphism groups and enumerate the
number of non-isomorphic ones of such graphs.

Finally, we state the main results of this paper.
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TABLE 1. The vertex bi-primitive (G, 2)-arc-transitive graphs.

TABLE 2. The automorphism group of (G, 2)-arc-transitive bi-primitive
graphs.

Theorem 1: Let X be a (G, 2)-arc transitive bipartite graph
of valence k ≥ 3, and let G∗ be a subgroup of G, which has
the socle PSL(2, q), and acts primitively on each partite of X ,
where q = pf for some positive integer f and prime p. Then X
is either a complete bipartite graph, a standard double cover of
vertex primitive graphs, or a coset graph Cos(G,H ,HgH ) as
given in Table 1. Furthermore, the automorphism groups and
the number of non-isomorphic ones of such graphs as given
in Table 2.

II. PRELIMINARY RESULTS
We first recall some group-theoretic results. By [16, Chapter
II, Lemma 8.21] or [15, Proposition 2.4], one has the follow-
ing proposition.
Proposition 2: Let G be a subgroup of PSL(2, pf ), and let

P 6= 1 a Sylow p-subgroup of G, and N = NG(P). Then P is
isomorphic to a subgroup of the additive groupGF(pf )+, and
there is a subgroup Z of G such that N = PZ and P∩ Z = 1,
where Z = 1 or Z is a maximal cyclic subgroup of G, |Z |

∣∣
|P| − 1 and |Z |

∣∣ pf − 1.
Note: Let f = sm, G = PSL(2, ps) and P be a Sylow-p

subgroup ofG. If both p andm are odd, then |Z |
∣∣ |P|−1

2 . Since

the order of maximal cyclic subgroup of PSL(2, pf ) is pf−1
2 ,

if |Z | = |P| − 1 then ps − 1
∣∣ pf−1

2 . It implies that the power
of 2 of pf − 1 is more than the power of 2 of ps − 1, which is
impossible because pf −1 = (ps)m−1 = (ps−1)[(ps)m−1+
(ps)m−2+· · ·+ps+1], and (ps)m−1+ (ps)m−2+· · ·+ps+1
is an odd.

Next, we give some characteristics of coset graph.
By Godsil [12] and Dobson [7], one has the following
proposition.
Proposition 3: Let G be a finite group, H be a core-free

subgroup of G and D a union of several double-cosets HgH
with g /∈ H such that D = D−1. Let X = Cos(G,H ,D),
A = Aut(X ) and σ (g) the automorphism of G induced
by the conjugate of g ∈ G on G. Then NA(R(G)) =
R(G)Aut(G,H ,D) and R(G) ∩ Aut(G,H ,D) = I (H ), where
Aut(G,H ,D) = {α ∈ Aut(G) | Hα

= H ,Dα = D} and
I (H ) = {σ (h) | h ∈ H}.
Remark: If the coset graph X = Cos(G,H ,D) is R(G)-arc

transitive then D = HgH , a single double coset of H in G.
In this case, I (H ) is transitive on the neighborhood of the
vertex H in X and so is Aut(G,H ,D).

As we known, if we use coset graph Cos(G,H ,D) to char-
acterize 2-arc-transitive graphs admitting a given group G,
the most important thing is to find an 2-element g (or proving
no existence of g) satisfying H acts 2-transitively on the set
of cosets [H : H ∩Hg]. We give a condition to guarantee the
2-arc transitivity and bi-primitivity of the graph.
Lemma 4: Let X be a connected (G, 2)-arc-transitive

graph with valency at least 3, where G ≤ Aut(X ) is
bi-primitive on the vertex set V (X ). Then there exists a index
two subgroup G∗ of G, a core-free maximal subgroup H of
G∗, and a maximal subgroup L of H with index at least 3
satisfying the following condition.
Condition 1: The normalizer NG(L) has a subgroup R *

H such that R ∼= L.Z2 and the action of H on [H : L] by
multiplication is 2-transitive, and there exists a 2-element g ∈
R \ H such that 〈H , g〉 = G

In particular, X = Cos(G,H ,HgH ), where g ∈ R \ H .
Conversely, if G has a index two subgroup G∗, G∗ has a
core-free maximal subgroup H , and H has a maximal sub-
group L with index at least 3 satisfying Condition 1′, then the
coset graph Cos(G,H ,HgH ) with g ∈ R \ H is a connected
(G, 2)-arc-transitive bi-primitive graph with valency |H : L|.
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Proof: Let u ∈ V (X ) and H = Gu. By [9, Theorme 2.1],
there exists a 2-element g such that X = Cos(G,H ,HgH ),
where g2 ∈ H . Let L = H ∩ Hg. Then H acts 2-transitively
on [H : L] by multiplication, implying that L is maximal in
H with |H : L| = Val(X ) ≥ 3. Further, as Lg = Hg

∩Hg2
=

Hg
∩ H = L, g ∈ NG(L). Since 〈H , g〉 = G, g /∈ H and

g2 ∈ L. Then R = 〈L, g〉 = L.Z2 /∈ H is a subgroup of
NG(L).

For the converse, suppose that G has a index two
subgroup G∗, and G∗ has a core-free maximal subgroup H ,
and H has a maximal subgroup L with index at least 3 satis-
fying Condition 1. Then G∗ is intransitive on V (X ) because
if G∗ is transitive then G = G∗.H = G∗. Take g ∈ R \ H ,
one has g ∈ NG(L), and L ⊆ H ∩ Hg. If H = H ∩ Hg,
then g normalizes H , and H ⊆ 〈H , g〉 = H : Z2 = G,
which contradicts that |G : H | = |V (X )| ≥ 3. Hence, by the
maximality of L in H , one has L = H ∩ Hg. It is easy to
see that Cos(G,H ,HgH ) is a connected (G, 2)-arc-transitive
vertex bi-primitive graph with valency |H : L|.

For convenience, we always suppose X = Cos(G,H ,
HgH ), where H = Gu, u ∈ V (X ). Let v = ug and L =
Guv = H ∩ Hg. Then H is 2-transitive on [H : L] by right
multiplication. In particular, L is a maximal subgroup of H
with index ≥ 3. Furthermore, NG(L) has a subgroup R * H
such that R = L.Z2.
Next, by [15], we have the lemma about the number of non-

isomorphic ones of such graph.
Lemma 5 [15, Lemma 2.7]: Let G be a finite group.

Assume that G has a core-free subgroup H , and assume
further that H contains the subgroup L = H ∩ Hg such that
NG(L) = L.Z2 and NH (L) = L. If L has unique conjugate
class in H , then there is unique non-isomorphic graph X =
Cos(G,H ,HgH ) such that X is a connected G-arc transitive
graph.

Finally, the lemma is crucial for determining the full
automorphism group Aut(X ).
Lemma 6: Let (G,H ) be a pair given in Tables 1, and let

X = Cos(G,H ,HgH ) for some g ∈ R \ H , where R is
as defined in Lemma 4. Then G is normal in Aut(X ), and
Aut(X ) ≤ Aut(T ), where T = soc(G), the socle of G.

Proof: Let A = Aut(X ). Set n = |V (X )|. Then T EG ≤
A ≤ Sym(n). Suppose that soc(A) 6= T . Then there exist
groups F1 and F such that G ≤ F1 < F ≤ A ≤ Sym(n),
T = soc(F1) 6= soc(F), and F1 is maximal in F . Note that G
is almost simple and transititve on V (X ), all the possibilities
for (F1,F) are list in [22]. For Table 1, inspecting these pairs,
there are not pairs (T , soc(F)) satisfying these conditions.
Therefore, for any X = Cos(G,H ,HgH ) in Table 1, one has
soc(A) = T , and A ≤ Aut(T ). Checking the groups listed
in Table 1, it is easily shown that GE Aut(T ), so GE A.

III. VERTEX BI-PRIMITIVE GRAPHS
SupposeG is biprimitive on V with two parts11 and12. Let
G∗ = G11 = G12 .

Lemma 7: Let G∗ be an almost simple with T = soc(G∗),
and let X be a (G, 2)-arc transitive vertex bi-primitive graph.
Then eitherG is an almost simple, or X is the standard double
cover of a vertex-primitive (G∗, 2)-arc transitive graph.

Proof: Assume that G is not an almost simple group.
It follows that C := CG(T ) 6= 1. Since |G : G∗| = 2 and
CG∗ (T ) = 1, we have that C ∼= Z2. Now C C G, and it
then follows that G = G∗ × Z2. Let 0C be the quotient of
0 induced by C . By [13, Proposition 2.6], 0 is a standard
double cover of 0C . Further G∗ ∼= G/C ≤ Aut(0C ). Then
G/C is primitive on V (0C ), and by [25, Theorem 4.1], 0C is
(G/C, 2)-transitive.
Proof of Theorem 1: Let q = pf . Since G∗ is primitive on

1i, where i = 1, 2. Suppose that G∗ acts unfaithfully on 11.
Then the pointwise stabilizer K1 = (G∗)(11) 6= 1 and K1 E
G∗. Since (G∗)12 is primitive,K1 acts transitively on12. This
implies that X is a complete bipartite graph Kt,t for some t ≥
3, a contradiction. Thus, G∗ acts faithfully and primitively on
11 and12, which implies that T is transitive on1i(i = 1, 2).
Assume that X is not a standard double cover of vertex
primitive graph. Then by Lemma 7, G is an almost simple
groupwith soc(G) = soc(G∗) = T . Suppose T is primitive on
1i, Tu is a maximal subgroup of T . By [6, Section 239], Tu ∈
{D 2(q±1)

d
,Zfp:Z pf −1

d
,A5, S4,A4,PGL(2, pr ),PSL(2, ps)},

where d = (2, q− 1), 2r = f , sm = f with m an odd prime.
For q = 5, it is obvious that G = PGL(2, 5) and

H = A4,Z5 o Z2 or D6. Then V (X ) = 10, 12 or 20,
respectively. Checking these graph of order 10, 12, there are
not these biprimitive graphs. For H = D6, one has L = Z2
and NG(L) = D8. Obviously, there is an involution g ∈
NG(L) \ L such that NG(H ) l 〈H , g〉 = G. By lemma 4,
the coset graph X = Cos(G,H ,HgH ) is a connected 2-arc
transitive biprimitive graph which is a graph defined in row 1
of Table 1, which is isomorphic to the generalized Petersen
graph X = GP(10, 2), which is isomorphic to the coset graph
X = Cos(G,H ,HgH ).

For q = pf > 5, suppose that Tu = Zfp:Z pf −1
d

. Since

G∗ is at least 2-transitive on 1i, one has X ∼= Kq+1,q+1,
a contradiction.

Suppose that Tu = D 2(q±1)
d

. Then Tuv = D 2(q±1)
dt

. Let O be
a subgroup of the outer automorphism group of G∗. By [23,
Corollary 3.2], one has H = D 2(q±1)

d
.O, and L = D 2(q±1)

dt
.O,

where t is an odd prime and divides q±1. When Tuv � Z2 or
Z22, we claim that there is no subgroup of G which is isomor-
phic to L.Z2. Suppose that there exists a subgroup R which is
isomorphic to L.Z2. Let R = L.〈g〉 = L ∪ Lg, where g2 ∈ L.
On the one hand, |R∩T |

|Tuv|
=
|O||R||T |
|L|·|RT | =

|R|
|L| ·
|O||T |
|RT | = 2 |G|

|RT | ≥ 2.
On the other hand,R∩T = (L∪Lg)∩T = (L∩T )∪(Lg∩T ) =
Tuv ∪ (Lg ∩ T ). For any h, t ∈ Lg ∩ T , since g2 ∈ L, one
has ht−1 ∈ L ∩ T , that is, ht−1 ∈ Tuv, which implies that
Tuvh = Tuvt . It follows that |R ∩ T | ≤ |Tuv ∪ Tuvt| ≤ 2|Tuv|.
Thus, |R∩T | = 2|Tuv|, and TuvCR∩T < T ,R∩T = Tuv.Z2.
If Tuv � Z2 or Z22, then there is an element a ∈ Tuv such that
R ∩ T ≤ NT (〈a〉) = Tu, which is contradict to 2 - |Tu : Tuv|.
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ThusNG(L) = L. By the claim and by Proposition 4, no graph
aries. Assume that Tuv ∼= Z2 or Z22. By the 2-transitivity
of H on [H : L] = [Tu : Tuv] = �, for even q, it is
easy to see that q = 8 with Tu = D14,Tuv = Z2. Since
|Aut(T ) : T | = 3, there is no subgroup G of Aut(T ) such that
|G : T | = 2, a contradiction. For odd q, if Tu = Dq+1 then
q = p = 11, 19, 27 with Tuv = Z22, and if Tu = Dq−1 then
q = p = 27 with Tuv = Z2 or q = p = 13, 37 with Tuv = Z22.
It follows that G = PGL(2, p),H = Dp+1,L = Z22 with
p = 11, 19 or G = PGL(2, p),H = Dp−1,L = Z22 with
p = 13, 37 or G = P0L2(27),H = D28.Z3,L = Z22.Z3.
For G = P0L2(27),H = D28.Z3,L = Z22.Z3, one has
NG∗ (L) = A4.Z3,NG(L) = S4.Z3, and NG(H ) = D26.D6
by Magma [2]. Let g ∈ NG(L) \ L be an involution, one has
NG(H ) l 〈H , g〉 = G. It follows that the coset graph X =
Cos(G,H ,HgH ) is a connected 2-arc transitive biprimitive
graph by lemma 4, and X is a graph as in row 2 of Table 1. For
G = PGL(2, p),H = Dp+1(p = 11, 19) orDp−1(p = 13, 37)
and L = Z22, one has NG∗ (L) = A4,NG(L) = S4 and
NG(H ) = D2(p+1) or D2(p−1) depending on H = Dp+1
or Dp−1. Let g ∈ NG(L) \ L be an involution. Obviously,
NG(H ) l 〈H , g〉 = G. By lemma 4, the coset graph X =
Cos(G,H ,HgH ) is a connected 2-arc transitive biprimitive
graph, and defined in rows 3-4 of Table 1.

Suppose that Tu = A4. Then q = p ≡

3, 13, 27, 37 (mod 40), implying that Out(T ) = Z2, G =
PGL(2, p) and H = Tu. If L = Tuv = Z22, then NG∗ (L) =
A4 = H , and NG(L) = S4 = NG(H ). For any g ∈ NG(L) \ L,
one has 〈g,H〉 = NG(H ) 6= G, no graph appears. Let
L = Tuv = Z3. Then L is conjugate to a subgroup of
Dq+1 or Dq−1, depending on 3

∣∣ q + 1 or q − 1. It follows
that NG∗ (L) = Dq+1 or Dq−1, and NG(L) = D2(q+1) or
D2(q−1). There are 2-elements g ∈ NG(L) \ NG∗ (L) such that
〈H , g〉 = G. By Lemma 4, X = Cos(G,H ,HgH ) is a (G, 2)-
arc-transitive graph of valency 4, and X is a graph as in row
5 of Table 1.

Suppose that Tu = PSL(2, ps), where sm = f for some
odd prime m. When ps = 2, f = m is an odd prime and
Tu = PSL(2, 2) ∼= S3. In this case, Tu < D2(2f+1) is not
a maximal subgroup of T , a contradiction. When ps = 3,
f = m is an odd prime and Tu = PSL(2, 3) ∼= A4. Since
both G∗u and Tu are 2-transitive groups of degree 4, one may
assume G∗ = T . It implies that G = PGL(2, 3f ), H = A4
and L = Z3. By the subgroup of PSL(2, q) (see [6]), one
has NG∗ (L) ≤ Zf3:Z 3f −1

2
. Obviously, NG∗ (L) = Zf3, and

NG(L) = NG∗ (L).Z2. It follows that there are 2-elements
g ∈ NG(L) \ NG∗ (L) such that 〈H , g〉 = G, and X is a
(G, 2)-arc-transitive graph of valency 4 which give rise to
the examples as in row 6 of Table 1. When ps > 3, one
has Tu = PSL(2, ps) is insolvable. By [4, Theorem 5.2, 5.3 ],
G∗u is an almost simple with soc(G∗u) = Tu, and T0(u)u is
2-transitive except for ps = 8 with degree 28. For ps = 8,
one has H = P6L(2, 8), and G∗ = P6L(2, 23m) with m odd
prime. Since Aut(G∗) = G∗, there is no an almost group G
which has a index 2 subgroup G∗. Then we may assume that

G∗ = T , H = Tu = PSL(2, ps). Since H has a 2-transitive
permutation representation, by [4, Theorem 5.3 ] one has
L = Zsp : Z ps−1

d
, L = A5(ps = 11, 9), or L = A4(ps = 5).

Let L = Zsp : Z ps−1
d

. We claim that NG∗ (L) = L. Set N = Zsp.
Suppose that L < NG∗ (L). By [11, Proposition 3.2], one has
NG∗ (L) ≤ NG∗ (N ) ≤ Zfp : Z pf −1

d
. Let NG∗ (L) = Ztp : Zl ,

where t ≥ s. By Proposition 2 , one has l
∣∣ (ps − 1). Since

L < NG∗ (L), and by the note of Proposition 2, l = ps−1
d . Let

M = Z ps−1
d

be a subgroup of L. SinceNL(M ) = M , the length
of conjugacy class ofM in L has ps. Let� be the set of all the
subgroups which conjugacy toM in L. Then wemay consider
the action of the subgroupZtp ofNG∗ (L) on�. Suppose t > s.
Then there is an element g of order p such that Mg

= M ,
which is impossible. Thus, t = s, implying that NG∗ (L) = L.
Next NG(L) ≤ NG(PSL(2, ps)) = NG(H ), no graph appears.
Let L = A5(ps = 11, 9) or L = A4(ps = p = 5). Similarly,
NG∗ (L) = L, and NG(L) ≤ NG(PSL(2, ps)) = NG(H ),
no graph appears.

Assume that Tu = A5. Then q = p ≡ ±1 (mod 5),
or q = p2 ≡ −1(mod 5) with p an odd prime. By [4, Theorem
5.3], T0(u)u is 2-transitive. So we may suppose G∗ = T
and H = Tu. It follows that L ∈ {A4,D10}. Assume that
q = p ≡ ±1 (mod 5). Then G = PGL(2, p). If L = A4,
then NG(L) = S4. By Lemma 4, if NG∗ (L) = S4, no graph
appear. Since G∗ contains a subgroup isomorphic to S4 if and
only if 16

∣∣ q2 − 1. Then L = NG∗ (L) < NG(L) = S4 if
and only if 16 - q2 − 1. Note that q = p ≡ ±1 (mod 5).
Then q = p ≡ ±11,±19 (mod 40). It follows that there
is a 2-element g ∈ NG(L) \ NG∗ (L) such that 〈H , g〉 = G.
By Proposition 4, the coset graph Cos(G,H ,HgH ) is a con-
nected pentavalent vertex bi-primitive (G, 2)-arc transitive
graph as in row 7 of Table 1. If L = D10, then NG(L) = D20
by the subgroup of PGL(2, q) (see [3, Theorem 2]). Since
G∗ contains a subgroup isomorphic to D20 if and only if
20
∣∣ q±1, andG contains a subgroup isomorphic toD20 if and

only if 20
∣∣ 2(q ± 1), one has L = NG∗ (L) < NG(L) = D20

if and only if q 6= ±1 (mod 20) and 20
∣∣ 2(q ± 1). Note

that q = p ≡ ±1 (mod 5). Then q = p = ±9 (mod 20).
Thus, when q = p ≡ ±9 (mod 20), there are 2-elements
g ∈ NG(L) \ L such that 〈H , g〉 = G. By Lemma 4,
the coset graph Cos(G,H ,HgH ) is a connected pentavalent
2-arc transitive biprimitive graph as in row 8 of Table 1.
Assume that q = p2 ≡ −1(mod 5). Let L = A4. Since 16

∣∣
q2−1 = p4−1, one has NG∗ (L) = S4. By [11, Theorem 3.5],
if G = PGL(2, q) then NG(L) = NG∗ (L) = S4, no graph
appears. Again by [11, Theorem 1.3, 1.5], for G = M (1, q)
or P6L2(q), either NG(L) = S4 or NG(L) ≤ NG(PSL(2, p)).
For G = M (1, q), one has NG(PSL(2, p)) = PGL(2, p). Then
NG(L) = NG∗ (L) = S4, no graph appears. ForG = P6L2(q),
one has NG(PSL(2, p)) = PGL(2, p)×〈φ〉, where φ is a field
automorphism of order 2. Then NG(L) = S4 × 〈φ〉. There
is an involution g ∈ NG(L) \ NG+ (L) such that 〈H , g〉 = G.
It follows that the coset graph Cos(G,H ,HgH ) is a connected
pentavalent 2-arc transitive biprimitive graph. We claim that
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it is a standard double cover. Let6 = {g|g ∈ NG(L)\NG∗ (L),
and g is a 2-elements}. LetK = NG(H )∩NG(L) = S5∩(S4×
〈φ〉) = S4. Obviously, K transitively acts on6. Furthermore,
for any g = aiφ ∈ 6 (ai ∈ S4), there is k ∈ K = S4 such
that (HgH )k = (HaiφH )k = (Haki φH ) = (Ha−1i φH ) =
H (aiφ)−1H . Since the order of ai is 2 or 4, one may assume
that k is an involution. Then k may induce a inner automor-
phism σ (k) of R(G) by conjugate, and then R(G) o σ (k) =
R(G)×〈k ′〉 ≤ Aut(X ), where k ′ = R(k)σ (k) ∈ L(G), the left
regular representation L(G). By [13, Proposition 2.6], X is
a standard double cover as the claim. Let L = D10. Then
G∗ contains a subgroup of isomorphic to L.Z2 if and only
if 20

∣∣ q ± 1. Recall that q = p2 ≡ −1 (mod 5), one
has NG∗ (L) = L and q = p2 ≡ 9 (mod 20) because there
is no prime p such that q = p2 ≡ −1 (mod 20). By [11,
Theorem 1.3,1.5, 3.5], NG(L) = L.Z2 ≤ G if and only if
NG(L) ≤ S5 with G = P6L(2, q) or NG(L) ≤ NG(Dq±1)
with 10|q± 1. Obviously, if G = P6L2(q) and NG(L) ≤ S5,
then no graph appears because H ≤ S5, implying that there
is no element g ∈ NG(L) \ H such that 〈H , g〉 = G. Thus,
for q = p2 ≡ 9 (mod 20), G = PGL(2, q) or M (1, q), one
has NG(L) = D20 and there is an involution g ∈ NG(L) \
H such that 〈H , g〉 = G. It follows that the coset graph
X = Cos(G,H ,HgH ) is a connected (G, 2)-arc transitive
biprimitive graph of valency 6, and X is a graph as in row
9-10 of Table 1.

Assume that Tu = S4. Then q = p ≡ ±1 (mod 8) and
G = PGL(2, p), and thenH = S4 and L = D6 orD8. Suppose
that L = D6. Then NG∗ (L) contains a subgroup isomorphic
to L.Z2 if and only if 12

∣∣ (p± 1), that is, p ≡ ±1 (mod 12).
Thus, if q = p ≡ ±1 (mod 8) and p ≡ ±1 (mod 12)
then NG∗ (L) = NG(L), no graph appears. If q = p ≡
±1 (mod 8) and p 6= ±1 (mod 12), then NG∗ (L) = L. By [11,
Theorem 3.5], L.Z2 ≤ G if and only if 12

∣∣ 2(p ± 1), that is
p ≡ ±1 (mod 6). So, NG(L) = L.Z2 > NG∗ (L) = L if and
only if p ≡ ±7,±17 (mod 48). Let g ∈ NG(L) \ L be an
involution. By [11, Theorem 3.5], 〈H , g〉 = G. It follows that
the coset graph X = Cos(G,H ,HgH ) is a connected (G, 2)-
arc transitive biprimitive graph, and X is a graph as in row
11 of Table 1. Suppose that L = D8. Then NG∗ (L) contains
a subgroup isomorphic to L.Z2 if and only if 16

∣∣ (p ± 1),
that is, p ≡ ±1 (mod 16). Thus, if q = p ≡ ±1 (mod 8)
and p ≡ ±1 (mod 16) then NG∗ (L) = NG(L), no graph
appear. If q = p ≡ ±1 (mod 8) and p 6= ±1 (mod 16),
then NG∗ (L) = L. By [11, Theorem 3.5], L.Z2 ≤ G if and
only if 16

∣∣ 2(p ± 1), that is p ≡ ±1 (mod 8). So, NG(L) =
L.Z2 > NG∗ (L) = L if and only if p ≡ ±7 (mod 16).
Let g ∈ NG(L) \ L be an involution. By [11, Theorem 3.5],
〈H , g〉 = G. It follows that the coset graph Cos(G,H ,HgH )
is a connected 2-arc transitive biprimitive graph, and X is a
graph as in row 12 of Table 1.

Assume that Tu = PGL(2, pr ). Then f = 2r and p is an odd
prime because PGL(2, pr ) ∼= PSL(2, pr ) for p = 2. When
pr = 3, one has r = 1, f = 2, T = PSL(2, 9) ∼= A6,
and Tu = PGL(2, 3) ∼= S4. Since Out(T ) = 22, and M10

or PGL(2, 9) has no subgroup of order 2|Tu|, one has either
G∗ = T and G = PGL(2, 9),P6L(2, 9),M10 or G∗ =
P6L(2, 9) and G = P0L(2, 9). Suppose G∗ = T . Then
H = S4, L = S3 orD8. ByMagma [2], whether L = S3 orD8,
one had NG∗ (L) = L. For G = PGL(2, 9) or M10, again by
Magma [2], if L = S3 thenNG(L) = L, no graph appears, and
if L = D8 then NG(L) = L.Z2. It follows that the coset graph
X = Cos(G,H ,HgH ) is a connected (G, 2)-arc transitive
biprimitive graph of valency 3, and X is a graph as in rows 13-
14 of Table 1. ForG = P6L(2, 9), one hasNG(H ) = H×Z2,
and byMagma [2], one hasNG(L) = L×Z2 andNG∗ (L) = L
no matter what L = S3 or L = D8. Obviously, NG(L) ≤
NG(H ). It follows that there is no 2-element g such that
〈H , g〉 = G, no graph appears. Suppose G∗ = P6L(2, 9).
Then G = P0L(2, 9),H = S4 × Z2, and L = S3 × Z2 or
D8 × Z2. If L = S3 × Z2, then by Magma [2], NG(L) =
NG∗ (L), no graph arises. If L = D8×Z2 then by Magma [2],
NG(L) = L.Z2 and NG∗ (L) = L. Again by Magma [2], there
exists g ∈ NG(L) \ L be an involution such that 〈H , g〉 = G.
It follows that the coset graph X = Cos(G,H ,HgH ) is a
connected (G, 2)-arc transitive vertex bi-primitive graph of
valency 3, and X is a graph as in row 15 of Table 1. When
pr ≥ 5, Tu is insolvable, by [4, Theorem 5.3 and Note 2],
T0(u)u is 2-transitive, so we may suppose G+ = T , and
H = PGL(2, pr ). And by [4, Theorem 5.3], L ∼= ZrpoZpr−1.
Let N = Zsp. Then we claim N ∗G(L) = L. Suppose that
L < NG(L). By [11, Proposition 3.2], one has N ∗G(L) ≤
N ∗G(N ) ≤ Zfp : Z pf −1

d
. Let N ∗G(L) = Z

t
p : Zl , where t ≥ s.

By Proposition 2, one has l
∣∣ (ps− 1). Since L < N ∗G(L), and

by the note of Proposition 2, l = ps−1
d . Let M = Z ps−1

d
be a

subgroup of L. Since NL(M ) = M , the length of conjugacy
class of M in L has ps. Let � be the set of all the subgroups
which conjugacy toM in L. Then we may consider the action
of the subgroup Ztp of N ∗G(L) on �. Suppose t > s. Then
there is an element g of order p such that Mg

= M , which
is impossible. Thus, t = s, implying that NG∗ (L) = L. Note
that |G : G∗| = 2, one has G = PGL(2, pf ),M (1, pf ) or G =
P6L2(pf ). If G = PGL(2, pf ) or M (1, q), then NG(L) = L,
no graph appears. If G = P6L2(pf ) then NG(L) = L.Z2 and
NG(L) ≤ NG(PSL(2, pr )), there is no elements g ∈ NG(L)\H
such that 〈H , g〉 = G because H ≤ NG(PSL(2, pr )).

Suppose T is not primitive on 1i. Then G∗u ∩ T is
not a maximal subgroup of T . By [11, Theorem 1.1],
we only consider these pairs (G∗,H ) = (PGL(2, 7),D12),

(PGL(2, 7),D16), (PGL(2, 9),D20), (PGL(2, 9),D16), (M10,

Z5oZ4), (M10,Z8oZ2), (P0L(2, 9),Z10oZ4), (P0L(2, 9),
NG(D8)), (PGL(2, 11),D20) or (PGL(2, p), S4), with p =
±11, 19, (mod 40). IfG∗=PGL(2, 7),P0L2(9),PGL(2, 11)
or PGL(2, p), then G = G∗ × Z2. By [13, Proposition
2.6], X is the standard double cover of a vertex-primitive
(G∗, 2)-arc transitive graph.
If (G∗,H ) = (PGL(2, 9),D20) or (G∗,H ) = (M10,Z5 o

Z4), then by Magma [2], X is a standard double cover of a
vertex-primitive graph.
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If (G∗,H ) = (PGL(2, 9),D16) or (G∗,H ) = (M10,Z8 o
Z2), then H = D16 or Z8 o Z2. Because the order of all the
maximal subgroup of H is 8, there is no maximal subgroup L
of index k , where k ≥ 3, a contradiction.

Finally, we determine the automorphism groups and enu-
merate the number of non-isomorphic ones of such graphs.

Let Xi be the coset graph corresponding to the i-th row of
Table 1, and let n be the number of non-isomorphic graph Xi.
Next, we give the non-isomorphic number and automorphism
group of graph Xi. By Lemma 6, G ≤ Aut(Xi) ≤ Aut(T ).
For the graphs Xi(i = 1, 2, 3, 4), one has Aut(Xi) = G,
and by Magma [2], there exists unique these graph for every
i = 1, 2, 3, 4.
For the graph X5, one has G = PGL(2, p) = Aut(T ).

By Lemma 6, Aut(X5) = G. Let ε = ±1.
Claim 1: n = d p+ε12 e − 1, that is, if 12

∣∣ p + ε then
n = p+ε

12 − 1, and if 6
∣∣ p + ε and 12 - p + ε then

n =
p+ε
6 −1
2 .

Recall that H = A4,L = Z3. Obviously, NG(H ) = S4
and NG(L) = D2(p+ε). Set NG(L) = 〈a, b| ap+ε = b2 =
1, ab = a−1〉. Then L = Z3 = 〈a

p+ε
3 〉 and NG(H )∩NG(L) =

NNG(H )(L) = S3 = 〈a
p+ε
3 , b〉. Since |NG(L) : NG∗ (L)| =

2, and NG∗ (L) ≤ G∗, one has NG∗ (L) = Dp+ε = 〈a2, ba〉.
By Lemma 4, g is a 2-element in NG(L) \ NG∗ (L).

First, we claim that g 6= ai. Suppose to the contrary that
g = ai. Then (HaiH )b = (Ha−iH ). Obviously, b may induce
a inner automorphism σ (b) of R(G) by conjugate. Then A :=
Aut(X ) = R(G) o σ (b). Take b′ = R(b)σ (b). Note that
o(b) = 2, it is easy to see that b′ ∈ L(G), the left regular
representation L(G) of G on V (X ), and then b′ ∈ CA(R(G)).
It follows that A = R(G)×〈b′〉, and by [13, Proposition 2.6],
X is a standard double cover. Furthermore, g /∈ NNG(H )(L).
Otherwise, 〈H , g〉 6= G, a contradiction. Thus, g ∈ 6 =

{atb| t is an even, and t 6= 0, p+ε3 ,
2(p+ε)

3 }, and then |6| =
p+ε
2 −3. Since S3 ≤ NG(L), one has S3 fixes6 by conjugate.

Assume that p+ε2 is odd, that is, 4 - p+ε. Since the centralizer
of every element of order 2 in NG(L) is either itself or a

p+ε
2 ,

and since a
p+ε
2 /∈ S3, it follows that the orbit length of S3 on6

is 6, and then the number of S3-orbits on6 is
p+ε
2 −3
6 =

p+ε
6 −1
2 .

Assume that p+ε2 is even, that is 4
∣∣ p+ ε. Then a p+ε

2 b ∈ 6.

If g = a
p+ε
2 b, then (Ha

p+ε
2 bH )b = (Ha−

p+ε
2 bH ). Similarly,

X is a standard double cover. Since 〈b〉 is the stabilizer of
S3 on a

p+ε
2 b, one has the length of S3-orbit containing a

p+ε
2 b

is 3, and others is 6. Thus, if X is not a standard double
cover, then the number of length 6 of S3-orbits on 6 is
p+ε
2 −3−3

6 =
p+ε
12 −1. If g, g′ belong to the same S3-orbit, then

it is easy to see that Cos(G,H ,HgH ) ∼= Cos(G,H ,Hg′H ).
Conversely, assume that g, g′ belong to the difference
S3-orbit, and Cos(G,H ,HgH ) ∼= Cos(G,H ,Hg′H ). Note
that Aut(X ) = G. Then there exists m ∈ Aut(G,H ) = S4
such that (HgH )m = Hg′H . Since for any a G-arc transitive
coset graph Cos(G,H ,HgH ), I (H ) ≤ Aut(G,H ,D) is tran-
sitive on the neighborhood of H by Proposition 3. Then one

may assume that (Hg)m = Hg′. Recall that g, g′ ∈ NG(L), one
has H ∩ Hg

= H ∩ Hg′
= L. Note that Cos(G,H ,HgH ) ∼=

Cos(G,H ,Hg′H ), one has m ∈ NG(L) ∩ S4 = S3. By the
character of NG(L), one has the multiplication of any two
elements of order 2 in NG(L) contains in 〈a〉. Then gmg′ ∈
H ∩ 〈a〉 = L. One may assume that gm = g′c2, where c ∈ L.
It follows that gm = c−1g′c = g′c. This implies that g, g′

belong the same L-orbits. Then the number of length 6 of S3-
orbits on 6 is the number of non-isomorphic graphs, that is,
n = d p+ε12 e − 1.

For the graph X6,
Claim 2: When f = 3, there are two non-isomorphic

graphs, and Aut(X6) = G or P0L2(3f ), respectively. When
f > 3, one has n = 3f−3

6f , and Aut(X6) = G.
Note that H = A4,L = Z3,NG(H ) = S4,NG(L) =

Zf3 o Z2 and NG∗ (L) = Zf3, NNG(H )(L) = S3 ≤ NG(L).
Since g ∈ NG(L) \ NG∗ (L) is a 2-element, one has g is a
element of order 2 in NG(L). If g ∈ NNG(H )(L) = S3, then
〈H , g〉 6= G, which contradicts the connectivity of X6. Set
� := {g|g ∈ NG(L), g /∈ NG∗ (L) ∪ S3 and g is a 2-element}.
Then |�| = 3f − 3. Since S3 ≤ NG(L), S3 induces an action
by conjugate on �.

Take M = 〈x, y〉 ≤ GL2(3f ), where

x :=
(
1 0
a 1

)
, y :=

(
1 0
a −1

)
, a ∈ GF(3f ).

Obviously, M is a subgroup of order 2 · 3f of GL2(3f ).
Let Z be the center of GL2(3f ). By computation, for any two
elements a, b of M , if aZ = bZ then a = b. It implies
that M ≤ GL2(3f )/Z = G. Since NG(L) ≤ Zf3 o Z 3f −1

2
,

the subgroup of order 2 of Z 3f −1
2

is unique and Sylow-3

subgroup of G has unique conjugacy class, one has M =

NG(L), and L = 〈
(
1 0
1 1

)
〉.

First, we consider the orbits of S3 on �. Since NG(L) has
no elements of order 6 and no subgroup Z22, one has the
length of S3-orbits on � is 6, implying that the number of
S3 on � is 3f−3

6 . Let φ be a field automorphism of order
f . Obviously, φ fixes the set of all the elements of order
2 in M . We may consider the orbits of 〈φ〉 on �. Since
φ is a field automorphism of GF(3f ), it fixes the subfield
GF(3). It implies that a3 = a, that is, there are three fixed
points 0, 1,−1 of φ. Since o(φ) = f is a prime, the length
of 〈φ〉-orbits is 1 or f . Thus, f

∣∣ 3f − 3. When f = 3,
the number of S3-orbits on � is 4. By computation, φ may
connect three of S3-orbits, and fix the last S3-orbit. Thus,
n = 2. When φ fixes S3-orbits, one has φ ∈ Aut(G,H ,D),
and Aut(X ) = P0L2(3f ), and when φ connects three of
S3-orbits, Aut(X ) = G. (For f = 3, we may check it by
Magma [2].) When f > 3, obviously, 〈φ〉 can not fix any the
S3-orbits because the length of S3-orbits and the length of
〈φ〉-orbits are coprime. Then the number of S3 × 〈φ〉-
orbits on � is n = 3f−3

6f . By Lemma 6, Aut(X ) ≤
Aut(T ), and φ /∈ Aut(G,H ,D), one has Aut(X ) = G.
If g, g′ belong to the same S3-orbits or 〈φ〉-orbits, one has
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Cos(G,H ,HgH ) ∼= Cos(G,H ,Hg′H ). Conversely,
if g, g′ belong to the different S3 × 〈φ〉-orbits, and
Cos(G,H ,HgH ) ∼= Cos(G,H ,Hg′H ), then there exists m ∈
Aut(G,H ) = S4 × 〈φ〉 such that (HgH )m = Hg′H because
Aut(X ) = G. Since for any a G-arc transitive coset graph
Cos(G,H ,HgH ), I (H ) ≤ Aut(G,H ,D) is transitive on the
neighborhood of H , one may assume that (Hg)m = Hg′,
implying that m ∈ NAut(G)(L) ∩ Aut(G,H ) = S3 × 〈φ〉.
Since multiplication of any two elements of order 2 in NG(L)
contains in Zf3, one has gmg′ ∈ (H ∩ 〈x〉) = L. One may
assume that gm = g′c2, where c ∈ L. It follows that gm = g′c.
This implies that g, g′ belong the same L-orbits. Then the
number n of non-isomorphic graph equals to the number of
S3 × 〈φ〉-orbits on �, that is, n = 3f−3

6f .
For the graphs Xi(i = 7, 8, 11, 12, 15), one has Aut(Xi) =

G by Lemma 6. Obviously,NH (L) = L,NG(L) = L.Z2 and L
has a unique conjugate class in H . By Lemma 5, there exists
unique non-isomorphic graph.

For the graphs X9 and X10, one has H = A5, L = D10,
NG(L) = D20. Obviously, NH (L) = L and L has a unique
conjugate class in H . Then by Lemma 5, there exists unique
non-isomorphic graph, and by Lemma 6, Aut(Xi) ≤ Aut(T ),
and then Aut(Xi) = G or P0L2(q). Let φ be a field automor-
phism of order 2. Then φ normalizer H and L, that is, φ ∈
NAut(G)(L) = NG(L)o 〈φ〉, implying that φ fix the set of all
the 2-elements in NG(L). Then φ ∈ Aut(G,H ,D) < Aut(Xi).
Thus, Aut(Xi) = P0L2(q) for i = 8 or 9.
For the graphs X13 and X14. Obviously, NH (L) = L,

NG(L) = L.Z2 and L has a unique conjugate class in H .
By Lemma 5, there exists unique non-isomorphic graph. It is
similar to the above, one has Aut(Xi) = P0L2(9) for i = 13
or 14. (We may also check it by Magma [2].)

Thus, we get the automorphism groups and the number of
non-isomorphic ones of such graphs as in Table 2.
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