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ABSTRACT This paper presents the state-of-the-art technical reviews and analysis of recent copy-move
forgery detection (CMFD) techniques. A new CMFD process pipeline was introduced. In addition, the tech-
niques used in each stage of the CMFD pipeline are summarized and classified into small categories.
Furthermore, the tables of comparison are provided as a quick reference. This technical review paper is
expected to help provide useful insights and updated information regarding recent advancements in CMFD

to researchers in the field.

INDEX TERMS Copy-move forgery, detection, CMFD, survey, digital forensics.

I. INTRODUCTION

Digital media tampering and counterfeit information have
become a serious issue in modern information systems.
Owing to the emergence of easy-to-use photo editing soft-
ware, realistic tampering of a digital photo has been sim-
plified greatly. To tackle this problem, many studies have
been focused on how to detect, manually and automatically,
this type of manipulated media or information. There are
currently two main types of digital image forgeries: splicing
and copy-move forgery (CMF).

Splicing usually refers to a tampering technique performed
by replacing some parts of the target digital image with image
fragments from the other sources. Detecting of a spliced
image involves checking inconsistencies of some properties,
values or attributes within the target image. Unlike splicing,
copy-move forgery (CMF) duplicates fragments from the
target image and place it back somewhere in the same image
to cause misleading or misinterpretation.

To develop a copy-move forgery detection (CMFD) tech-
nique, many factors must be considered. First, a CMFD
method is required to provide detection results with high
accuracy and reliability. However, in practice, the developed
method should also be efficient in terms of speed and com-
putational complexity. Therefore, solving the problem of the
speed—accuracy trade-off is currently challenging. Moreover,
an efficient CMFD method should be robust against various
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types of attack and manipulation techniques (e.g., noise addi-
tion, compression, scaling, and rotation).

Recently, there have been surveys and summaries of
CMEFD techniques proposed in the literature. Warif et al. [1],
presented details of the CMFD process, a classification of
feature extraction techniques, and popular datasets that were
publicly available. The review by Singh and Kaur [2] clas-
sified block-based CMFD methods into five sub-categories
(i.e., intensity-based, movement-based, dimensionality
reduction-based, texture-based, and frequency-based) of
CMFD mechanisms. Meanwhile, in February 2018, Lin
et al. [3] and Zhang et al. [4] introduced the latest updated
reviews on passive digital image forensics and passive tech-
niques for CMFD, respectively. In [4], the mathematical
model of CMF and the framework for the CMFD pro-
cess were introduced. Detection techniques were classified
in two main categories (block-based and keypoint-based
approaches) and details of the feature description techniques
belonging to each category were provided.

In this work, a state-of-the-art review and analysis of
CMEFD techniques are presented. Unlike previous technical
reviews, this work introduces a new model of the CMFD
process pipeline that differs from the traditional one. Each
component in the pipeline is analyzed and explained in detail
with diagrams and details of the related research. Further-
more, this review involves only the latest findings (2015 to
2018) retrieved from the IEEE and ScienceDirect digital
libraries.

The rest of this paper is structured as follows. In Section 2,
the model of the copy-move forgery (CMF) problem is first
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FIGURE 1. Model of copy-move forgery.

defined together with the new framework/process pipeline
of the CMFD process. Detailed analysis and comparison of
preprocessing techniques are then presented in Section 3.
Section 4 explains the basic idea of keypoint detection.
Details of some important and well-known techniques (e.g.,
SIFT [5]) are also briefly discussed. In Section 5 and 6,
the feature extraction and matching processes are categorized
and discussed, respectively. In Section 7, a general idea is
given of the false matching removal process with details
of some recently proposed techniques. Regarding visualiza-
tion of the detection results, techniques for localizing CMF
tampered regions are presented in Section 8. Techniques for
optimizing and enhancing the quality of detection results
are introduced in Section 9. Finally, we draw conclusions in
Section 10.

Il. COPY-MOVE FORGERY (CVMIF) AND DETECTION
PROCESS

Copy-move forgery (CMF) is a typical type of digital image
manipulation in which parts of the original image are dupli-
cated and then replaced or pasted back to the same image.
Prior to the replacement process, the duplicated parts of
the target image may undergo some transformations (e.g.,
scaling, rotation) or parameter adjustments (e.g., brightness
or contrast adjustments). Figure 1 shows the general concept
of CMF.

Regarding detection of copy-move forgery, many CMFD
techniques have been proposed so far. Most of them, how-
ever, share some common procedures. In this section, a new
CMFD process pipeline is introduced. Unlike the existing
frameworks, in this paper, CMFD techniques are no longer
divided into block-based and keypoint-based techniques but
are integrated into a single framework. The order of some pro-
cesses in this framework are interchangeable. Some elements
or stages are also deemed optional and can be skipped for
a specific purpose. Figure 2 shows the new CMFD process
pipeline. Sections III to IX then explain the general idea,
structure, and sample techniques that belong to each stage,
in detail.

1Il. PREPROCESSING
Preprocessing is the first stage in the CMFD framework.
It is an optional process referring to the conversion or

VOLUME 7, 2019

Input
(Digital Image)

‘ Preprocessing ‘

»
La

Keypoint detection

(optional)
b4 |

‘ Feature Extraction ‘

v

‘ Matching ‘

v

False matches Removal
(optional)

v

Localization
(Visualization)

v

Results Quality Enhancement/
Optimization (optional)
v
Output
(Detection results)

FIGURE 2. New CMFD framework.

information reduction of the original image. Generally,
preprocessed information will usually make the following
CMEFD processes more efficient, resulting in faster detec-
tion speed or higher detection accuracy. Some examples
of the preprocessing techniques are conversion of RGB to
grayscale [6], [7], [8], HSV [9], [10] or YCbCr [11], [12], [13]
color space, local binary pattern (LBP) [14], median fil-
ter [9], [15], discrete wavelet transform (DWT) [16], [17],
and principal component analysis (PCA) [18]. In this paper,
not only conversion and dimensionality reduction tech-
niques, but also block division and segmentation are also
included in preprocessing (e.g., SLIC [15], [19]). These
techniques are used to divide the target digital image into
fixed or non-fixed size blocks, sub-blocks, patches, or
superpixels.

Figure 3 shows the structure of the preprocessing stage
consisting of two main components: conversion or dimen-
sionality reduction-related and segmentation-related units.
In this stage, the order of the processes are interchangeable
and each unit can be visited/performed more than once. For
example, the preprocessing could start by dividing the target
image into fixed-size square blocks and then wavelet decom-
position (e.g., DWT) could be performed on each individual
block. Moreover, each block could also be divided into many
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sub-blocks depending on the design and underlying feature
extraction method or algorithm.

Li et al. [20], introduced the use of dynamic image
segmentation prior to the actual CMFD process. In [20],
the target image was segmented into meaningful patches and
features were extracted and matched among these patches.
This preprocessing method offers an efficient way to search
and match features, in which features retrieved from the
same patch will not be compared. In [9], a Sobel operator
(Sobel edge detection) [21], morphological opening [22], and
median filter [23] were used to remove unnecessary small
objects from the target digital image. This resulted in greater
precision in the following feature extraction process. More-
over, Utsubioglu et al. [13], converted the digital image into a
YCDbCr [24] color space prior to the feature extraction process
to reduce the dimensionality and also used them as intensity-
based features resulting in a new feature description method
with higher discriminative power.

IV. KEYPOINT DETECTION

Keypoint detection is an optional stage in the CMFD pipeline
in which interest points (so-called ‘’keypoints’’) are detected.
Pixels in the area around each keypoint are used as input
for keypoint-based feature description/extraction techniques.
Each interest point holds a high level of uniqueness resulting
in high discriminative power of the extracted feature. There
are many ways to detect keypoints within the target digital
image, depending on the detection criteria. Some methods
use edges of objects within the image as the main criteria
for choosing a good keypoint. Therefore, the current research
on keypoint detection techniques can be classified into three
main categories depending on these criteria: edge, corner, and
blob.

Unfortunately, not all keypoint detection techniques are
suitable for CMFD. There are only a small number of detec-
tion techniques being used and studied so far. Harris corner
detection [25] and Laplacian of Gaussian (LoG) [26] are
excellent examples of popular keypoint detection techniques
for CMFD. The Harris detector is a corner-based keypoint-
detection method that achieves its goal of corner detection
by using the sum of vertical and horizontal gradients over a
small window to discriminate between corner and non-corner
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images. Utilizing Eigenvalues decomposition, the Harris key-
point detector is robust against rotation. A good example
of using Harris keypoint detector in CMFD was proposed
in 2016 by Uliyan et al. [8].

Laplacian of Gaussian (LoG) is a two-step image filtering
process in which a Gaussian filter is applied before applying
the Laplacian process. LoG was adopted in a SIFT feature
descriptor, which is a robust feature description technique
well-known in the field. Keypoint detection using LoG is
a blob-based detector that begins by applying LoG to the
image with different scaling parameters o . Therefore, search-
ing for local maxima locations across the scale and space
will result in a list of potential keypoint (x,y, o). These
processes are done in many octaves of the image in the
Gaussian Pyramid [26]. Because the Laplacian of Gaussian
is computationally expensive, the difference of Gaussian
(DoG) [27] is in practical use to compute LoG, which results
in significant reduction of computational cost. Examples of
recently proposed techniques utilizing LoG and DoG are
presented [20], [28]-[30].

To design or utilize a keypoint detection method, there are
three main factors of concern: speed, uniqueness, and robust-
ness. In terms of speed, some keypoint detection techniques
(LoG, for example) are not suitable for systems that require
real-time or near real-time processing speed. Regarding the
uniqueness of keypoint, a detection method that detects many
keypoints with close or similar characteristics are more likely
to create false matches during the feature matching stage
owing to the low discriminative power of the extracted fea-
tures. Finally, depending on the system, the keypoint detec-
tion process should be robust against some types of changes
and transformations: noise addition, rotation, and scaling,
for example. In CMF, where parts of the target image are
duplicated, an efficient keypoint detection method is expected
to detect the same keypoints on both the original and the
duplicated area, even after some transformations (e.g., rota-
tion, scaling) or a noise-added condition.

V. FEATURE EXTRACTION
Feature extraction is a crucial step determining both accu-
racy and efficiency of the detection system. In this stage,
feature descriptors are generated from each block or keypoint
obtained from previous processes. These descriptors are vec-
tors derived from the image data, which hold a high level of
discriminative power. Therefore, in CMF, the original and
duplicated image should generate a set of feature descrip-
tors that are similar or closely related to each other. With a
robust extraction technique, each generated descriptor will
have a high level of discriminative power that will finally be
reflected in the overall accuracy of the detection system.
Not only for determining overall detection accuracy, this
stage is also one of the key factors in determining the process-
ing speed of the system. In practice, there are a large number
of keypoints or blocks within a single image, especially in
a high resolution image. Hence, producing feature descrip-
tors for all block/keypoint is a challenging task. In practical
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forensic investigation where authenticity of all digital images
needs to be verified, the detection speed should be fast enough
not to hinder, and should allow subsequent investigation pro-
cesses to go smoothly.

Because the feature extraction process is a crucial stage
and acts as the core of the CMFD system, there are a
huge number of research studies reported in the literature.
In this section, feature extraction techniques are classified
into groups. Moreover, some recently proposed techniques
will be discussed in the following subsections. Figure 4 shows
a classification of the feature extraction techniques.

A. TRANSFORMATION-BASED TECHNIQUES
Transformation-based techniques involve the conversion of
the original image data from spatial domain (i.e., image
plane) into frequency or spatial-frequency domain. Utilizing
frequency domain, the method can remove some informa-
tion (e.g., edges or high frequency components) from the
target image that is generally unnecessary for the detection.
It can also highlight some essential components (e.g., low
frequency components) leading to more accurate and efficient
ways to extract a feature descriptor. In addition, conversion
of pixel coordinates (e.g., Polar Complex Exponential Trans-
form: PCET) [9]) is also included in this category.

Cozzolino et al. [31], proposed a CMFD method applying
circular harmonic transform-based techniques (e.g., Zernike
moments [32], Polar Cosine Transform (PCT) [33], and
Fourier-Mellin transform (FMT) [34]) to the overlapping
image patches to detect copy-move forgeries. Combined with
the proposed modified PatchMatch algorithm (see [35] for
further details on PatchMatch), the method is claimed to be
more robust against rotation and scaling. In 2017, Fadl and
Semary [6] introduced the use of polar coordinate transforma-
tion with one dimensional fast Fourier transform (FFT) [36]
to detect forgeries. In this method, the image pixels are
converted from a traditional Cartesian system to a polar
system. Geometric transformation (scaling or rotation, for
example) in the Cartesian coordinate system will result in
shifting (translation) in the converted polar system, which
is much easier to deal with. Therefore, the method effi-
ciently illustrates an important advantage of polar coordinate
transformation in term of geometric transformation invariant.
Moreover, Zandi et al. [37] proposed an iterative method for
CMEFD using PCT as a core feature extraction technique. The
method relies on the creation of a uniqueness metric and
calculation of local capacity, in order to determine a good
interest point and resulting in a set of selected keypoints. PCT
is then applied to each keypoint to generate a set of robust
feature descriptors. Although a high level of distinctiveness
(discriminative power) of the descriptor and a high degree of
invariance are hard to achieve simultaneously, this method is
claimed to be robust against rotation and slight scaling, while
offering a high level of distinctiveness.

Mahmood et al. [12], Ustubioglu et al. [13], and Hilal
et al. [18], presented new CMFD techniques utilizing
DCT [38] as the core of their feature-description technique.
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In [12], stationary wavelet transform (SWT) [39] was applied
to the target image. DCT was then applied to the LL sub-band
of the SWT output to create the reduced feature descriptors.
In [13], DCT-phase terms were utilized to limit the range of
the feature vector to [—1, 1]. The feature descriptor was then
generated by applying zigzag scanning to extract the first
16 elements from the DCT output, concatenating with the
average Y, Cb, and Cr obtained from RGB to YCbCr conver-
sion. Combining this with the use of Benford’s law to identify
the compression history of the target image, the method is
claimed to give a higher accuracy ratio than existing tech-
niques do.

B. HASHING

An excellent example of using hashing in CMFD is the work
of Bi et al. [40] proposed in 2018. Bi et al. [40] intro-
duced the use of the proposed enhanced coherency sensitive
hashing (CSH) in detecting CMF. Previously proposed by
Korman and Avidan [41] in 2016, CSH is a combination of
the previous locality sensitivity hashing (LSH) [42] and the
well-known PatchMatch algorithm [35]. CSH is generally
designed for finding and matching of image patches, and is
claimed to have more accuracy with three to four times faster
processing speed than the PatchMatch algorithm. In [40],
the author introduces an iterative method for detecting CMF
starting by applying enhanced CSH to the host/target image
to obtain feature correspondence maps. Then, the algorithm
applies local bidirectional coherency error-based refining
process to the obtained feature correspondences. The entire
process is repeated if the retrieved level of error is still not
stable. After the refinement, the final detection result/map is
detected using some morphological operations.

C. LOCAL BINARY PATTERN (LBP)-BASED TECHNIQUES

A local binary pattern (LBP) is a statistical method for tex-
ture analysis. The original concept of this technique was
first introduced by He and Wang [43] in 1990. LBP is a
technique that transforms a cell/block of image data into
statistical texture information. For the image being examined,
LBP is performed on each individual pixel by comparing
the intensity of each pixel with that of its surrounding eight
neighbors. The comparison with neighboring pixels can be
done in either clockwise or counter-clockwise manner. For
each comparison, there are two possible results: 0 or 1.
If the value of a neighbor pixel is smaller than the cen-
ter pixel, the result will be 0; otherwise, the result is 1.
For each pixel, this results in an 8-bit binary pattern that
is usually converted to decimal form (for easier compari-
son) and then combined with the histogram-based approach
(histogram of oriented gradients: HOG) [44], for example,
to improve the detection accuracy. The mathematical expres-
sion of LBP at a pixel location can be shown in the following
equation (1).

LBP(X, )’) = {ny(x - 1»)"" 1)7 ny(xvy+ 1)7
G+ 1,y+ 1), Gylx + 1, ),

40553



IEEE Access

S. Teerakanok, T. Uehara: Copy-Move Forgery Detection: A State-of-the-Art Technical Review and Analysis

Feature Extraction
(methods classification)

Transformation-based . Local Binary Pattern vy . Histogram-based
Techniques Hashing (LBP)-based Techniques Keypoint-based Techniques Techniques
e.g., eg., eg.,
$ v ¢ - Coherency -LBP - Histogram of Oriented
itive i - , i Gradient (HOG
‘ Frequency ‘ ‘ Wavelet ‘ ‘ Polar ‘ Seusitive Hashing Center Symmetric ‘ SIFT-based ‘ ‘ ETC. | l.‘a ent ( )
(CSH) LBP (CSLBP) - Histogram of Oriented
eg. e.g., eg.. - Locality-Sensitive - SVD coefficient e.g., e.g., Gabor Magnitude (HOGM)
- FT/FFT -DWT - Polar Cosine Hashing (LSH) of LBP -SIFT - SURF
-FMT -SWT Transform (PCT) - OpponentSIFT -KAZE
-DCT - Polar Coordinate - Mirror-SIFT - MiniEigen
Transform - Binarized SIFT
- Polar Complex - ASIFT
Exponential Transform
(PCET)
Color/Intensity-based Techniques ETC. Statistical monujms &
Moment Invariants
e.g., eg., eg.,

- Color Feature

- Auto Color Correlogram

- Color moment

- Local contrast

- Weber Local Descriptor (WLD)

- Multi-Level Dense Descriptor (MLDD)

Coding (HBTC)

- HGP-2 descriptor

- Gray level cooccurrence matrix (GLCM)
- Halftoning-based Block Truncation

- Locality Preserving Projection (LPP)

- Zernike moments

- PCET moments

- Hu’s moment invariants
- Exponent moments

FIGURE 4. Classification of feature extraction techniques proposed from 2015 to 2018.

ny(-x + lvy_ 1)5 ny(-x’y_ 1)9
Gyl —1y—1,Gyx =1y} (1)
1 ifIG,j) —1(x,y) = 0

Gn(i,j) =
(i) 0, otherwise

(@)

In (1), x and y refer to pixel location (row and column) in
the target image, while I (x, y) represents an intensity value of
the pixel at location (x, y).

Recently, the idea of LBP has become more attractive in
the field of CMFD. Some recent examples utilizing LBP as
a feature description technique to detect CMF are proposed
in [45], [46], [16], [47], [48]. Mahmood et al. [45], presents a
new CMFD technique using stationary wavelets [39] together
with LBP variance to detect anomalies within the digital
image. The method begins with performing grayscale conver-
sion and SWT on the target image during the preprocessing
process. The low-frequency component (LL channel) of SWT
is then selected for further processing. Local binary pattern
variance (LBPV) is then utilized to create a feature descriptor
from each circular block within the target image. The tech-
nique shows an interesting way to solve the CMFD problem
using an LBP-based method; the method is also claimed to
be robust against scaling and rotation.

Wang et al. [46] presents a CMFD technique using LBP
and SVD [49]. This technique shows an interesting way
to create feature descriptors from the target image block
using a special vector containing sign information of the
SVD coefficients computed from a previously processed LBP
labeled image. Jwaid and Baraskar [16], in 2017, proposed a
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method to detect CMF using LBP with DWT and PCA. This
technique uses LBP as a core feature extraction mechanism.
The detection method is claimed to have achieved a high
level of accuracy. To detect CMF accurately within the target
image, the technique requires a reference (original) image for
comparison. This can be considered a significant drawback of
this technique, making it unsuitable for practical use.

Kalsi and Rai [47], in 2017, proposed a CMFD tech-
nique based on using approximation image LBP (AILBP)
for detecting copy-move forgeries. AILBP was performed by
applying 2-level wavelet decomposition to the target image.
LBP was then performed on the decomposed image with
the lowest frequency components. The author claims that
combining wavelet decomposition with LBP is effective in
terms of accuracy and computational time. Last, in 2015,
Sharma and Ghanekar [48] proposed a CMFD technique for
medical images using rotational invariant features. The fea-
ture extraction process was done using the center symmetric
local binary pattern (CSLBP) [50], which is a LBP variant
producing a shorter length version of the LBP histogram,
making it more robust against noise.

D. KEYPOINT-BASED TECHNIQUES

Regarding keypoint-based feature extraction, there is no
denying that scale-invariant feature transform (SIFT) [5]
is a classic, yet still popular approach in this field. SIFT
offers a feature description technique with a 128-element
length feature. The generated feature is robust against both
scale and rotational changes making its feature descriptor
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very suitable for CMFD application. SIFT, however, is not
an ultimate solution without any drawbacks. In fact, SIFT
suffers from its high computational cost and complexity.
This makes it unsuitable for some practical applications,
in which a large number of images need to be processed
or real-time processing speed is required. To overcome this
problem, many approaches have been studied and steps
proposed to speed up or improve various aspects of SIFT.
Some recent SIFT-based methods for CMFD are proposed
in [51], [52], [53], [54], [55], [56], [57], [58].

In [54], Muzaffer and Ulutas proposed a CMFD technique
using binarized SIFT by which the value of each element
in a SIFT descriptor is binarized to zero or one. This tech-
nique is claimed to improve the overall speed of detection
by allowing the following matching process to perform faster
owing to less complex (simplified) feature descriptors. Jin
and Wan [55], proposed a technique to improve SIFT detec-
tion against smooth regions. The OpponentSIFT technique is
employed to increase the discriminative power of the descrip-
tors at low contrast keypoints. The technique offers a very
robust way to overcome one of the biggest current SIFT
problems: its inability to deal with low contrast (smooth)
regions. Moreover, in 2016, Shahroudnejad and Rahmati [56]
proposed an interesting approach for detecting CMF using
Affine-SIFT (ASIFT). The proposed method applied the
affine camera model prior to SIFT in order to simulate and
obtain more information on possible affine distortions. The
method is claimed to be fully affine invariant and also robust
against transformations and deformation of the CMF tam-
pered regions.

E. HISTOGRAM-BASED TECHNIQUES

In the field of computer vision, especially regarding feature
extraction, a histogram is a very useful tool that can be
applied to many applications. For example, a histogram was
used in SIFT [5] in assigning the orientation of each key-
point. Some histogram-based CMFD techniques have been
proposed recently. Lee et al. [7], proposed a method for
CMEFD using a histogram of oriented gradient (HOG). The
CMF detection is done by applying HOG to an image con-
verted to grayscale and then divided into overlapping image
blocks. The proposed method was tested against the CoMo-
FoD public dataset [59] and images from Google search. The
experimental results show robustness of the proposed method
against typical CMF and small rotation. Later in the same
year, the same author proposed a new technique utilizing
Gabor magnitude [60] for detecting copy-move forgery. The
detection was first done by applying a Gabor filter to the
image. Using the filtered image, the Gabor magnitude of
each image block was then computed. Last, using the mag-
nitude information, the histogram of oriented Gabor magni-
tude (HOGM) was then created for each block. According
to the experimental results, the proposed technique not only
demonstrated the ability to deal with slight rotation, scaling,
JPEG compression, and blurring, but was also capable of
detecting multiple CMFs in the same image.
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F. COLOR/INTENSITY-BASED TECHNIQUES

The color or pixel intensity-based method is one of
the most straightforward feature extraction techniques.
Bi and Pun [61] introduced an iterative refining technique for
detecting CMF in digital images. For each patch of the image,
the method employs an array of simple color features in RGB
channels as a feature descriptor. The results of the following
feature matching are then refined using the proposed iterative
method, resulting in higher quality CMF detection results.
Harjito and Prasetyo [62], proposed a passive method for
CMF detection using a halftoning-based block truncation
coding (HBTC) feature. The feature extraction method relies
on the underlying proposed color feature (CF) and bit pattern
feature (BF). This technique shows an interesting way of
using HBTC with a color feature. However, the proposed
method is a supervised approach requiring a set of training
images in creating color and bit pattern codebooks before
generating both CF and BF. This makes this technique less
practical.

Another good example of using the intensity-based tech-
nique during a feature extraction process was introduced by
Pun and Chung [15]. In this work, Pun and Chung [15]
proposed a two-stage localization for CMFD. The technique
utilizes the Weber local descriptor (WLD), proposed by Chen
et al. [63], to performing rough localization of the CMF
regions. There are two main components in WLD: orienta-
tion and differential excitation. The orientation component
contains information related to gradient orientation of the cur-
rent pixel. Differential excitation utilizes the intensity-based
approach to create descriptors for CMF rough localization by
calculating the ratio between the relative differences of the
current central pixel with its neighbors. The proposed CMFD
is claimed to be robust against both scaling and rotational
changes.

Last, Moussa [64] proposed a new simple method for
CMFD using the sum of pixel intensities as feature descrip-
tors. The detection algorithm begins by dividing the target
digital image into overlapping square blocks. For each block
B;, the detection method will again split B; block into k
sub-blocks. The method will then compute the sum of pixel
intensities within each sub-block and use the results from all
the k sub-blocks as the feature descriptor representing B;.
This CMFD technique offers a fast and very simple way to
tackle the problem of CMF. However, it was also mentioned
that the detection performance would drop in the case of
geometric transformation (i.e., rotation or scale). Therefore,
the technique is still far from practical use for CMFD in
which forged images undergo various types of adjustment and
transformation.

G. STATISTICAL MOMENTS AND MOMENT INVARIANTS
Until now, there have been a number of statistical moments
and moment invariant-based CMFD techniques proposed

in the literature. Some recent approaches were pro-
posed in [11],[9], [65], [66]. Wang et al. [65], in 2017,
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proposed a keypoint-based CMFD method for small smooth
regions. The method utilizes superpixel classification and
adaptive keypoint extraction technique in finding keypoints
for both high and low contrast (smooth) areas. Inspired
by exponent moments, originally proposed by Meng and
Ping [67] in 2011, exponent moments magnitudes was pro-
posed as a new local visual feature claimed and experimen-
tally proven to be robust against scaling, rotation, or highly
compressed images. The technique is also claimed to deal
effectively with the low-contrast problem (smooth regions).
The method, however, suffers from its high complexity and
cost, making it unfit for real-time or near real-time applica-
tions.

Bi et al. [11] introduced a hierarchical feature matching
process for CMFD using the proposed multi-level dense
descriptor (MLDD). MLDD consists of two main parts:
a color texture descriptor (MLDD_CT) and an invariant
moment descriptor (MLDD_IM). MLDD_IM relies on cal-
culation of the PCET moments of each pixel. The PCET
moment is an orthogonal moment defined in a circular area
in which its magnitude is invariant to scaling or rotation.
Therefore, the PCET moment is chosen as a geometric
invariant feature for this reason and its low computational
complexity. The paper above also comes with detailed exper-
imental results showing its robustness against various types
of changes and modifications (geometric transform, noise
addition, and JPEG compression, for example). Furthermore,
using a similar technique, Hosny et al. [9], in 2018, proposed
the use of PCET moments (order 15) for CMFD. The feature
extraction process is done by applying PCET moments to
the edge detected image previously processed with RGB
to HSV conversion, and a Sobel operator, respectively. The
method is claimed to be robust against scale, rotation, Gaus-
sian noise, and JPEG compression. The visual experimental
results presented in the paper; however, show the detection
results against only the most straightforward CMF attack
(i.e., without scaling or rotation). Therefore, it is hard to
ensure the effectiveness of this technique against each type of
attack.

H. OTHER FEATURE EXTRACTION TECHNIQUES

In this paper, there are some more recent CMFD techniques
that are yet to be classified. Also, at the time of writing,
some recently proposed techniques may not be included in
this paper. Therefore, details of some unclassified CMFD
techniques are discussed in this subsection.

In 2015, Cao et al. [68] utilized the locality preserving
projections (LPP) technique to detect copy-move regions in
digital images. With this technique, LPP is employed during
the feature extraction process for dimensionality reduction of
the image block. After dividing the image into blocks, LPP
is applied to each block to create the projection matrix that
will later be processed into a feature descriptor. This work
introduces an interesting way to tackle the CMF problem.
The technique, however, was tested against only a few images
tampered with using a straightforward CMF attack.
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Uliyan et al. [8], in 2016, introduced a CMFD method
using angular radial partitioning together with Harris key-
points. In this work, two types of segmentation, angular radial
partitioning (ARP) and then the Harris keypoint detection
method, were applied to the target image. For each keypoint,
the feature extraction process involves creating two types of
descriptor: 1) chain code, generated from the total number
of Harris corners in each sector within the same cluster. The
chain code is used only during the preliminary matching
process. 2) The HGP-2 descriptor, introduced by Trujillo
in 2012, is used as a feature descriptor for further texture-
based matching processing.

Last, in 2018, Teerakanok and Uehara [69] presented a
GLCM-based rotational invariant feature description tech-
nique for CMFD. The method first utilizes SURF to detect
keypoints within the target image. GLCM with various offset
values is then applied to pixels around each keypoint to obtain
co-occurrence matrices. For each keypoint, the algorithm
computes the sum of all co-occurrence matrices in a column-
based manner resulting in a feature descriptor representing
each keypoint. The method was tested against the CoMo-
FoD [59] public dataset and showed that it could properly deal
with rotation. This method, however, still has the drawback
of rapid changes in scale, which hinders it from being used in
practice.

VI. MATCHING

Upon retrieving feature descriptors from the previous stage,
the feature matching process is then performed to find poten-
tial matches between original image patches and copy-move
areas. In this paper, we define the feature matching processes
to include two fundamental components: searching meth-
ods and similarity measuring techniques. Search methods
involve the algorithms or methods used to find efficiently the
matches between original image and CMF areas. These meth-
ods usually involve dimensional or cost reduction techniques
(e.g., PCA, sorting, etc.) and some accuracy enhancement
techniques (e.g., clustering or segmentation). To determine
similarity between two feature descriptors, the underlying
similarity methods are essential. Figure 5 shows the main
components of the feature matching processes together with
techniques belonging to each component. These are classified
into various categories. In this paper, the CMF searching
techniques are divided into six categories. The details of
searching-related techniques and similarity measuring tech-
niques are briefly explained in the following subsections VI-
A and VI-B respectively.

A. SEARCHING-RELATED TECHNIQUES

1) SORTING

Sorting is a popular approach usually adopted in the
CMFD technique. Because a large number of feature
descriptors are extracted from a single digital image, espe-
cially from high resolution images, matching among all
descriptors becomes a computationally challenging task.
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FIGURE 5. Main components and classification of feature matching techniques.

Therefore, sorting is usually employed to speed up the match-
ing
process.

Some examples of using sorting to speed up the detection
process were introduced in [6], [60], [11], [37], [12], [13].
Fadl and Semary [6] performed CMF matching by applying a
radix sort to one-dimensional Fourier transform-based feature
descriptors. Bi et al. [11] performed color texture descriptor-
based sorting to increase the speed of feature matching dur-
ing the preliminary matching process. Last, Lee [60], Zandi
et al. [37], Mahmood et al. [12], and Ustubioglu et al. [13]
demonstrated the use of lexicographical sorting during the
feature matching process.

2) NEAREST NEIGHBOR-BASED TECHNIQUES

Nearest neighbor (NN)-based techniques are popular
approaches usually employed in CMFD. The two nearest-
neighbor (2NN) technique measures the distance ratio
between the first and the second nearest neighbors (NN).
Therefore, two features are considered a match if the distance
ratio between the first and second NN is less than a prede-
fined threshold. The 2NN technique is usually performed
with some underlying similarity measuring methods (i.e.,
Euclidean distance [70]) or arccos of dot products distance.
Yang et al. [30], in 2017, proposed a CMF technique using
hybrid features between SIFT and KAZE [71] keypoint
descriptors. This technique employs 2NN with a minimum
spatial distance criterion in which the comparison between a
pair of descriptors is skipped or omitted if both corresponding

VOLUME 7, 2019

keypoints are located too close to each other. With this
technique a predefined minimum spatial distance threshold
is required.

Utilizing the general idea of 2NN, the generalized
2 nearest-neighbor (g2NN) technique was introduced by
Amerini et al. [72] in 2011. Instead of measuring only
the distance ratio between the first and second NN,
g2NN introduces the idea of measuring the distance ratio
between the i-th and (i + 1)-th nearest neighbor. G2NN
has been proposed to overcome the current problem of
multiple copy-move regions. Some recent research using
g2NN and reversed g2NN (Rg2NN) as the main match-
ing techniques were proposed in [28], [55], [52] and [65],
respectively.

3) HASHING

Hashing is a technique in which the feature descriptor is
digested into a shorter and easier-to-compare form. By using
the digested descriptors in performing a rough compari-
son, the speed of the matching process can be signifi-
cantly improved. Muzaffer and Ulutas [54], 2017, proposed a
CMED technique using binarized SIFT. The 128-bit binarized
SIFT feature is then hashed using the proposed hashing algo-
rithm. Such method is claimed to decrease the search dimen-
sion; therefore, greatly improving the processing/detection
speed with little loss of accuracy compared to a traditional
SIFT-based approach. Furthermore, Pun and Chung [15] uti-
lized locality-sensitive hashing (LSH) [42] during the feature
matching stage. In this work, LSH was adopted to filter the
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candidate block matches. LSH relies on performing a series
of hash functions on the feature vectors and search features
with the same hash values to determine matches. As LSH
was designed to work well with a huge amount of data, it is
claimed that this technique can speed up the detection pro-
cess. Unfortunately, there was no benchmark data presented
in the paper.

4) HIERARCHICAL STRUCTURE-BASED TECHNIQUES
Hierarchical structure (e.g., k-d tree [73]) offers a faster and
well-organized way to match features by grouping relevant
descriptors close to each other in the hierarchical structure.
In 2017, Emam et al. [74] proposed an interesting CMFD
technique for detecting anomalies within smooth regions. The
method utilized the multi-support region order-based gradient
histogram (MROGH) feature extraction technique. During
the matching process, k-d tree is employed to search for k
nearest neighbors. Moreover, the matching algorithm uses
g2NN to iterate nearest neighbor tests to look for multi-
ple matches. Moussa [64] introduced a fast CMFD method
using simple pixel intensity-based descriptors. k-d tree (with
I-norm distance) was adopted to store all the feature
descriptors information and search for nearest neighbors
during the matching process. Lastly, Li et al. [20] also
utilized the k-d tree approach to speed up the match-
ing process. The technique is proven to reduce the
computational complexity of matching from O®?) to
O(nlogn).

5) CLUSTERING AND SEGMENTATION

has recently become more and more popular in this
CMFD feature matching process. Using segmentation (e.g.,
SLIC [75]), the target image can be segmented into mean-
ingful superpixels/patches. Matching between patches was
proved to have higher efficiency in term of both accuracy
and speed because the matching of two descriptors will be
performed only between descriptors from different patches.
In 2015, Yadav and Kapdi [52] proposed a SIFT-based CMFD
technique utilizing Gaussian Mixture Model (GMM) cluster-
ing [76]. The method first generates SIFT descriptors from
the target digital image. The SIFT keypoints are then clus-
tered using the GMM soft clustering technique. The initial
number of clusters in the GMM was empirically determined.
Clustering SIFT keypoints using GMM reduces the number
of keypoints that need to be analyzed; therefore, GMM can
help speed up the matching process. Moreover, Alberry et al.,
in 2018, proposed an interesting way of using Fuzzy C-
means (FCM) clustering during the matching process. The
technique applies FCM to cluster the detected SIFT keypoints
prior to the actual matching step. This results in reduction
of the computational complexity leading to a speeded up
matching process. Although the paper presents a number of
testing results against various datasets, there is, unfortunately,
no performance comparison with traditional/existing CMFD
techniques.
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6) OTHER SEARCHING-RELATED TECHNIQUES

In 2017, Bi and Pub [61] proposed a fast reflexive off-set
guided searching method for CMFD. The method utilized
the proposed iterative priority-based matching technique in
searching for CMF tampered regions. At the initialization
stage, the preliminary matching process generates mapping
offsets (MO) and uses MOs to calculate the initial reflec-
tive offsets (RO). The first reflective offset will then be fed
to start the iterative priority-based matching process. This
method shows an interesting way of refining the matching
results using an iterative method: the priority-based matching
technique. However, it also relies on the approximate nearest
neighbor field (ANNF) to search for nearest neighbors rather
than using an exhaustive search. This makes it more practical
for near real-time application. Cozzolino et al. [31] uses
the proposed modified PatchMatch algorithm for CMF fea-
ture matching. The modified PatchMatch algorithm not only
offers a fast approximate nearest neighbor search, the algo-
rithm is also modified to deal efficiently with invariant
features resulting in better robustness against scaling and
rotation.

Furthermore, Warif et al. [28] proposed a two-stage match-
ing process using g2NN and the proposed symmetry match-
ing technique. The g2NN technique was first applied during
the preliminary matching stage. To search for reflection-
based CMF attacks, the author proposed the use of mirror-
SIFT features along with the proposed symmetry matching
process. Symmetry matching relies on combination of scale
and phase weighting information to calculate symmetry mag-
nitude. This magnitude is then used to determine the dom-
inant symmetry axis between pairs of features through the
linear Hough transform [77]. This work addressed the impor-
tance of reflection-based CMF attacks and also proposed an
interesting way to deal with it.

B. SIMILARITY MEASURING TECHNIQUES

During the searching process, the matching algorithm looks
for possible matches by searching for nearest or approxi-
mate nearest neighbors. The similarity measuring techniques
serve as underlying mechanisms used for actual comparison
between a pair of descriptors.

According to recent research, Euclidean distance [70]
is undoubtedly the most simple and frequently used tech-
nique. Examples of some selected recent research utilizing
Euclidean distance during their feature matching stage were
proposed in [61], [9], [60], [37], [45]. Instead of Euclidean
distance, Malviya and Ladhake, in [66] and [78], utilized
Manhattan distance [79] as an alternative to Euclidean
distance to determine the relationship between pairs of
matching features. Hosny et al. [9] utilizes Euclidean dis-
tance with correlation technique to compare between a
pair of PCET moments-based feature descriptors. Zandi
et al. [37] uses Euclidean distance with the proposed adaptive
threshold in comparing features. Furthermore, Sharma and
Ghanekar [48] performed comparison and matching between
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pairs of descriptors using a shift frequency threshold and
Euclidean distance threshold.

In addition, similar to the matching technique used by
Lowe [5], Ustubiolglu et al. [29] utilized the sorted inverse
cosine of inner product between features together with the
predefined threshold to determine the similarity between two
feature descriptors. In [13], the same author, introduced the
use of element-by-element comparison with the automatic
threshold value generated using Benford’s generalized law
and the statistical characteristics of the image. Lastly, Muzaf-
fer and Ulutas [54], in 2017, applied the hashing technique
to digest the feature descriptors and used Hamming dis-
tance [80] between hashed features to determine the similar-
ity between features.

VII. FALSE MATCHES REMOVAL

After the feature matching process, there are always
some false positive matches, in which non-tampered areas
labeled as tampered, appeared among the matching results.
To remove these false matches, some false match removal
techniques are adopted and utilized. In this section, false
match removal techniques used in recent research are cat-
egorized and briefly introduced. In this paper, false match
removal techniques are classified into four categories as fol-
lows.

A. CLUSTERING/SEGMENTATION-BASED TECHNIQUES

In reducing false matches, clustering or segmentation tech-
niques are usually used to separate authentic and tampered
areas. Moreover, the spatial distance between clusters can
help to confirm the existence of CMF tampered regions.
Wang et al. [65], 2017, utilized hierarchical agglomerative
clustering [81] to create a tree of clusters. Each keypoint was
assigned to a cluster. The algorithm then calculated the spatial
distance between clusters and then repeatedly searched for
the pair of clusters with the closest distance and merged
them. This approach offers an efficient way to distinguish
different matched regions. Combining this with a robust esti-
mation technique (i.e., Random Sample Consensus algorithm
(RANSAC) [82]), the proposed technique offers an effective
way to remove false matches. Using a quite similar technique,
Al-Hammadi and Emmmanuel [83] applied hierarchical clus-
tering to the matching results to reduce the number of false
matches.

Furthermore, Emam et al. [74], in 2017, applied hierar-
chical agglomerative clustering to the matching results both
before and after applying RANSAC to remove any possible
outliers from the matching results. Last, to reduce false alarms
(false matches) while still maintaining low computational
cost, Yang et al. [30] and Zandi et al. [37], using almost
the same underlying methods, both proposed new filter algo-
rithms for false match removal based on the SLIC segme-
nation technique [75] and RANSAC algorithm. The CMF
regions are usually chosen from meaningful image segments.
Therefore, rather than using clustering based on all matched
keypoints, which is computationally costly, SLIC was used to
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separate the image into meaningful segments. This is a faster
and more attractive approach to achieve the same goal of false
match removal.

B. THRESHOLD, CONSTRAINTS, AND CRITERIA-BASED
TECHNIQUES
Fadl and Semary [6], 2017, utilized a spatial distance-based
threshold to remove false matches during each round of
feature matching. In this work, a pair of matched features
were considered CMF tampered only if the spatial distance
between them was larger than a predefined threshold. Pun
and Chung [15] also used the spatial distance between a
pair of matched blocks to determine the authenticity of CMF
matches. The Euclidean distance was employed in this work
to measure the spatial distance between image blocks. The
detection output is marked with different colors if the distance
between blocks is greater than a predetermined threshold
value. Lee et al. [7] divided the detection results into non-
overlapping blocks. For each block, the number of white
pixels indicating the matched blocks were counted. All the
blocks were discarded from the final detection result if the
number of white pixels was less than a predefined threshold.
According to empirical testing against 500 tampered images,
16 x 16 block size and threshold value of 64 were suggested.
Novozdmsky and Sorel [84] presents a false match reduc-
ing method using JPEG constraint verification. The method
first saved the target image with 10, 20, ..., 90, 95, 98 com-
pression qualities. Each image was then reloaded, after
which the proposed JPEG verifying procedure was per-
formed. According to the experimental results, the number
of false matches significantly decreased at qualities higher
than 90 and no false match was found at quality of 98.
Cozzolino et al. [31] used a median filter together with the
dense linear fitting (DLF) post-processing technique. The
median filtration removes outliers (false matches) while still
leaving the linear behavior of the signal unaltered. Fur-
thermore, Bi et al. (2016), proposed an adaptive distance
and orientation-based filtering method to remove the redun-
dant pixels from the detection results. The method relies on
the classification of pixel pairs into symmetrical (SPP) and
unsymmetrical (UPP) pixel pairs. Distribution of the distance
and orientation of both SPP and UPP are then computed.
The adaptive thresholds for SPP and UPP are then calculated.
Using the mentioned soft-threshold, the outliers are removed
from the detection results. This algorithm offers a very inter-
esting way to filter out outliers from the final results.

C. TRANSFORM ESTIMATION-BASED TECHNIQUES

To remove outliers, in many studies, attempts have been made
to estimate the relationship between each CMF region and its
corresponding original image region. Regarding affine trans-
form estimation, the random sample consensus (RANSAC)
algorithm, originally proposed by Fischler and Bolles [82]
in 1981, is undoubtedly one of the most robust and fre-
quently used algorithms. Moreover, many recent CMFD tech-
niques have attempted to compute a transformation matrix by
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FIGURE 6. Classification of current false match removal methods.

which to help filter out outliers and increase overall detection
accuracy of a detection system. Some recent works using
RANSAC-based methods for false match removal are pre-
sented in [37], [28], [65], [30], [16].

Zandi et al. [37] proposed an outlier filtering algo-
rithm using SLIC segmentation, PCT phase, and RANSAC
transform estimation. In 2017, Warif et al. [28] adopted
hierarchical agglomerative clustering and the RANSAC algo-
rithm, to cluster matched keypoints and estimate the geo-
metrical transformation among clusters. Using a similar set
of techniques, Yang et al. [30] used hierarchical cluster-
ing, which is capable of detecting multiple CMF regions
with the RANSAC algorithm, to remove any possible false
matches.

Unlike previously mentioned work, Li et al. [20] pro-
posed a two-stage matching process. In the first matching
stage, RANSAC was employed to eliminate noise in the
keypoints detection process. However, during the second
matching stage, the author proposed an iterative approach for
re-estimation of a transform matrix. The method relies on
distinguishing the CMF region from the background, which
will also remove any outliers that are not located inside CMF
regions. This work offers an interesting way of using an
iterative method such as the EM algorithm [85] to achieve
this goal. Last, Shahroudnejad and Rahmati [56] selected
optimized random sampling algorithm (ORSA), proposed by
Moisam and Stival [86] in 2004, as an alternative to RANSAC
to remove outliers from the detection results.

D. OTHER RELATED TECHNIQUES

To remove false matches or noise (i.e., small isolated pixels)
in the detection output, the morphological operation is one
of the most commonly used methods so far. Erosion [87]
is a morphological method suitable for removing isolated
pixels (noise) from the output image. The technique scans
the target image / with the structuring element (or kernel)
K. As K scans over I, the algorithm calculates the min-
imal pixel value and then replace the image pixel at the
center of the kernel with the calculated value. Using ero-
sion, objects within the target image will become thinner.
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Therefore, groups of noise pixels, which are actually small,
will finally be removed. An excellent example of using ero-
sion to remove isolated noise pixels from the detection image
was introduced by Pun and Chung [15] in 2018. Furthermore,
Sharma and Ghanekar [48], and Mahmood et al. [45], [12]
utilized the morphological opening [22] technique to remove
small falsely detected objects and noise pixels. Morphologi-
cal opening is a technique developed from the combination of
erosion and dilation [88]. The image is first eroded, resulting
in the removal of small noise pixels. Then, image dilation
is performed to counter the effect of erosion (i.e., objects
become thinner) making the shape of objects in the image
revert back to normal.

VIil. LOCALIZATION

Localization is an optional stage in the CMFD process
pipeline involving visualization of the detection results. Gen-
erally, the detection output is generated using a binary image
(i.e., black and white image), which makes it easier to see the
detected CMF region within the target image. In this section,
only a few techniques are introduced. Jin and Wan [55],
in 2017, computed a region correlation map between the
original image and the computed warped image using affine
and inverse affine transform matrixes. A Gaussian filter with
size of 7 pixels and binary threshold at the value of 0.55 were
then applied to the obtained region correlation map to create
the output binary image.

Furthermore, Yadav and Kapdi [52] employed a Lapla-
cian filter and boundary tracing operation to highlight the
CMF tampered regions. Interestingly, the final output of this
method is not a binary image, but the original image with the
border of the tampered objects being highlighted.

IX. OPTIMIZATION & QUALITY ENHANCEMENT

Optimization and quality enhancement is the last and also an
optional stage in the CMFD pipeline. In some case, a detected
CMF region may be incomplete; some holes (i.e., false neg-
ative results) may be included. Therefore, the goal of this
stage involves removing these false negative results by filling
the holes within the detected tampered regions making the
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TABLE 1. Table of summary (2015 - 2018).

Authors Techniques Dataset
Moussa Pre.: 0v§rlapp1ng blocks and non-  KD: - FE: sum of pixel intensities Silva et al.
2015 [64] overlapping sub-blocks 10
Search: kd-tree SM: sum of absolute difference FMR: - (10]
Loc.: - Opt.: - Invar.: -
Malviya & Pre: noise removal, 8Z4afﬁne trans-  KD: - FE: auto color correlogram and MICC-F220
Ladhak form and non-overlapping blocks color moment (72]
achaxe Search: Sorting (n/a) SM: Manhattan distance FMR: -
2015 [66] .
Loc.: - Opt.: - Invar.: scale, rotation
. Pre: local phase quantization-based ~ KD: Laplacian of Gaussian (LoG) FE: SIFT .
Ustubioglu f . private
etal 2015 texture feature extraction _ ‘ ‘ dataset
[29] Search: n/a SM: inner product, inverse cosine, FMR: -
and predefined threshold
Loc.: - Opt.: - Invar.: scale, rotation
Cozzolino et Pre: overlapping patches KD: - FCEH Tm;cula;‘ ha;mgmc transform Christlein et
al. 2015 [31] . (CHT) based methods al. [90]
: Search: modified PatchMatch SM: n/a FMR: median filter, fitting error, ’ >
. GRIP [31]
thresholding
Loc.: magnitude of offset field Opt.: - Invar.: scale, rotation
Silva et al. Pre: HSV conversion KD: SURF FE: SURF CMH [10],
2015 [10] Search: nearest neighbor distance = SM: Euclidean distance FMR: spatial proximity and corre- CMEN [10]
ratio (NNDR) spondence angle based clustering
Loc.: pyramidal decomposition, Opt.: - Invar.: scale, rotation
multiscale analysis and voting
Cao et al. Pre: overlapping square blocks KD: - gﬁ) Pl)ocahty preserving projections wa
2015 [68] Search: lexicographical sorting SM: n/a FMR: confidence distance thresh-
old
Loc.: - Opt.: - Invar.: n/a
Pre: grayscale conversion, overlap-  KD: - FE: histogram of oriented Gabor
Le‘[’“6%)(])15 ping blocks magnitude (HOGM) C"I[‘ggf oD
Search: lexicographical sorting SM: Euclidean distance FMR: proposed noise removal al- o
. Christlein et
gorithm al. [90]
Loc.: - Opt.: - Invar.: medium scale, small rota- al
tion
Lee et al. Bre: grayscale conversion, overlap-  KD: - FE: histogram of oriented gradient CoMoFoD
2015 [7] ping blocks (HOG) [59], Googl
Search: lexicographical sorting SM: Euclidean distance FMR: number of matches-based D oogle
threshold 1mage
Loc.: - Opt.: - Invar.: scale, rotation
Lietal. 2015 Pre: dynamic image segmentation KD: Laplacian of Gaussian (LoG) FE: SIFT Christlein et
[20] Search: kd-tree SM: Euclidean distance with soft ~FMR: matching between patches, al. [90],
thresholding iterative re-estimation of transform  MICC-F600
matrix, RANSAC [91]
Loc.: - Opt.: - Invar.: rotation
Yadav and Pre: grayscale conversion KD: Laplacian of Gaussian (LoG) FE: SIFT CoMoFoD
Kapdi 2015 Search: GMM-based soft cluster-  SM: Euclidean distance FMR: Laplacian filter [59]
[52] ing, G2NN

Loc.: boundary trace operations

Opt.: -

Invar.: scale, rotation

Pre.: Preprocessing

KD: Keypoint detection

FE: Feature extraction

Search: Searching algorithm
Loc: Localization

SM: Similarity measuring method
Opt.: Enhancement and optimization

FMR: False matches removal technique
Invar.: Invariant properties

final detection results more complete. The goal of this stage
is somewhat different from removal of false matches where
the isolated pixels (or false positive matches) are removed.

The main techniques to achieve this are morphological
dilation [88] and closing [89] methods. Dilation [88] is
opposite to the previously introduced morphological erosion
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TABLE 2. Table of summary (2015 - 2018) (continue).

Authors Techniques Dataset
Sharma and P}'e: grayscale conversion, overlap-  KD: - FE: center symmetric local binary Heikkila et
ping square blocks pattern (CSLBP) [50]
Ghanekar Search: lexicographical sort SM: shift frequency threshold, Eu-  FMR: morphological opening al. [92],
2015 [48] . . ? Visualonline
clidean distance
. database
Loc.: - Opt.: - Invar.: rotation
(n/a)
Malviya and Pre: SZ_ affine transform, non- KD: - FE: auto color correlogram CoMoFoD
Ladhak overlapping blocks (59]
2081 6 f78€ ] Search: - SM: Manbhattan distance FMR: -
Loc.: - Opt.: - Invar.: scale, rotation
Shahroudnejad ~ Pre: - KD: Affine-SIFT (ASIFT) FE: Affine-SIFT (ASIFT) CASIA
and Rahmati Search: 2NN SM: Euclidean distance FMR: ORSA [86], morphological TIDE v2.0
2016 [56] operations [93]
Loc.: SLIC [75] Opt.: morphological operations Invar.: scale, rotation
Ustubioglu Hre: YCbCr conversion, overlap-  KD: - FE: DCT, quantization, and zigzag CoMoFoD
tal. 2016 ping blocks scanning (59]. Googl
¢ a[.l 3] Search: lexicographical sorting SM: element-by-element compari- FMR: - s’eaccl)log ¢
18;)\?,’ soft-threshold using Benford’s KLTCI [94]
Loc.: - Opt.: - Invar.: -
Pre: grayscale conversion, statisti- ~ KD: Harris keypoint detection on  FE: developed chaincode (prelim-
Uliyan et al. cal region merging (SRM), Tamura  each ARP sector inary matching), HGP-2 descriptor =~ MICC-220
2016 [8] texture, Clustering, ARP (further matching) [72],
Search: 2-level matching algorithm  SM: - FMR: Euclidean distance (apply on  Christlein et
chaincode), median absolute devia- al. [90]
tion (MAD)(for HGP-2 descriptors)
Loc.: - Opt.: - Invar.: scale, rotation
Al-Hammadi Pre: single image super resolution ~ KD: SURF FE: SURF CoMoFoD
d (SISR) algorithm (59]
an Search: - SM: Euclidean distance FMR: Hierarchical clustering
Emmanuel Loc.: - Opt.: - Invar.: scale, rotation
2016 [83] . pl-: - seale,
Zandi et al. Pre: - KD: p}roposed detection method us-  FE: polar cosine transform (PCT) Christlein et
2016 [37] ) ) ) ing uniqueness of_data ‘ - ) ) al. [90]
Search: lexicographical sorting SM: Euclidean distance with pro- FMR: minimum distance crite- : ’
. . . . SBU-CM16
posed adaptive thresholding rion, proposed filter algorithm us- 95
ing SLIC and RANSAC 931
Loc.: proposed iterative interest Opt.: - Invar.: scale, rotation
point verification method
Pre: grayscale conversion, DWT  KD: SIFT FE: SIFT
Nithiya and (L-channel), adaptive blocks size n/a
Veluchamy computation, SLIC
2016 [19] Search: - SM: - FMR: Euclidean distance
Loc.: color feature comparison Opt.: morphological operations Invar.: scale, rotation
Biet al. Pre: YCbCr conversion KD: - FE: proposed MLDD descriptor Christlein et
2016 [11] Search: color texture descriptor SM: Euclidean distance FMR: proposed adaptive distance al. [90]
based sorting and proposed geo- and orientation based filtering
metrically invariant moment based method
matching
Loc.: - Opt.: morphological closing Invar.: scale, rotation
Bietal. Pre: - KD: - FE: proposed MLDD descriptor Christlein et
2016 [96] Search: n/a SM: n/a FMR: pixel pairs classification, po- al. [90]
lar distribution calculation, adaptive
threshold-based filtering
Loc.: - Opt.: morphological closing Invar.: scale, rotation

technique. Dilation makes the edge/border of the objects
become thicker, resulting in small holes within the image
being filled. An excellent use of dilation in recent work

was introduced by Pun and Chung [15] in 2018. In this
work, the authors employed morphological dilation to
remove the small holes within the detection results during
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TABLE 3. Table of summary (2015 - 2018) (continue).

Authors Techniques Dataset
Bi and Pun Pre: overlapping patches KD: - FE: color feature in RGB channel Christlein et
2017 [61] Search: reflective offset-guided  SM: squared Euclidean distance FMR: pixels’s reflective offset fit- al. [90]
searching using proposed priority- ting
based matching algorithm
Loc.: morphological operations  Opt.: - Invar.: scale, rotation
(n/a)
Fadl and P.re: grayscale conversion, overlap-  KD: - FE polar coordinate transforma- DVMM (n/a)
Semary 2017 ping blocksg ) tion and I—D FET
Search: radix sort SM: correlation FMR: spatial distance threshold
(6] Loc.: - Opt.: - I : scal i
. pt.: nvar.: scale, rotation
Pre: overlapping blocks and non-  KD: - FE: color image compression using
Harjito and overlapping sub-blocks HBTC, proposed color and bit pat- SIPI-USC
Prasetyo tern features (n/a)
2017 [62] Search: lexicographical sorting SM: shift frequency threshold FMR: isolated regions removal
(n/a)
Loc.: - Opt.: - Invar.: -
Pre: intensity range reduction, gra-  KD: - FE: Rabin-Karp hash function-
dient calculation, adaptive linear based method .
Kuznetsov ) private
contrast enhancement, LBP, over-
and . dataset
Myasnikov lapping blocks
2017 [14] Search: hash table SM: n/a FMR: -
Loc.: - Opt.: - Invar.: -
Warif et al. Pre: - KD: Laplacian of Gaussian (LoG) gﬁ):T SIFT and proposed mirror- private
2017 (28] Search: 22NN (preliminary ~ SM: n/a FMR: hierarchical Agglomerative N]?i;lfz::estIA
matching) and proposed symmetry clustering, RANSAC
matching (further matching)
Loc.: - Opt.: - Invar.: scale, rotation
Pre: non-overlapping segmentation =~ KD:  Superpixel classification, FE: exponent moment magnitudes
using ERS algorithm Adaptive keypoint extraction using
Wang et al. probability density-based SURF Christlein et
2017 [65] detector and adaptive Hessian al. [90],
response threshold GRIP [31]
Search: Rg2NN [97] SM: Euclidean distance FMR: hierarchical Agglomerative
clustering, RANSAC
Loc.: zero mean normalized cross- ~ Opt.: - Invar.: slight scale, rotation
correlation
Yang 2017 Pre: - KD: Laplacian of Gaussian (LoG)  FE: SIFT and KAZE Christlein et
[30] and KAZE [71] o . al. [90]
Search: 2NN SM: predefined threshold (n/a) FMR: minimum distance criterion,
proposed filtering algorithm using
SLIC segmentation and RANSAC
Loc.: correlation map Opt.: morphological operations Invar.: scale, rotation
(n/a)
Pre: grayscale conversion, KD: - FE: LBPV
Mahmood et SWT(LL channel), overlapping CoMoFoD
al. 2017 [45] circular blocks [59], KLTCI
Search: lexicographical sorting SM: Euclidean distance FMR: - [94]
Loc.: - Opt.: morphological closing Invar.: scale, rotation
Pre: YCbCr conversion, overlap- KD: - FE: SVD coefficient of LBP of Y-
Wang et al. ping blocks channel image, and average of each  CASIA [98],
2017 [46] Y, Cb, Cr channels Google
Search: lexicographical sorting SM: element-by-element compari- FMR: - search
son
Loc.: - Opt.: - Invar.: rotation (180 degree only)
Pre: Ycber conversion (use Cb and ~ KD: - FE: LBP
Jwaid and Cr channels), DWT (LL channel), CoMoFoD
Baraskar overlapping blocks [59]
[16] Search: PCA SM: n/a FMR: -
Loc.: SVM Opt.: - Invar.: -
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TABLE 4. Table of summary (2015 - 2018) (continue).

Authors Techniques Dataset
Hilal et al. Pre: PCA, non-overlapping square ~ KD: - FE: local contrast, DCT private
2017 [18] blocks . . dataset

Search: lexicographical sorting SM: n/a FMR: -
Loc.: - Opt.: - Invar.: -
Pre: grayscale conversion, DWT  KD: - FE: statistical mean
Dixit et al. (LL channel), overlapping square CoMoFoD
2017 [17] blocks [59]
Search: row sorting (n/a) SM: Euclidean distance FMR: statistical variance compari-
son
Loc.: - Opt.: - Invar.: -
. Pre: wavelet decomposition (LL  KD: - FE: LBP .
Kalsi and . private
Rai 2017 channel), overlapping blocks dataset
[47] Search: - SM: n/a FMR: -
Loc.: - Opt.: - Invar.: -
Pre: - KD: difference of Gaussian (DoG)  FE: multi-support region
Emam et al. order-based gradient histogram  Christlein et
2017 [74] (MROGH) al. [90]
Search: kd-tree, 22NN SM: Euclidean distance FMR: distance-based clustering
criterion
Loc.: - Opt.: morphological dilation and Invar.: scale, rotation
closing

Muzaffer Pre: - KD: Laplacian of Gaussian (LoG) FE: binarized-SIFT CoMoFoD
and Ulutas Search: - SM: hashing, hamming distance =~ FMR: RANSAC [59]
2017 [54] between hashed features

Loc.: - Opt.: - Invar.: rotation
Pre: - KD: Laplaian of Gaussian (LoG) FE: OpponentSIFT
i and
2017155] (NMS) keypoint selection Gzll?l.ll:[’g[%]l’]
Search: g2NN SM: n/a FMR: proposed optimized J- ’
. : . . MICC-F600
linkage clustering using image (91]
segmentation, J-linkage algorithm
and RANSAC
Loc.: region correlation map, Gaus- ~ Opt.: morhpological closing Invar.: scale, rotation
sian kernel, binary threshold
Resmi and Pre: grays;ale conversion, canny  KD: Laplacian of Gaussian (LoG) FE: SIFT MICC-F220
Vishnuku- edge detection, and SLIC . . o [72]. MICC-
Search: two-stage matching (nfaon ~ SM: Euclidean distance FMR: Transform estimation (n/a) > .
mar 2017 R ) . F8multi
(57] the first stage and oversegmentation (72]
method on the latter)
Loc.: - Opt.: - Invar.: scale, rotation
Alberry et al. Pre: - KD: Laplacian of Gaussian (LoG) FE: SIFT MICC-F220
2018 [51] Search: Fuzzy C-means (FCM) SM:n/a FMR: - [72], private
clustering dataset
Loc.: - Opt.: - Invar.: scale, rotation
Novozamsky Pre: - KD: - FE: - Silva et al.
and Sorel Search: - SM: - FMR: faster variant of alternating [10],
[84] projection for verification of the CoMoFoD
JPEG copy-move constraint [59], private
Loc.: Opt.: Invar.: dataset

the first stage of their proposed two-stage detection
process.

Using the idea of dilation and erosion, morphological clos-
ing was introduced in the field of image processing. Morpho-
logical closing [89] is a method opposite to the morphological

opening [22] technique. The method is done by respectively
performing dilation and erosion on the target image. Dila-
tion first removes the small holes within the image; how-
ever, objects inside the image will become thicker as well.
To counter this effect, the erosion process is then performed.
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TABLE 5. Table of summary (2015 - 2018) (continue).

Authors Techniques Dataset
Pre: median filter, SLIC (15t KD:- FE: Weber local descriptor
. . . p . .
Pun and stage matchmg), adaptlvengverlap (1 stage _matchm_g), discrete Christlein et
Chung 2018 ping ;1rcu1ar blocks (2 stage analytic Fourier-Mellin trapsform al. [90]
(15] matching) (DAFMT) (2"¢ stage matching) CMH [ (’)]
Search: descending order sorting ~ SM: Euclidean distance FMR: minimum distance criterion,
(15t stage matching), LSH-based geometrical morphological opera-
matching (274 stage matching) tions (isolated pixels elimination)
Loc.: - Opt.: geometrical morphological  Invar.: scale, rotation
operations (hole filling)
Pre: HSV conversion, Sobel oper-  KD: - FE: PCET moments (order 15)
Hosny et al. ator.[21]3 morphglogmal opening, Ardizzone et
median filter, object bouding box
2018 [9] detection al. [99],
. . ivate
Search: - SM: Euclidean distance FMR: grltva ¢
Loc.: - Opt.: - Invar.: scale, rotation atase
Das ct al. ES\eIT grayscale conversion, 2-level ~ KD: Laplacian of Gaussian (LoG) FE: SIFT MICC-F220
2018 (53] Search: Hierarchical agglomera- SM: Euclidean distance (in 15t  FMR: RANSAC [72(1]2’151 rslevtate
tive clustering (in 2% matching) matching)
Loc.: - Opt.: - Invar.: scale, rotation
Teerakanok Pre: grayscale conversion KD: SURF FE: sum of GLCM Ardizzone et
and Uehara Search: lexicographical sorting SM: inner product, inverse cosine ~ FMR: minimum distance criterion al. [99]
2018 [69] and predefined threshold
Loc.: - Opt.: - Invar.: -
Mahmood et ;’Ir;g bTOSESCr conversion, overlap- KD: - FE: SWT, DCT CoMoFoD
al. 2018 [12] Search: lexicographical sorting SM: n/a FMR: minimum distance criterion [592]’[?5(:)1113
Loc.: - Opt.: - Invar.: - v
Khan et al. P're: grayscale conversion, overlap- ~ KD: SURF/MinEigen [102] FE: SURF/MinEigen MICC-F220
2018 [101] ping square blocks (72]
Search: - SM: Threshold (n/a) FMR: -
Loc.: - Opt.: - Invar.: -
Bi and Pun Pre: - KD: - E;ih izr;hanced coherency sensitive Christlein ot
2018 [40] Search: enhanced coherency sensi-  SM: coherency error threshold FMR: iterative local bi-direction Giil{‘llggg’l]
tive hashing coherency error refinement, mor-
phological operations (n/a)
Loc.: - Opt.: - Invar.: scale, rotation
Li and Zhou Pre: image enlarging (scaling) ;(IIET contrast threshold lowered FE: SIFT MICC-F220
2018 (58] Search: group matching using SM:n/a FMR: minimum distance criteria, MI(EZIZ]P:()OO
scale clustering, overlapped gray local homography estimation, dom- (91] (-ZMH
level clustering inant orientation-based inlier selec- ?
tion [10], COV-
Loc.: proposed localization method ~ Opt.: - Invar.: scale, rotation E[l} OAS(]} E
using scale and color information CMH+GRIPori,
GRIP [31],
Christlein et
al. [90]

Morphological closing is a popular techniques used in much
recent CMFD research. Some examples of using morphologi-
cal closing to enhance the quality of the final detection output
were presented in [45], [S5], [74].

X. CONCLUSIONS
In this paper, the state-of-the-art advances in copy-move
forgery detection (CMFD) are briefly summarized. A new

VOLUME 7, 2019

CMED process pipeline is introduced together with details of
each individual processing stage including goals, basic ideas,
and associated techniques. To the best of our knowledge,
some stages in the proposed pipeline may currently have only
a few associated techniques. However, we plan to update and
perform more surveys regarding this in the near future. This
paper is expected to provide insights and updated information
on recent studies for researchers in the field. Last, for quick
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reference, the broken down details of each recent technique,
together with a comparison between it and the others are
presented in the following table 1 to 5.
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