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ABSTRACT The rapid development of wireless communications brings a tremendous increase in the amount
number of data streams and poses significant challenges to the traditional routing protocols. In this paper,
we leverage deep reinforcement learning (DRL) for router selection in the network with heavy traffic,
aiming at reducing the network congestion and the length of the data transmission path. We first illustrate
the challenges of the existing routing protocols when the amount of the data explodes. We then utilize the
Markov decision process (RSMDP) to formulate the routing problem. Two novel deep Q network (DQN)-
based algorithms are designed to reduce the network congestion probability with a short transmission path:
one focusing on reducing the congestion probability; while the other focuses on shortening the transmission
path. The simulation results demonstrate that the proposed algorithms can achieve higher network throughput
comparing to existing routing algorithms in heavy network traffic scenarios.

INDEX TERMS Deep reinforcement learning, routing, network congestion, network throughput, deep

Q network.

I. INTRODUCTION

The fifth generation (5G) of cellular mobile communications
is coming [1], which targets high data rate [2], ultrashort
latency, high energy efficiency [3], and massive device con-
nectivity [4]. The number of devices has reached 8.4 billions
in 2017 and will further increase to 30 billions by 2020,
as predicted in [5]. Such massive amount devices would sig-
nificantly grow the network traffic data. As a result, the exist-
ing routing protocols would face tremendous pressure in
maintaining the users’ Quality of Experience.

Specifically, the existing routing protocols such as
OSPF [6], IS-IS [7], RIP [8], EIGRP gradually become
unsuitable for the network with big data, high data rate,
and low latency requirements. The key reason is that these
protocols rely on calculating the shortest path from a source
router to its destination [9] without considering the actual net-
work states such as the remaining buffer size of each router.

The associate editor coordinating the review of this manuscript and
approving it for publication was Longzhi Yang.

When the amount of data is small, these shortest-path based
protocols bring low latency to the network. However, when
the network data traffic volume dramatically increases, cer-
tain routers selected by multiple paths may suffer from ter-
rible traffic load. Especially, when the data volume exceeds
the buffer size of the selected routers, the network will
be congested, which decreases the network throughput and
increases the network delay. In other words, the existing
routing protocols are not intelligent enough to adjust their
transmission strategies according to actual network states.
On the other side, with the growth of computing capability
and the explosion of data, Artificial Intelligence (AI) is dras-
tically promoted in recent years, where the great computing
capability enables to imitate deeper neural network (DNN)
while the big data could provide sufficient training samples.
Probably the most successful example is the deep learn-
ing (DL) [10] that emerges from the artificial neural net-
work (ANN). DL could build DNN to simulate human brain
in order to learn and recognize abstract patterns [11] and
has been widely applied in image classification [12]-[14],
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object detection [15]-[19], communications [20]-[25], as
well as many other fields.

DL has also been adopted in routing problems. For
example, it could imitate the OSPF protocol [26] to reduce
the signaling overhead. However, the algorithm in [26] is
essentially an imitation of traditional protocols, and is insuf-
ficiently intelligent to deal with complicated network states.
Following [26], a deep convolutional neural network based
routing algorithm has been proposed in [27], which utilizes
the neural network to judge the network congestion caused by
the path combination. However, building a neural network for
each possible path combination would result in a large num-
ber of neural networks for training, and therefore increasing
the demand on computing resources.

However, DL generally requires label information for the
training data, which then demands for massive manual efforts.
In addition, DL is inherently an approximation of certain
function and is not suitable for decision-making problems,
such as routing, energy allocation, and recommender sys-
tem. In this case, deep reinforcement learning (DRL) [28]
emerges as an alternative to solve decision-making type
problems. Compared with traditional reinforcement learning
methods' [29], DRL takes advantage of function approxima-
tion ability of DL to solve practical problems with large-scale
state and action space [30]-[32]. For instance, DRL could
help the energy harvesting devices allocate the energy to max-
imize the sum rate of the communications, predict the battery
power accurately [33], or guide the two-hop communications
to achieve high throughput [34]. Moreover, DRL has been
utilized to rank in E-commerce search engine for improving
the total transaction amount [35].

In this paper, we design two DRL-based online routing
algorithms to address the network congestion problem. The
proposed algorithms can reduce the probability of network
congestion and shorten the length of transmission paths,
i.e., the number of hops from the source router to the destina-
tion. The main contributions of this paper are summarized as
follows:

+ We leverage router selection Markov decision process
(RSMDP) concepts to formulate the routing problem
and define the corresponding state space, action space,
reward function, and value function.

o We propose two online routing algorithms, i.e., source-

destination multi-task deep Q network (SDMT-DQN)
and destination-only multi-task deep Q network
(DOMT-DQN), which can learn from past experiences
and update routing policies in real time.
SDMT-DQN is able to significantly reduce the conges-
tion probability, while the corresponding path length
may occasionally be long. In comparison, DOMT-DQN
can significantly shorten the path length as well as
maintaining the congestion probability at an acceptably
lower level.

IReinforcement learning (RL) is a learning technique that an agent learns
from the interaction with the environment via trial-and-error.
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The rest of the paper is organized as follows. Section II
states the routing problem and outlines the system model.
In Section III, we introduce RSMDP in detail and analyze the
setting of some parameters. The proposed DRL algorithms
are detailed in Section I'V. Section V provides the simulation
results while Section VI concludes the paper.

Il. PROBLEM STATEMENT AND SYSTEM MODEL

A. PROBLEM STATEMENT

We assume that the network operates in a time-slotted fashion
with normalized time slot. Transmitting a data packet from
the source router to the destination is regarded as a data
transmission task. At each time slot, a task selects the next
hop router and the data packet is transferred to it. This process
is continued until the data packets arrive at the destination.
Network congestion happens when the size of the arriving
packet exceeds the remaining buffer size of the router.

The traditional routing protocols are formulated as a clas-
sical combinatorial optimization problem, where the data
packets are transmitted along the shortest path. Under such
shortest path principle, certain routers may be simultaneously
selected for multi-tasks, which then very likely leads to net-
work congestion due to the finite buffer size of the routers.

For example, as shown in Fig. 1, three packets
from Lo, L1, L, are transmitted to the destination Lg. Based
on the shortest path principle, L4 would be chosen as the next
hop for the packets by the traditional protocols. When the
packets are relatively large, the remaining buffer size of Ly
will be not sufficient and the network is prone to congestion.
Moreover, when the same or similar situation appears again,
traditional routing protocols would fall into the congestion
again. Even though the network congestion has occurred
many times before, the traditional routing protocols would
still select the same/similar routing path. Therefore, it is
necessary and important for the routing strategy to learn from
the past experience and make itself sufficiently intelligent to
choose optimal routing paths according to the network states.

B. SYSTEM MODEL
Consider a general backbone network with N routers in the
set L = {Li,Ly,...,Ly}. Define L;, L4, and L, as the
disjoint sets of source routers, destination routers, and regular
routers, respectively, with £ = L£;U Lz U L,. Moreover, there
are |Lg| = Ny, |L4| & Ng, |L,| & Ny, and Ng+Ng+N, = N.

Let D;; and B;; denote the total size of all packets and
the remaining buffer size in L; at time slot ¢, respectively.
Define B; = [By;.--+ ,By;| and D; = [Dy;, -+, Dn].
We denote the size of the packet newly generated by
data source i at time slot t by V;, and define V, =
[Vl, PRI VNSJ] as the size vector of all input packets. The
data generation is set as a Poisson process. The state of
the network at time slot 7 can be characterized by a tuple
(Vi, Dy, By).

During time slot ¢, the input packets are generated by data
sources, and then flow to the source routers and change the
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FIGURE 1. The network topology.

remaining buffer size of the source routers. We assume that
a packet can be completely transferred from one router to
another in one time slot and the values of D; ; and B; ; would
change during the transmission process. For instance, if a data
packet of size f flows from L; to L; at time slot ¢, then at
time slot ¢ + 1, the tuple (D; 141, Dj 1+1, Bijt+1, Bjr+1) has 6
situations, as shown in (1), shown at the bottom of this page.

When L; or L; is the source router, the newly generated
data should be considered. And if L; is the destination router,
the data will be transferred to the terminals directly without
stored in the buffer.

Note that the current location and the size of data packets
would also affect the selection of the next hop router. We then
adopt modified one-hot encoding vector O, of size N to rep-
resent these characteristics. When the packet is in router L;,
the i element of O; is the size of data packet, while the
other elements are all zeros. Such modified one-hot encoding
can help the computer understand the size and position of
the packet. Overall, we can denote the state of each task
by S; = (V;, Dy, B;; Oy).

Moreover, the network can be represented by a directed
graph G = {V, £}, where V is the set of all vertexes corre-
sponding to the routers and £ is the set of edges corresponding
to the links between the routers. The data transmission task
chooses action according to the network state along with the
position and size of the packet, where action is defined as
the link between the current router and the next hop router.

For instance, the task whose packet in L; selects L; as the
next router, which means that link(i, j) € £ is selected as the
action. Besides, the link between two routers is bidirectional,
i.e., a data packet can be transferred from L; to L; or con-
versely, denoted by link(i, j) and link(j, i), respectively. Let A
denote the set of all possible actions, i.e. A = &, with
cardinality |A] = N,. Note that not all actions are valid
for a data transmission task, since the packet can only be
transferred to the router connecting to its current position.
Namely, the task can only choose the link starting from the
current position of its packet as the valid action. Therefore,
during the transmission process, the valid actions of the task
are always changing according to its current position.

1ll. ROUTER SELECTION MARKOV DECISION PROCESS

In this section, we formulate the routing process as a Markov
Decision Process (MDP), where the agent is the data trans-
mission task and the environment is the network.

A. DEFINITION OF RSMDP
In the considered scenario, the tasks decide the next hop
routers, and the corresponding decision-making process can
be modeled as a MDP with rewards and actions. The MDP is
represented by a tuple (S, A, P, R, y), where
o The state space is denoted by S, which consists of
the terminal state and the nonterminal states. The ter-
minal state is a special state, which indicates that the

(Di,t _fs Dj,thi,t +f1 Bj,l)

(Di,l _fa Dj,l‘ +vai,t +f5Bj,l _f)
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task terminates. If the action is invalid or causes the
network congestion, then the state turns into the terminal
state. Besides, if the data packet arrives at the destination
router, then the task also terminates. The nonterminal
states contain all continuing events, where the packets
are transferred to the next hop routers without conges-
tion, and have not reached the destination.

« The action space is denoted by .4, which corresponds to
all the edges of the network topology graph. The actions
are divided into valid and invalid parts, depending on the
current location of its packet.

o The state transition probability function is denoted
by P(s, a, s') = P[S;+1 = §'|S; = 5, A; = a]. Inthe con-
sidered scenario, the state transition probability function
is related to the probability distribution of the size of the
packets newly generated by the data sources. Because
in the state tuple, the vector of newly generated packet
size V, is random.

o The immediate reward on the transition from state s to s’
under action a is denoted by R(s, a, 5).

o The discount rate is denoted by y € [0, 1), which
determines the present value of future rewards [29].

Tasks

State Reward Action
St Tt Qy

oy

Tl .

e Routing

:: Stil Network

|

FIGURE 2. Router selection Markov decision process.

As Fig. 2 shows, at each time slot, the task selects the next
hop router based on its current state, and the corresponding
reward is obtained. The above decision-making and reward
feedback process is repeated, which is named as the RSMDP.

A MDP should satisfy the Markov property, which means
the future state is independent of the past state given
the present state. Mathematically, the Markov property for
the MDP is defined as follows:

P(si41150, ao, 81, -+ 5 St, ar) = P(sey1l81, ar). )

From (1), it is obvious that the next state is only related to the
current state and the current action. Hence the router selection
process satisfies Markov property.

B. REWARD FUNCTION

For any state s € S, R(s, a, s') is the immediate reward that
numerically characterizes the performance of action a taken
with the state transiting from s to s'.

37112

For the problem defined in Section II-A, avoiding network
congestion is the prerequisite of seeking for the shortest path.
Thus, the reward should first punish the network congestion
and then minimize the path length. As described in Section II,
since each task can only choose the edge that starts from the
router where the packet currently stays, the reward function is
supposed to punish the invalid action. Moreover, the reward
function needs to consider the path length for the task. In sum-
mary, we set the reward function R(s, a, s') as follows:

ro  if network congestion occurs,

r. if aisinvalid,

R(s,a,s) = 3)

0 if packet arrives destination,

—1 otherwise,

where the reward —1 helps record the number of hops the
data packet is transferred in the network. The constant r,
is the congestion reward that takes a negative value smaller
than —1 since the network congestion should be avoided,
while constant r, is the error reward when an invalid action
is chosen, which is a negative value smaller than —1 too.
The network will feed back a non-negative reward only when
the packets arrive at the destination routers. As a result, to
avoid the network congestion/invalid action and reduce the
path length of each data transmission task, the objective of the
routing algorithm should be expressed as finding the optimal
policy to maximize the expected cumulative reward for each
task. The details will be described in the next subsection.

C. VALUE FUNCTION

From (3), the reward at time slot ¢ can be denoted
by R; = R(s¢, ar, S¢+1). Assume the task turns into the termi-
nal state after 7 time slots. Then, the cumulative discounted
reward from time slot ¢ can be expressed as

T
G =Rt1+yRpp+---+ VT71R1+T = Z VkilRH-k-
k=1

“

Define policy m as a probability distribution over action a,
given state s as:

w(als) = PlA; = a|S; = s]. (@)

In the considered problem, policy m determines which router
should be chosen as the next hop router conditioned on the
current state of the transmission task.

Define

Ox (s, a) = Ex [G/|S: = 5, A; = a] (6)

as the action-value function based on policy m of
the MDP, i.e., the expectation of the cumulative discounted
reward starting from s, taking action a, and following
policy 7.

The objective of the routing algorithm is to find a policy to
maximize the action-value function, i.e.,

Qx(s, @) = max Qx (s, a). )

VOLUME 7, 2019



R. Ding et al.: DRL for Router Selection in Network With Heavy Traffic

IEEE Access

The optimal policy can be found by maximizing over the
optimal action-value function Q. (s, a) as

1 ifa =argmax Q.(s, a)
ac A

®

mi(als) = .
0 otherwise.

From (8), if the optimal action-value function Q. (s, @) can
be obtained, we can input (V,, D;, B;; O;) to compute the
value of each action, and then choose the action that max-
imizes Q.(s,a). As Section III-B mentioned, the optimal
policy obtained from (8) could reduce the path length while
avoid network congestion.

One possible way to obtain the optimal action-value
function Q.(s, a) is Q-learning, which can be iteratively
implemented as

0S8, Ar) < O(S:, Ar)
tafReer +ymax OSin 0 — 0SLA)] O

during the training process, where « is the learning rate.
Iteration (9) updates estimates of the values of states based
on values of successor states, which is called bootstrapping.
In this case, the learned action-value function will converge
to the optimal action-value function Q. [29].

To obtain the value of every action, the reinforcement
learning algorithm must try every possible action. However,
if the task only chooses the action that maximizes Q(s, a)
during the training, then the actions that have not been tried
before will be barely chosen, which makes the action-value
function fall into the local optimum. Therefore, the algorithm
should not only exploit the actions that have been tried before,
but also explore new actions. Hence, the €-greedy method is
usually applied as

argmax Q(s, a), with probability 1 — €
a= a (10)

random action, with probability e,

where € is the probability of randomly choosing actions.

D. DISCOUNT RATE

In this subsection, we consider the influence of discount
rate ¥ in RSMDP. From (4), we know the cumulative dis-
counted reward leads to “myopic” or ‘““far-sighted” evalu-
ation when y is close to 0 or 1, respectively. Specifically,
when y is close to 0, the future rewards are hardly considered,
while when y is close to 1, the future rewards are taken into
account with heavier weight. The value of the discount rate y
will affect the DRL-based routing algorithm mainly in two
aspects:

o« How does the objective balance the congestion
reward r,, the error reward r,, and the remaining cumu-
lative reward?

« What is the relationship between the cumulative reward
and the hops of the packet to arrive its destination?

VOLUME 7, 2019

1) REWARDS OF DIFFERENT TYPES

In RSMDP, there are three situations that can terminate the
tasks: (i) the packet has reached its destination; (ii) the trans-
mission of the packet results in the congestion in the next hop
router; (iii) the action chosen by the task is invalid for trans-
mission. The latter two situations should be averted, which is
the prerequisite before shortening the length of transmission
paths. Therefore, we should guarantee that the congestion
reward and error reward are smaller than the cumulative
reward starting from current state. According to the reasons
for the termination of the task, there are three cases of the
cumulative reward:

o The task reaches the destination router at time slot 7'.
In this case, Ry, = —1for(t = 1,---,T). Then the
cumulative reward for the whole transmission process
of the task equals to

: 1 4 1 1—y7
G=2 v Ri==) v =-3—~ (D
t=1 t=1

o The task chooses the action that leads to the network
congestion at time slot 7. In this case, R = r., while
R, = —1for(t =1,.---,T — 1). Then the cumulative
reward for the whole transmission process of the task
equals to

T T—1
G, = Zyt—lRt - _ Z 7/t—l + yT—er
=1 t=1

T—1
S b S S PR T
l—y
o The task chooses the invalid action at time slot 7'. In this
case, Rt = r,,while Ry = —1for(t+ =1, ---,T — 1).
Then the cumulative reward for the whole transmission
process of the task equals to

T T-1
Gl — Zyl‘flRt — —ZVFI _’_nylre
t=1 t=1

1— T—-1

=y a3
-y
Then, we should set r. and r, as
1— T 1— T—1
Tey Te < min{— Y > 4 +VT_lrc,
-y 1—y
L=y
———+y "} (14)
-y

As we mentioned in Section III-B, both r. and r, are less
than —1, therefore

1 — T 1 — T-1
R AR AR e P (15)
L—y l—y
and
1— T 1— T—-1
7 Y +yT . (16)
I—y I—y
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As aresult, (14) can be transformed into

1— T—1 1— T—1
Fevre < minf———— +y e — !
—v

+VT_1re}-
l—y

7)

We can observe the symmetry of r. and r., therefore,
let r. = r,, then we get
1— T-1
e ="1e < —L—i—yT_]re. (18)
L—vy
Then we get:
1

Te=Fe < ——. (19)
-y

2) TRANSMISSION PATH LENGTH

(19) guarantees that the invalid actions and the actions caus-
ing network congestion are rarely chosen. When y equals
to 1, the cumulative reward becomes the opposite number
of actual hops of the whole transmission process. Then,
maximizing the cumulative reward directly leads to the min-
imization of the path length. However, this property does not
hold when y < 1. Therefore, considering future rewards in
a router selection MDP, we ought to set y as close to 1 as
possible.

IV. DRL BASED ROUTING ALGORITHM
In this section, we design two online routing algorithms with
the aid of DQN to handle large-scale state space of RSMDP.

A. DEEP Q NETWORK FOR RSMDP

In the considered scenario, the state includes the size of newly
generated data V, the total data packet size of all routers Dy,
the remaining buffer size of all routers B;, and the position
and size of the current data packet O;. Therefore, the number
of the states is huge and we resort to DQN that could utilize
DNN to represent the action-value function and tackle the
large-scale state space.

As shown in Fig. 3, the input of the neural network is
state S;, while the output is the value of each action. Let 6
denote the neural network parameters. Then, the action-value
function under 8 can be represented by Q(s, a; 6). DQN tries
to minimize the loss function defined as

2
L) = [r + ¥ max Q(s, d;0)— 0, a; 9)] . (20)

i.e., the square of temporal-difference error (TD error). Dif-
ferentiating the loss function with respect to 6, we get the
following update:

6 < 0+a [rﬂ/ max O(s', a’; 0)— Q(s, a; 9)] VO(s, a; 0)
21

A general assumption for training the deep neural net-
work is that the input data is independently and identically
distributed. However, if we utilize the data generated in
chronological order < sq, ag, 11, S1, - - » St, Aty Fr+1, St41 >,
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FIGURE 3. Neural network in DQN.
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FIGURE 4. Experience replay memory.

the correlation among input data is quite high, which would
affect the performance of neural network. In this case, we can
use experience replay to break the correlation among data.
The router selection can be divided into the experience
tuples (s, a, r,s’) as shown in Fig. 4, and the experience
tuples are stored in the replay memory, denoted by D. Then,
the training data of the neural network is sampled uniformly
and randomly from D. Normally, D can only store the last M
experience tuples.

In order to further reduce the correlation among input data,
a rarget network is built to deal with the TD error. As shown
in (21), the network parameter 6 used to compute the tar-
get r + y maxy Q(s', d'; 0) is the same as that of the action-
value function Q(s, a; 8). An update that increases Q(s, a; )
would also increase Q(s', @’; 9), and therefore bringing cor-
relation and possibly leading to oscillations or divergence
of the policy [30]. To further reduce the correlation, DQN
uses a separate network to generate the target, whose network
parameters are denoted by 6. More precisely, network Q is
cloned to obtain a target network 0 every N, steps. Therefore,
the network parameters update to:

0 <0+ [r+7/ max O(s', d’; 07)—Qs, a; 9)} VO(s, a; 6).
(22)

VOLUME 7, 2019



R. Ding et al.: DRL for Router Selection in Network With Heavy Traffic

IEEE Access

/

task queue W

and destination j

ltask with source i

/
I

7

-

loss function

: gradient

observe network dtate,
combine with task

A A

‘Q(S: a; 0, ;)

max (s, a’; 0;)

position and size s
1

A4

Routing
Network
R

choose a

(s,a,1,s")

p
evaluate
Net Q; ;

Ql,‘

- o e e = ==

FIGURE 5. SDMT-DQN algorithm.

B. THE PROPOSED SDMT-DQN AND

DOMT-DQN ALGORITHMS

Originally, DQN is designed for single agent which cannot
help the multi-tasks choose the next hop routers. To tackle
this issue, we assume there is a centralized controller with
sufficient computation ability that can collect information
about the input packets and instruct the router to send the data
packets to the next hop router.

We are interested in a distributed solution to find the rout-
ing policies of the tasks. Even if the data packets of different
tasks are currently in the same router, the tasks may choose
different actions, due to their different goals. Hence, the cen-
tralized controller needs multiple neural networks to instruct
every router for delivering the packets properly. Furthermore,
we should categorize the tasks into different classes and apply
one uniform neural network for each class. In this paper,
we adopt two criteria to classify the tasks, which yields two
different algorithms, respectively:

1) THE SDMT-DQN ALGORITHM
In SDMT-DQN algorithm, we classify all the data transmis-
sion tasks into Ny x Ny categories based on their source
routers and destination routers. Specifically, all data tasks
with the same source router and the same destination router
can be considered as the same type of tasks, to share the same
neural network. As a result, Ny x Ny neural networks are
needed to represent the action-value functions of all kinds
of tasks. For those tasks from source router i to destination
router j, there is a corresponding replay memory D;; with
capacity C to store the experience tuples for training. More-
over, there is a target network to reduce the correlation among
input data. The algorithm can be illustrated in Fig. 5.

At the centralized controller, we set a task queue Z to store
the information of the tasks, e.g., the source, and destination
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router of the task, the packet size and the current position.
The centralized controller selects the task in Z one by one.
Then the neural network corresponding to the source router
and destination router of the selected task takes the state
of the selected task as input, and outputs the value of each
action. Afterwards, the centralized controller chooses action
for the data packet based on €-greedy method. If the selected
action is invalid, then the centralized controller: (i) regards
the task as termination and stores the corresponding state,
action, reward r, and terminate state in corresponding expe-
rience memory; (ii) re-chooses the action whose value is the
largest among the valid actions and continues the transmis-
sion. Therefore, the invalid action will lead to two experi-
ence tuples. This procedure can guarantee the validity of the
selected action while storing the invalid action with r, in
the memory, therefore reducing the probability of choosing
invalid action afterwards. Then, according to the selected
action, the centralized controller can know the next hop router
and determine the next state of the task. The possible situa-
tions can be listed as follows.

« If the next router is the destination router, then the data
transmission task is complete and the state turns into
terminal state. The corresponding reward is O in this
case.

« If the action causes congestion, then the task is termi-
nated and the reward is r..

« Otherwise, the centralized controller updates the state of
the task and re-appends it to the end of Z. Moreover,
the network will return a reward —1.

Then, the centralized controller stores the experience
tuples in the corresponding experience memory D, and the
neural network samples data from D for training. Repeat the
above procedures until each task in the queue has selected
an action. Finally, the centralized controller sends the action
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commands of each task to the routers, and the routers send
their packets to the next hop routers in accordance with
these commands. With such an online algorithm, the neu-
ral networks can utilize the latest experiences to improve
the performance. The overall algorithm is summarized
in Algorithm 1.

2) THE DOMT-DQN ALGORITHM

The DOMT-DQN algorithm can reduce the number of
the required neural networks, which differs from the
SDMT-DQN algorithm mainly in that the data transmission
tasks are classified into N, categories that only correspond
to their destination routers. Hence, the corresponding neural
network and the replay memory only depend on the desti-
nation of the task. As the number of categories is reduced,
the number of tasks for each category increases. Therefore,
there is more sufficient training data for each corresponding
neural network, which leads to faster convergence.

Note that DOMT-DQN can be demonstrated by modi-
fying Algorithm 1. Specifically, the replay memory D i,
Dy1, -+, Dn,nN, are changed into Dy, Dy, --- , Dy,, and
the parameters of the neural networks 611,621 -, Oy, N,
are substituted with 1,6, --- , 6y,. The remaining proce-
dures are very similar to Algorithm 1, and the overall steps
of DOMT-DQN are summarized in Algorithm 2.

V. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the
performance of SDMT-DQN and DOMT-DQN. The proba-
bility of randomly choosing action € is set to 0.9. We use
Python and the deep learning framework Pytorch for coding
and the program is executed on a computer with an Intel
Core 17-8700k CPU, 32GB random access memory (RAM),
and Nvidia GTX 1070 GPU. The operating system is
Ubuntu 16.04.

We compare the performance of the proposed algo-
rithms with the deep learning based algorithm [27] and the
traditional routing protocol OSPF. To better demonstrate the
performance comparison, we consider the simple network
with topology depicted in Fig. 1. Each node is deemed as
a router and each edge is deemed as a transmission link.
The routers Ly, L;, L, are set as source routers that receive
input packets from the data sources and transmit them to
the destination router Lg. All the routers in the network can
receive and send the data packets. We assume that no matter
how big the data packets are, they can be transferred from
one router to another in one time slot. If the network congests
in a time slot, we will mark it, then compute the network
congestion probability by calculating the proportion of time
slots that are congested in every 1000 time slots. The buffer
size of each router is set to 45 MB, and the packet generation
process is set as Poisson.

A. COMPLEXITY ANALYSIS
Based on the definition of the input state in Section II, there
are 3 x N + Ny = 30 units in the input layer of the neural
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Algorithm 1 Source-Destination Multi-Task Deep Q Net-
work (SDMT-DQN)

1: Initialize the task queue Z, the reply memories
with capacity C for every source-destination pair
Di,1,D21, -+, Dy, N, action-value functions Q with
random parameters 6 for every source-destination pair
011,621, ,6N,nN,, the corresponding target action-
value functions Q with parameters 91_’ | = 01,1, ,
Oy, N, = ON,.N, the buffer size of all the routers, and
the network state.

2. fort=1,2...,T do

3:  The sources generate data tasks and append them to Z.

4:  The controller obtains the information of the new gen-
erated tasks and computes the network state.
5. forn=1,..., Ny (N; is the number of tasks in Z) do

6: Pop a task n from Z, combine the current network
state and the position and size of task n to get
state s; .

7: Select neural network based on source router i and
destination router j with parameters 6; ;.

8: Choose a random action a with probability €, other-

wise selecting a = arg max, Q(s », a; 0; ).
: if a is invalid then
10: Store the

experience tuple
(St,n, @, 1t n, terminal state) in D; ;.
11: Re-choose a valid action a;, with the largest
value.
12: else
13: arn = a.
14: end if
15: Simulate execution action a; , in the controller, get
reward 7, , and next state s; ,, then update the net-
work state.
16: Store the experience tuple (s;n, arn, 1.0, s;,n)
in 'Di, J
17: Sample random minibatch of experience tuples
(Sk, ag, Ik, s;() from Di,j~ @
Tk
15 Setye= { ri+y maxy Qs d'16,) @
19: (D: if the task terminates.
20: (D: otherwise.
21: Perform a gradient descent step with a learning

rate a on (yx — O (s, ak; 6;, j))2 with respect to the
network parameters 6; ;.
22: Reset Qi,j = Q,j every N, steps.
23:  end for
24:  The controller sends N; commands to all routers, and
the routers send packets according the commands.
25: end for

network, while the number of units in the output layer
is N, = 32 since the output represents the value of each
action. The controller should choose the next hop router
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Algorithm 2 Destination-Only Multi-Task Deep Q Network
(DOMT-DQN)

1: Initialize the whole system, including the buffer
size of all the routers, the network state, the task
queue Z, the replay memory Di,Dy,---,Dy,,
the action-value functions with random parameters
01,62, --- ,0n,, and the corresponding target network
0, =01, ,9&1 = 0N,

2. fort=1,2...,T do

3:  The sources generate data tasks and append them to Z.

4. forn=1,...,N; (N; is the number of tasks in Z) do

5: Select the corresponding neural network based on
the destination router i of task n, 6;.

6: Choose action with e-greedy, obtain the next state,
and store the experience tuples.

7 Sample random minibatch of experience tuples

(Sk, ak, i, s,’() from D; and update the correspond-
ing parameters 6; with gradient descent method.
: Reset Qi = Q; every N, steps.
9:  end for
10:  The controller sends N; commands to all routers, and
the routers execute these actions.
11: end for

for each task in a very short time, therefore light-weight
neural networks ought to be used. The specific neural network
architectures for SDMT-DQN and DOMT-DQN are shown
in Table 1.

TABLE 1. The neural network architecture.

Algorithm Input layer | Hidden layers | Output layer
SDMT-DQN 30 50 32
DOMT-DQN 50 T 40

The number of the required neural networks for our algo-
rithms is significantly reduced compared with DL-based
method in [27]. To be specific, Ny x Ny and N; neural
networks are required for SDMT-DQN and DOMT-DQN,
respectively. For example, considering the network topology
of Fig. 1, SDMT-DQN requires three neural networks while
DOMT-DQN only needs one neural network.

In addition, the required number of floating point opera-
tions (FLOPs) is used as the metric of computational com-
plexity. For convolutional layers, the number of FLOPs is:

FLOPs = 2H;,Win(CinK? + 1)Cout, (23)

where H;,, W;, and Cj, are height, width and number of chan-
nels of the input feature map, K is the kernel size, and C,,,; is
the number of output channels.

For fully connected layers, FLOPs is computed as:

FLOPs = (2N;; — DNous» (24)

where Nj, is the number of input neurons and N, is the
number of output neurons [36].
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The total computational complexity can be summarized
in Table 2. Compared with the DL-based method, the pro-
posed algorithms has much fewer FLOPs for each neural
network and number of neural networks. Therefore, the total
computational complexity of the two proposed algorithms are
extremely lower.

1.0
—— OSPF
—— DL based
—— SDMT-DQN
0.8 4 DOMT-DQN
2
=
© 0.6
o
[}
[=4
S
@ SDMT-DQN
v 04 Q DL based
5
o
0.2 4
0.0

0 25 50 75 100 125 150 175 200
Train_step(x1000)
FIGURE 6. The performance comparison between our proposed

algorithms and tradition protocol as well as DL based algorithm in terms
of congestion probability.

B. PERFORMANCE COMPARISON

In Fig. 6, we compare congestion probabilities of
SDMT-DQN, DOMT-DQN, DL based algorithm and OSPF
versus the number of training steps. The discount rate y
is set to 0.9, and the mean of Poisson data generation
process is set to 15 MB per time slot. The congestion
probabilities of OSPF stays at a high level due to the lack
of intelligence. In contrast, the congestion probabilities of
SDMT-DQN and DOMT-DQN significantly decrease with
the increase of training steps because the network has learned
from the past congestion and then generates a policy to reduce
congestion probability. Moreover, both two proposed algo-
rithms can achieve lower congestion probability compared
with the DL based algorithm [27]. This is because the DL
based algorithm can only choose from the pre-defined path
combinations, instead of exploring the best possible paths
from the instantaneous states. We see that the training process
of DOMT-DQN converges faster than that of SDMT-DQN.
The reason can be explained as follows: The training data of
SDMT-DQN is divided into Ny x Ny categories, while that of
DOMT-DQN is only divided into Ny categories. Therefore,
at the beginning of the training process, the training data
for each neural network in DOMT-DQN is more sufficient
than that in SDMT-DQN. It is also seen that with the process
of training, the congestion probability of SDMT-DQN can
reduce to almost zero, while that of DOMT-DQN maintain
at an acceptably low level, because adopting more neural
networks of SDMT-DQN could provide better learning abil-
ity than DOMT-DQN. Besides, since further classifying the
data transmission tasks based on the source routers makes the
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TABLE 2. The total complexity comparison of the three algorithms for the network topology in Fig. 1.

Algorithm Number of required neural networks ~ FLOPs of each neural network
DL-based method in [27] (no longer than 3 hops) 6 x5 x6=180 531.5 x 103
DL-based method in [27] (no longer than 4 hops) 14 x 15 x 14 = 2940 531.5 x 103
SDMT-DQN 3 4.5 x 103
DOMT-DQN 1 8.2 x 103
1 ‘ ‘ g 210
—6—OSPF ‘ ‘
0.9 [ | —#— DL based —8—OsPF
SDMT-DQN —#— DL based L
0.8  |[—+— DOMT-DQN 551 SDMT-DON
=—— DOMT-DQN

Congestion probability
o o o o o o
I O T

o
T

o —

8 9 10 11 12 13 14 15 16 17 18
Average data generation rate

FIGURE 7. Network congestion probability comparison for various packet
generation rates.

learning process easier for each neural network, SDMT-DQN
would yield lower congestion probability than DOMT-DQN.

Next, we compare the congestion probability versus dif-
ferent data generation rates in Fig. 7, where the curves of
SDMT-DQN, DOMT-DQN, and the DL based algorithm are
calculated by the network parameters after sufficient rounds
of training. We can see that when the data generation rate is
slow, i.e., the network is idle, the data packets are unimpeded
in the network. In this case, none of the four compared
methods would cause congestion. However, when the amount
of data in the network increases, the congestion probability
of OSPF increases significantly. In contrast, the congestion
probabilities of SDMT-DQN and DOMT-DQN stay at a low
level, which indicates that OSPF can only perform well when
the network is idle, while the proposed ones can deal with
large amount of data. In addition, the proposed algorithms
outperform the DL based algorithm.

Fig. 8 plots network throughput versus packet generation
rates for different algorithms. Similar to Fig. 7, when the
network is idle, the performance of OSPF performs similarly
to the other three algorithms. However, when the network
traffic becomes heavier, OSPF drops a larger number of
packets due to the increasing congestion probability. This in
turn leads to a decrease in the network throughput. On the
contrary, the proposed algorithms can improve the network
throughput when the data generation rate increases because
the congestion probability can always be maintained at a
very low level. Due to the lower congestion probability,
SDMT-DQN performs better than DOMT-DQN in terms of
the network throughput.
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FIGURE 8. Network throughput comparison for various packet generation
rates.
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FIGURE 9. The probability of choosing the invalid actions.

Fig. 9 plots the probability of choosing valid actions in the
first trial versus the number of training steps for the proposed
SDMT-DQN and DOMT-DQN algorithms. We see that the
invalid actions are rarely chosen after very few training steps.
Therefore, SDMT-DQN and DOMT-DQN will not require
much additional computation to re-choose valid actions.

In Fig. 10, we compare the path length of 1000 transmis-
sion tasks under different discount rates of SDMT-DQN and
DOMT-DQN. It is seen that the closer y is to 1, the shorter
the path length will be, which is consistent with the analysis
in Section III-D. When y = 1, (19) seems impossible to
satisfy. But in fact, as long as r. and r, are smaller than —1,
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FIGURE 10. The comparison of different discount rates y in terms of path length. (a) Path length under different
discount rates y based on SDMT-DQN. (b) Path length under different discount rates y based on DOMT-DQN.

the task tends to choose the actions which would not cause
congestion or be invalid along with the training. As a result,
when y = 1, our algorithms can also reduce the congestion
probability, just slightly slower. In addition, DOMT-DQN
performs better than SDMT-DQN. Specially, for SDMT-
DQN, there are very few paths that are longer than 10, which
never happens for DOMT-DQN. This is because when we use
SDMT-DQN, the task from one source router may choose
another source router as hop router occasionally. Since the
probability of this behavior is very low, the training data
that guides the network to handle this situation cannot be
sufficient. Then, the data packets may be repeatedly trans-
ferred between two source routers, and the path length of
the corresponding task then becomes very long. On the other
hand, DOMT-DQN does not differentiate the tasks according
to their source routers. Hence, no matter which router the data
packet is transferred to, there can always be sufficient training
samples.

In the last example, we demonstrate the scalability of
SDMT-DQN and DOMT-DQN in a more complicated net-
work as shown in Fig. 11. In Fig. 12, we compare the
proposed algorithms with OSPF in terms of congestion
probability.” Both the proposed algorithms can significantly

2The DL based algorithm [27] cannot be implemented in the current
computer configuration, since the number of the possible path combinations
is too large.
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FIGURE 11. A more complicated network topology.

reduce the congestion probability. Similar to Fig. 6,
SDMT-DQN performs better than DOMT-DQN in terms
of the congestion probability while DOMT-DQN con-
verges faster than SDMT-DQN. Both SDMT-DQN and
DOMT-DQN converge slower when being applied in a
more complicated network, and the corresponding congestion
probability after training will be slightly increased. This is
because when the number of routers in the network increases,
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FIGURE 12. The performance comparison of our proposals and tradition

protocol OSPF in terms of congestion probability in a more complicated
network.

the proportion of valid actions for each task decreases signif-
icantly, making it more difficult to learn a good policy for the
task.

VI. CONCLUSIONS

In this paper, we have proposed two DRL-based online algo-
rithms to reduce the congestion probability and shorten the
transmission path when the network traffic is quite heavy. The
simulation results demonstrate that the two algorithms can
achieve high throughput in contrast with the traditional rout-
ing protocols due to the low congestion probability. Besides,
the proposed algorithms have lower computational complex-
ity compared with the DL-based method. It is worth noting
that in this article, we only consider the update of the parame-
ters of the neural networks. In the future, we will consider the
neural network with dynamic architecture to achieve better
performance. Nevertheless, our study demonstrates that DRL
is feasible to be applied to routing problem.
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