
SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTELLIGENT PROCESSING
OF DATA, INFORMATION AND KNOWLEDGE AS RESOURCES IN EDGE COMPUTING

Received February 27, 2019, accepted March 20, 2019, date of publication March 25, 2019, date of current version April 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2907319

TMO: Time Domain Outsourcing Attribute-Based
Encryption Scheme for Data Acquisition
in Edge Computing
YOUHUIZI LI 1,2,3, ZEYONG DONG1,2, KEWEI SHA4, CONGFENG JIANG1,2,
JIAN WAN2,5, AND YUAN WANG6,7
1School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
2Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education, Hangzhou 310018, China
3Xi’an Key Laboratory of Mobile Edge Computing and Security, Xi’an 710071, China
4College of Science and Engineering, University of Houston–Clear Lake, Houston, TX 77058, USA
5School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
6Engineering Research Center of Augmented Reality and Intelligent Interaction of Zhejiang Province, Hangzhou 310052, China
7NetEase (Hangzhou) Network Co., Ltd., Hangzhou 310052, China

Corresponding author: Jian Wan (wanjian@zust.edu.cn)

This work was supported in part by the Natural Science Foundation of Zhejiang Province under Grant LQ18F020003, in part by the
Natural Science Foundation of China under Grant 61802093, Grant 61472109, and Grant 61572163, in part by the Xi’an Key Laboratory
of Mobile Edge Computing and Security under Grant 201805052-ZD3CG36, and in part by the Key Research and Development
Program of Zhejiang Province under Grant 2018C01098.

ABSTRACT With the rapid development of the Internet of Things and the ever-increasing demands
of advanced services and applications, edge computing is proposed to move the computing and storage
resources near the data source, which improves the response time and saves the bandwidth. However, due
to the limited available resources and massive privacy-sensitive user data in edge nodes, there are huge
challenges in data security and privacy protection in the edge computing environment. Hence, we propose
an efficient time-domain multi-authority outsourcing attribute-based encryption (ABE) scheme (TMO)
with a dynamic policy updating method for secure data acquisition and sharing in the edge computing.
Specifically, considering that the time is a crucial factor in many real-world application scenarios, we add
time-domain information in the encryption algorithm. Besides, to take full advantage of edge computing,
TMO extends the multi-authority ABE approach by outsourcing the computation to edge nodes to enhance
security and performance.Moreover, to tackle the mobility and frequently changing edge environment, TMO
also provides an efficient online policy updating method to manage attribute information and to access policy
with low overhead. The security analysis and the experimental results show that TMO can indeed efficiently
enhance data security with low overhead in the edge computing environment.

INDEX TERMS Multi-authority, CP-ABE, time-based, security, edge computing.

I. INTRODUCTION
With the development of Internet of Things, we are sur-
rounded by millions of smart devices which generate a huge
amount of data. Gartner predicts that there will be 20.4 bil-
lion IoT devices by 2020 [1]. Besides, the increasing user
demands accelerate the developing of advanced complex
applications and services, such as augmented reality, vir-
tual reality, intelligent transportation and smart city [2] as
well as automated user friendly service reconfiguration [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Honghao Gao.

To satisfy the requirements of the above applications and to
improve the user experience, edge computing [4] is proposed
as a new computing paradigm where data is processed at the
nearest edge node with enough resources. Compared with
cloud computing, the advantages of edge computing is two-
fold. First, it leverages the available computing and storage
resources on edge nodes which are close to users, so the
response time can be improved. Second, since the massive
data do not need to be transmitted to the cloud, the back-
bone bandwidth is also saved. However, the new comput-
ing paradigm also results in new research challenges. For
example, the resource-limited edge nodes normally hold a lot

40240
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-0042-7218

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

of privacy-sensitive user data, powerful security approaches
used in cloud centers are not feasible in the edge comput-
ing environment [5]–[7]. Moreover, in order to adapt to the
dynamic edge environment, applications and services are
more complicated [8], [9]. The high mobility of users and
devices in edge computing makes the security issue even
more difficult [10], [11], users’ privilege changes frequently
and the attackers have more chances to join the group. Hence,
we propose an efficient lightweight attribute-based encryp-
tion scheme in this paper to enhance the data security in the
edge computing environment.

In many real-world applications, time is an important fac-
tor which defines the usefulness and effectiveness of data,
especially in massive data situation [12]. For instance, when
using video captured by road cameras to track a suspect,
the data is more useful if it is close to the time that the crime
happened. Time should also be considered in data acquisition
and sharing. Take the fire disaster situation as an example,
if the smart home device detects a fire in the house, it can tem-
porarily share the private real-time video and smoke sensor
data to the property managers and firefighters. After knowing
the first-sight information, they can be better prepared and
reduce disaster losses as much as possible. Besides, the high
mobility of users and devices is also the nature of edge
computing. With the changing of various factors, including
location, time and user roles, we have to update the access
policy frequently [13]. Considering the computational over-
head and bandwidth costs of the update policy, it is necessary
to provide an efficient and secure policy updatingmechanism.

Data encryption is a commonly used solution to protect
data security and privacy [14]. From the aspect of basic
infrastructures, edge computing can better support multi-
authority and outsourcing decryption, especially in attribute-
based encryption schemes. In cloud computing, there is
usually one single attribute authority. It is responsible for
the authorization and distribution of all attributes, as well as
the production of their corresponding key devices. There are
several problems: firstly, it leads to a performance bottleneck.
If a large number of users make a private key request to the
authority at the same time, some users may get the private
key much longer than the average time. An attacker even can
occupy the key distribution service on purpose, other normal
users will be greatly influenced. Secondly, there is also a
security single point of failure. Since the authority knows all
the private parameters, when it encounters a malicious attack,
the intruder canmake any key hewants. As a result, users’ pri-
vate data will be illegally exposed. To deal with this situation,
multi-authority is proposed that one authority is only respon-
sible for parts of the attributes [15]. The decentralized feature
of edge computing perfectly supports the multi-authority sce-
nario, and edge nodes can provide a more secure and flexible
solution. Moreover, previous researches [16]–[18] also out-
sourced decryption to the cloud for resource-limited devices.
Compared with the faraway cloud server, edge nodes, as the
closest computing node, can perform the pre-decryption oper-
ation in a relatively short time. Besides, it can also reduce

the result transmission distance and minimize the ciphertext
exposure risk.

In this paper, we focus on how to efficiently and securely
acquire/share data to a group of authorized users by satisfying
various time restrictions in the edge computing environment.
We propose TMO, a time domain multi-authority outsourc-
ing attribute-based encryption scheme, to enhance the data
security and protect user privacy. Specifically, TMO adds
time as one of the encryption factors and splits attributes
into universal attribute and time attribute, so that a flexible
data access mechanism is supported. Besides, we extend the
multi-authority attribute-based encryption approach in [16]
with outsourcing the decryption to edge nodes, which can
greatly reduce the cost. Moreover, TMO also provides an
efficient access policy updating method. Instead of requiring
the data owner to retrieve the ciphertext and re-encrypt it for
distribution, edge storage nodes can update the access policy
of the existing ciphertext online without wasting the network
bandwidth. The contributions of this paper are summarized
as follows:
• Based on the data and infrastructure characteristics,
we propose TMO, an efficient and secure time domain
multi-authority outsourcing attribute-based encryption
scheme, to improve the data security and privacy in the
edge computing environment.

• We develop a flexible update mechanism for time range
updating and access attribute updating. Through modi-
fying the time restriction and managing the access priv-
ilege, time attribute can be updated effectively. Besides,
we designed a dynamic policy update method which
leverages the data storage node to update the corre-
sponding ciphertext online with minimum network over-
head.

• We implement a prototype system and conduct a com-
prehensive performance evaluation. Compared with pre-
vious solutions, experimental results show that TMO
can indeed improve both encryption and outsourcing
decryption performance. With supporting time domain
access control, TMO also provides acceptable perfor-
mance in the key-generation stage.

The remainder of the paper is organized as follows. Related
work is reviewed in Section II. Section III introduces the sys-
tem architecture, definitions and security models. Section IV
describes the proposed TMO scheme, its construction and
security analysis. Policy update mechanism is presented in
Section V, and the experiments and results are demon-
strated in Section VI. Finally, we conclude this paper in
Section VII.

II. RELATED WORK
Attribute-based encryption(ABE) is a widely used public-key
encryption scheme which allows fine-grained access control
to the encrypted data through the attributes management [19].
It is first proposed in a fuzzy identity-based encryption
scheme [20]. According to the location of the attributes, ABE
schemes can be categorized to Key-Policy Attribute-Based

VOLUME 7, 2019 40241

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

Encryption(KP-ABE) [21] and Ciphertext-Policy Attribute-
Based Encryption(CP-ABE) [22]. Due to its high flexibility
and scalability, CP-ABE is employed in many scenarios.
Different features are proposed to the classic CP-ABE
scheme, such as constant size key ciphertext [23], attribute
revocation [24], user anonymity [25], and so on. Two or
three features are combined to provide a secure encryption
method according to the specific requirements of the usage
scenarios. Next, we briefly introduce the existing attribute-
based encryption approaches from the aspects of authority,
outsourcing and time domain encryption.

Authority: Attribute authority is a trusted role who is
responsible for distributing and managing public and pri-
vate keys. Based on the number of authority involved in
the encryption system, ABE schemes are classified to single
authority ABE [22] and multi-authority ABE [26]. In a single
authority ABE, key structure is relatively simple and it is
easy tomanage existing keys. However, single authority is not
very flexible when adding new attributes. Besides, the coop-
eration between different organization is inevitable in real
scenarios, it is not feasible to manage the attributes defini-
tion and distribution across domains. Hence, multi-authority
ABE is proposed and becomes more and more popular. For
examples, Lewko andWaters [27] proposed a multi-authority
ABE which does not require a global authority to coor-
dinate decentralized attribute authorities. Follows that, Ruj
et al. [25] proposed a decentralized access control scheme
to support anonymous authentication; Belguith et al. [28]
designed an encryption method that hides the access pol-
icy and outsources the decryption task to the cloud. Com-
pared with [27] of which public parameters are composed
of attributes, Yang et al. [16] added authority to the param-
eter group, the size of the public parameter is significantly
reduced. In TMO, we further improve [16] with less compu-
tation and more features to make it more suitable in the edge
computing environment.

Outsourcing: The computational complexity of most ABE
schemes [27], [15], [29] increases linearly with the number
of attributes involved in the ciphertext. In order to reduce the
computing pressure for resource-limited devices, outsourc-
ing decryption is proposed to offload the computation to
the cloud or other proxy nodes. The first outsourced ABE
was proposed by Green et al. [30], the cloud performs a
pre-decryption calculation based on the transformable keys
and returns a constant size ciphertext to the user. In the
edge computing environment, the edge/fog nodewhich can
provide computing and storage resources is more close to
the terminal devices [31]. Hence, some recent works lever-
age the fog node to do the encryption/decryption calcula-
tion. Zhang et al. [32] proposed an access control scheme
which outsources the encryption/decryption tasks to the fog
node and efficiently updates the system attributes. Since the
edge nodes are more vulnerable to attack than cloud, Zuo
et al. [33] proposed a safer outsourcing decryption ABE
method that can resist the chosen-ciphertext attacks (CCA).
In our proposed TMO, outsourcing feature is also included

TABLE 1. Notations used in TMO.

to enhance the system performance and improve the user
experience.

Time domain encryption: With the development of the
Internet of Things, the data generated daily is greatly increas-
ing. Time is becoming an important factor that can decide
the usefulness of the data. In order to share time-sensitive
data, there are several ABE schemes that consider the time
domain information. For examples, Liu et al. proposed a
time-based proxy re-encryption scheme [34], which can con-
trol the user’s access rights during a specified period. But with
the changing of the time periods, it needs to re-encrypt the
same data into different versions. Hong et al. [35] designed
an access control scheme based on both time and attributes.
If an attribute has a time restriction, the cloud obtains a token
and updates the ciphertext online at the beginning of the
time period. Without this operation, the unexposed ciphertext
cannot be decrypted even if the user owns the private key
of the corresponding attributes. Yang et al. [36] proposed
a time domain multi-authority ABE method which embeds
time into both ciphertext and secret key, so the encrypted
data can only be decrypted when both access policy and
access period are satisfied. In our TMO, the time domain
information is also considered, furthermore, we integrate it
with multi-authority and outsourcing to provide an efficient
and secure ABE system for edge computing.

III. SYSTEM ARCHITECTURE AND DEFINITIONS
In this section, we first introduce the related preliminary
knowledge, then present the system architecture, definitions
and security models. Some frequently used notations are
summarized in Table 1.

40242 VOLUME 7, 2019

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

A. PRELIMINARIES
1) BILINEAR MAPS [22]
Let G and GT be two multiplicative cyclic groups of prime
order p, while g is the generator of G. Algorithm e : G ×
G → GT is a bilinear map that satisfies the following three
properties.
• Bilinearity: if ∀ u, v ∈ G and x, y ∈ Zp, then
e (ux , vy) = e (u, v)xy.

• Non-degeneracy: e (g, g) 6= 1.
• Computability: ∀ u, v ∈ G, e (u, v) is an admissible
algorithm.

2) LINEAR SECRET SHARING SCHEMES(LSSS) [37]
A secret sharing schemeπ that consists of a set of participants
is linear if it meets the following conditions.
• The shared value of each participant is an ele-
ment in Zp. And these elements form a vector
over Zp.

• The matrix A consisting of l rows and n columns is the
sharing-generating matrix for π . The map ρ which is
responsible for mapping each row of the matrix to an
associated participant (i.e., for i = 1, . . . , l, ρ (i) is the
participant with row i).

• Consider the column vector Ev = (s, r2, . . . , rn), where
s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp
are randomly chosen. Then A·Ev = Eλ is the vector of l
shares of the secret s according to π , the share value Ai ·Ev
belongs to the participant ρ (i).

If an authorized set SP that consists of certain participants.
Let I ⊆ {1, 2, . . . , l} be defined as I = {i : ρ (i) ∈ SE}, then
there exists constants

{
ci ∈ Zp

}
i∈I , such that

∑
i∈I ciλi = s,

which can recover the secret s. Meanwhile, all these constants
{ci} can be found in polynomial time, but the secret s can’t be
recovered if SP is unauthorized.

B. SYSTEM ARCHITECTURE
The system architecture of TMO scheme is illustrated
in Figure 1. It is a three-tier architecture: cloud - edge - user.
Edge layer contains a lot of edge nodes with computing and
storage resources, so data can be stored (on ESNs) and pre-
processed (on ECNs) near the user. Besides, the distributed
nature of edge nodes makes it perfectly to support multi-
authority which enhances the system security. Hence, the per-
formance and security of encryption schemes can be greatly
improved by leveraging edge nodes. The specific roles of the
six participants and their interactions on key/data distribution
are described as follows.

Cloud: The Cloud provides the storage capability for end
users and distributes the stored ciphertext to the edge storage
node(ESN) when receiving an access request. All ciphertext
in the system will be uploaded to the cloud for permanent
storage. We assume that the cloud is honest-but-curious,
it will correctly execute the requests but be curious about
the stored content. Besides, in the policy updating situation,
the cloud will not only perform the update algorithm on the

FIGURE 1. System architecture.

original ciphertext but also distribute the update key to the
corresponding ESNs.

Edge Node: There are two types of edge nodes: Edge
Storage Node (ESN) and Edge Computing Node (ECN). The
ESN is the nearest storage node, it fills the gap between
users and the cloud. On one hand, it receives the ciphertext
from users and sends the data to the cloud for permanent
storage based on the network situation. On the other hand,
it also handles the access requests in real time, retrieves data
from the cloud if necessary and sends the ciphertext to the
authorized data users. The ECN is an edge node with more
computing power. It is responsible for pre-decrypting the
ciphertext that the user wants, but cannot get any content
information. If an edge node has both powerful computing
capability and large storage space, it can serve as both an ESN
and an ECN.

Central Authority (CA):The CA is a trusted entity, which
manages the settings of global parameters and the registration
of users and authorized attribute authorities.

Attribute Authority (AA): The AA manages a group of
attributes in its domain and creates corresponding private
keys to users. In our scheme, there are two kinds of attributes:
the universal attribute and the time attribute. For a universal
attribute, its private key can be combined with other attribute
private keys to access related ciphertext. For a time attribute,
the AAwill create a special private key with the time parame-
ter embedded, and the time parameter was configured by data
owner. The valid time range of multiple ciphertexts with the
same time attribute may different, so a specific time attribute
only corresponds to one ciphertext and cannot be shared
among others. By comparing the valid accessing time range
with the request time, the AA determines whether to make
and distribute the private keys.

DataOwner(DO):TheDO creates the ciphertext using the
following two steps. First, the plain data is encrypted using
symmetric encryption which is a widely used lightweight
encryption method. Then, the symmetric key used in the first
step is encrypted by our attribute-based encryption method to

VOLUME 7, 2019 40243

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

enhance flexibility and security. The attribute-based encryp-
tion method requires a specific access policy, in which there
may involve both universal attributes and time attributes.
Noted that, in our TMO scheme, we provide the coarse-
grained time domain restriction. If a set of time attributes in
a ciphertext belong to the same AA, the time restrictions of
these attributes should be the same. Because AA is respon-
sible for the attributes in the same (or similar) professional
field, the time restriction for the attributes in one ciphertext
can be the same, and it also reduces the encryption complex-
ity. After the encryption process is completed, the ciphertext
and the encrypted key are transmitted to the nearest ESN,
and the time parameters are sent to the corresponding AA for
private key creation.

Data User (DU): Since the DU is normally a resource-
constrained device, the ECN is used to improve the decryp-
tion process. The DU first initiates an access request to the
closest ESN for the ciphertext and transforms its private key
to the edge key. Then, the ESN forwards the ciphertext to the
ECN, meanwhile, the DU also sends the edge key to the ECN.
After performing the pre-decryption on the encrypted data,
the ECN returns the intermediate ciphertext to the DU. Noted
that only when the attribute set and access time of the DU
satisfy the access policy, the symmetric key can be accurately
decrypted. Finally, the DU can calculate the plaintext by
itself.

C. DEFINITION
The TMO scheme mainly contains the following algorithms:

• CASetUp (λ)→ (GP, (skCA, vkCA)). The CA setup algo-
rithm takes an implicit security parameter λ as the input
and outputs the global parameters GP and a pair of CA
signature and verification key (skCA, vkCA).

• UserReg
(
GP, Infouid

)
→ (uid,Certuid ,Kuid). The user

registration algorithm is executed by the CA. The inputs
are identity information Infouid submitted by the user
and the global parameters GP. The CA authenticates
the legality of the user’s identity. If legal, it distributes
a global unique identification number uid , an identity
certificate Certuid and an identity key Kuid to the user.

• AAReg
(
GP, InfoAID

)
→ (AID, vkCA). The AA registra-

tion algorithm is also executed by the CA. With the
input parameters of the authority information InfoAID
and the global parameters GP, the CA authenticates the
legality of the AA. If legal, it distributes a global unique
identification number AID and the verification key vkCA
to the AA.

• AASetUp
(
GP,AID, SAAj

)
→

(
AskAAj ,ApkAAj

)
. The

AA setup algorithm is executed independently by each
AAj (j ∈ N), where N is the total number of AA in the
system. Take the global parameters GP, the unique AID
of the AA, and the corresponding attribute set SAAj as
the inputs, this algorithm outputs the AA’s private and
public key pair

(
AskAAj ,ApkAAj

)
.

• TimeParamGen
(
GP,FID, (T begin,Tend),AID,

ST j,FID
)
→

(
TAAParamj,FID,TDOParamj,FID

)
. The DO

executes the time parameters generation algorithm to
calculate the time parameter for AA (TAAParamj,FID)
and the embedded time parameter in encryption
(TDOParamj,FID). The inputs are the global parameters
GP, a global unique ciphertext number FID, an access
time range [T begin,Tend] and an attribute set ST j,FID that
is composed of the time attributes that belongs to the
authority AAj, and used in the ciphertext FID. For the
same set of time attributes with the same time range,
the algorithm will still output different time parameters
for different FID.

• Encrypt
(
GP, k, (A, ρ) ,

{
ApkAAj

}
,{

TDOParamj,FID
})
→ (CT FID) . The encryption algo-

rithm is executed by the DO. With the global parameters
GP, the symmetric key k , an access policy (A, ρ), a set
of public parameters of AAs

{
ApkAAj

}
and a set of

corresponding time parameters
{
TDOParamj,FID

}
, this

algorithm outputs a symmetric key ciphertext CT FID.
• UniversalKeyGen

(
GP,AskAAj , Sj,uid ,Certuid

)
→(

Usk j,uid
)
. The universal private key generation algo-

rithm is executed by the authority AAj. Take the global
parametersGP, the private keys AskAAj , the set of univer-
sal attributes Sj,uid and the identity certificate Certuid of
DU as the inputs, the algorithm calculates a universal
private key Usk j,uid for the user.

• TimeKeyGen
(
GP,AskAAj ,FID, ST j,uid ,

Certuid ,TAAParamj,FID
)
→

(
UTsk j,uid,FID

)
. The time

private key generation algorithm is also executed by
the authority AAj. Given the global parameters GP,
the private keys AskAAj , the FID of the ciphertext,
the identity certificate Certuid of DU, the set of the time
attributes ST j,uid and the corresponding time parameter
TAAParamj,FID, the algorithm outputs the time private
key UTsk j,uid,FID that can only be used to decrypt this
specific ciphertext FID if the request time is within the
access time range.

• TransKeyGen
(
GP,

{
Usk j,uid

}
,{

UTsk j,uid,FID
})
→

(
Ekuid,FID,Lkuid,FID

)
. The trans-

formable key generation algorithm is executed by the
DU.On input the global parametersGP, the DU’s univer-
sal private key set

{
Usk j,uid

}
and the time private key set{

UTsk j,uid,FID
}
for the ciphertextFID, the algorithm out-

puts a pair of edge key Ekuid,FID for pre-decryption and
local key Lkuid,FID for final decryption. If an attribute
can be both universal and time, only its time private key
is converted.

• Decrypt.out
(
CT FID,Ekuid,FID

)
→ (ICT). The out-

sourcing decryption algorithm is executed by the ECN.
With the symmetric key ciphertext CT FID and the edge
key Ekuid,FID, the algorithm outputs an intermediate
ciphertext ICT .

• Decrypt.final
(
ICT ,Lkuid,FID

)
→ (k) . The decryption

algorithm is executed by the DU. Given the intermediate
ciphertext ICT and the local key Lkuid,FID, the algorithm

40244 VOLUME 7, 2019

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

outputs the symmetric key k which is used to decrypt
the data ciphertext CT data to obtain the content that DU
wants to access.

D. SECURITY MODEL
In our model, an adversary can query and get any universal
key or time key, but these keys cannot be used directly to
decrypt the challenge’s ciphertext. Similar to [16], AAs can
only be statically corrupted. Let SAA denotes a set of all
attribute authorities in the system, and S ′AA ⊂ SAA denotes
a set of attribute authorities that are corrupted.

The security assumptions include:

• A user’s own attribute keys cannot satisfy the access
policy of the ciphertext, but he will cooperate with other
users to obtain the private keys owned by the other
party. The combined private keys can satisfy the access
policy of the ciphertext, which can be used to access the
content.

• Since AAs are at the edge level, they aremore vulnerable
than the cloud. They may be hacked to obtain the private
keys of all the corresponding attributes.

The security game is defined as follows:
Setup: The challenger runs the CASetUp algorithm to gen-

erate the global parameters. The adversary specifies the set
of AA that have been statically corrupted. Since AASetUp
algorithm is performed by each AA, for the corrupted
AAs, the adversary can obtain the public and private key;
for the normal AAs, the adversary only gets the public
key.

Phase 1: The adversary specifies a ciphertext number
FID∗ and an access policy (A∗, ρ∗) in which the set of time
attributes and their corresponding time ranges also need to be
determined. Then the adversary can make the following key
query:

• Universal key query: The adversary submits the global
uid , the corresponding identity certificate Certuid and a
set of universal attributes Suid in which all the attributes
belong to an uncorrupted AA. The challenger returns the
universal private key {Usk j,uid }j∈SAA−S ′AA for the user uid
to the adversary.

• Time key query: Similar to the universal key
query, the adversary also submits uid , Certuid ,
an unique ciphertext FID, a time attribute set ST j,uid
in which all the time attributes belong to an uncor-
rupted AAj and an access time t to the challenger.
If the time point t is valid, the challenger returns
the time private key

(
UTsk j,uid,FID

)
j∈SAA−S ′AA

to the
adversary.

• Transformable key query: The adversary submits the
universal private keys Uskuid =

{
Usk j,uid

}
and the time

private keys UTskuid,FID =
{
UTsk j,uid,FID

}
to the chal-

lenger, and the challenger executes the TransKeyGen
algorithm to calculate the edge key Ekuid,FID and the
local key Lkuid,FID which will then be sent to the
adversary.

Challenge: The adversary submits two equal length
symmetric keys k0, k1 to the challenger. Let Sco repre-
sents the set of any universal or time private keys that
belong to corrupted AAs. For each uid , The game requires
Uskuid

⋃
UTskuid,FID

⋃
Sco can’t both match the access pol-

icy (A∗, ρ∗) and the ciphertext number FID∗. The challenger
randomly selects a υ ∈ {0, 1} and encrypts kυ under the
access policy (A∗, ρ∗), then the ciphertextCT FID∗ will be sent
to the adversary.
Phase 2: The adversary can repeat the query of phase 1.

But there is a restriction, the new Uskuid
⋃
UTskuid,FID must

still not satisfy the requirements of the ciphertext number
FID∗ and the universal and time attributes in the access
policy.

Guess: The adversary outputs a guess υ ′. If υ ′ = υ,
the adversary wins the security game. The advantage of the
adversary in the game is defined as follows:

Adv = Pr
[
υ ′ = υ

]
−

1
2

Theorem 1: The TMO scheme is secure against the
static corruption of AAs, if the adversary has at most
a negligible advantage in the above game in polynomial
time.
Theorem 2: The TMO scheme is collusion resilience if

there is no polynomial time solution that adversary can
decrypt the symmetric key ciphertext by combining the pri-
vate keys from other users who can’t decrypt the data by his
own.

IV. TIME DOMAIN OUTSOURCING MULTI-AUTHORITY
ATTRIBUTE-BASED ENCRYPTION SCHEME
A. TMO OVERVIEW
We propose TMO, a time domain outsourcingmulti-authority
attribute-based encryption scheme in the edge computing
environment. TMO provides secure and efficient fine-grained
access control for data acquisition and data sharing. With
the ever-increasing data and advanced applications, time is
a deterministic factor for data usage. Hence, we embed time
domain information into the encryption scheme to ensure the
security and system flexibility. Besides, TMO also leverages
the benefits of edge computing to support multi-authority and
outsourcing features to improve efficiency. Outsourcing to
edge nodes also reduces the security risks introduced by the
key ciphertext transmission between the cloud and the termi-
nal device. Specifically, plain data is split into data blocks and
they are encrypted locally using symmetric encryption. Then,
the encryption key is encrypted with the multi-authority
attribute-based encryption scheme. The two types of cipher-
text are sent to ESN for storage. The attributes in TMO
consist of universal attributes and time attributes. Legal data
users have correct attributes private keys and their accessing
time is also in the valid time range. Then, data users can
leverage ECNs to pre-decrypt the ciphertext by sending the
corresponding transformed edge key. Finally, users can obtain
the data content after performing the lightweight decryption
locally.

VOLUME 7, 2019 40245

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

B. CONSTRUCTION OF TMO
Based on the previous defined systemmodels and algorithms,
TMO consists of the following stages:
• Central Authority Setup: Let IAA denote the set of
attribute authorities in the system. With the security
parameter λ, the CA runs the CASetUp algorithm which
selects two multiplicative cyclic groups G and GT with
the same prime order P, a symmetric bilinear map ê :
G×G→ GT , a generator g and a random element h ∈ G
and an anti-collision hash function F : {0, 1}∗ → G
(mapping attributes to elements in G) to build the global
parameters GP (GP = (g, h,G,GT ,F)). Besides, a pair
of signature and verification key (skCA, vkCA) that are
used to sign and recover the user’s credentials are also
generated.

• User registration: When a user joins the system,
he needs to register with the CA. The CA verifies
the legality of the user’s identity by analyzing Infouid .
If legal, the CA runs the UserReg algorithm to complete
the registration for the user. A global unique uid is
assigned to the user. Besides, the algorithm also ran-
domly chooses an element uuid∈ Zp and signs it with
the signature key skCA to build the user’s credential
Certuid . Then, the Certuid and the user’s identity key
Kuid (Kuid = guuid) are sent to the user.

• Attribute authority registration: Each AA ∈ IAA needs
to register with the CAwhen joining the system. The CA
verifies the legality of AA by analyzing the correspond-
ing InfoAID. If legal, the CA runs the AAReg algorithm
to complete the registration for the AA. The algorithm
assigns a global unique AID and sends the verification
key vkCA that can recover the user’s signature credentials
to the AA.

• Attribute authority setup: Each authority needs to run
the AASetUp algorithm at the initial stage. The algorithm
randomly selects two elements αj, βj∈ Zp as the AA’s
private keys. And the corresponding public key ApkAAj ,
which is calculated as ApkAAj = (e (g, g)αj , gβj) is pub-
lished on the system’s public bulletin board and open for
all the users.

• Encrypt time parameters generation: For a cipher-
text with a time restriction, the DO will first exe-
cute the TimeParamGen algorithm to calculate the time
parameters of the time attributes before encrypting the
symmetric key. Considering the efficiency and sim-
plicity, we assume that the time restrictions of all the
time attributes that belong to the same authority in
an access policy should be the same, while attributes
belonging to different AAs can be configured differ-
ently. Let STj,FID represents the set of time attributes
in the ciphertext FID that belong to the authority AAj,
and the valid time range is defined as

[
Tbegin,Tend

]
.

The algorithm randomly selects an element rj∈ Zp as
the time parameters TDOParamj,FID, which is embed-
ded into the key ciphertext. Besides, it calculates
another time parameters TAAParamj,FID for AAj as

TAAParamj,FID =
(
Tbegin,Tend , STj,FID, grj

)
, which is

used to generate attribute private key in decryption
phase.

• Symmetric key ciphertext encryption: To take advan-
tages of both the efficiency of symmetric encryption and
the security of public key encryption, TMO employs
the following two-stage encryption: 1) Selecting a sym-
metric key k to encrypt data block M as CT data =
Enc (M , k); 2) Executing the Encrypt algorithm to
encrypt the symmetric key k . Before performing public
key encryption on k , we need to specify the access policy
(A, ρ), where A is the matrix of l × n and each row
corresponds to an attribute. The l denotes the number
of attributes contained in the access policy, the function
ρ maps the matrix data to the corresponding attributes.
The algorithm randomly selects an element s∈ Zp as the
secret value to be shared, and then uses a random vector
Ev = (s, y2, . . . , yn) ∈ Zp to divide the secret value s.
For ∀x ∈ [1, l], the public shared value of s is λx , which
is calculated as λx = Ev · Ax , and Ax is the x-th row in
the matrix A. The elements t1, t2, . . . , tl ∈ Zp are also
randomly selected, and the symmetric key ciphertext
CT FID is calculated as:

C0 = k · e (g, g)s·
∏
αj , C1 = gs,

∀x ∈ [1, l] , C2,x = hλx · gβjtx , C3,x = g−tx ,

C4,x =

{(
F (ρ (x)) · gβj

)tx if ρ (x) is universal(
F (ρ (x)) · gβjrj

)tx if ρ (x) is time

CT FID = (C0,C1,
{
C2,x ,C3,x ,C4,x

}
)

• Universal attribute private key generation: Let Sj,uid
represents the set of universal attributes of which keys
that the user needs to request in the authority AAj.
Noted that the universal key can be used to decrypt all
the ciphertexts that contain the corresponding attributes.
When AA receives the universal key request, it will run
theUniversalKeyGen algorithm to generate the universal
attribute private key. First, it verifies the user’s identity
by using the vkCA to recover the uuid from the certificate
Certuid . Then, it selects a random element zj ∈ Zp to
calculate the universal private as:

Usk j,uid = (D1,j = gαj · huuid ,D2,j = gzj ,

∀xj ∈ Sj,uid : Dj,xj = F
(
xj
)zj
· gβj(zj+uuid))

• Time attribute private key generation: If a ciphertext
has access time restrictions, the DU needs to request
time attribute private key from the corresponding author-
ity in a valid time range and then combines it with
the universal private key to decrypt the data correctly.
To efficiently check the time information, the author-
ity AAj sets up a table to store the time parameters(
FID,TAAParamj,FID

)
of its ciphertexts. By comparing

the accessing time with the valid time range retrieved via
the ciphertext FID, the authority AAj determines whether
the user’s key request is legal. If legal, it executes the

40246 VOLUME 7, 2019

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

TimeKeyGen algorithm to generate the time private key.
Let ST j,uid denotes the set of the corresponding time
attributes, same as universal attribute private key gen-
eration, after verifying the user’s identity, the algorithm
randomly chooses an element zj′ ∈ Zp to calculate the
time attribute key as:

UTsk j,uid,FID =
(
D2,j
′
= gzj

′

,

∀xj ∈ ST j,uid :Dj,xj
′
= F

(
xj
)zj ′
·
(
grj
)βjzj ′
· guuidβj

)
• Private key transformation: After obtaining the uni-
versal private keys

{
Usk j,uid

}
and the time private

keys
{
UTsk j,uid,FID

}
, the DU performs the TransKeyGen

algorithm to generate an edge key for pre-decryption
on ECN and a local key for final local decryption. The
algorithm randomly selects an element q ∈ Zp, and then
the local key Lkuid,FID = q and the edge key Ekuid,FID is

Ekuid,FID

=
(
K ′uid = Kuid

1
q ,F1,j = D

1
q
1 ,xj ∈ Sj,uid : F2,j =

(
D2,j

) 1
q ,Fj,xj =

(
Dj,xj

) 1
q

xj ∈ ST j,uid : F2,j =
(
D′2,j

) 1
q
,Fj,xj =

(
D′j,xj

) 1
q

)
• Outsourcing decryption: The ECN performs a pre-
decryption operation without acquiring any information
about the encrypted content. Let SEatt denotes the set
of all the attributes contained in the edge key Ekuid,FID.
Iatt denotes the set of the row indexes (of access matrix
A) that correspond to the attributes in the edge key,
Iatt = {x : ρ (x) ∈ SEatt }. Moreover, Iatt can be fur-
ther divided according to the authority, that is Iatt ={
IAAj

}
j∈IAA

. Let NAA = |IAA| represents the number
of AAs involved in the access policy. There exists a
constant set

{
cx∈ Zp

}
x∈Iatt

that can be found in a poly-
nomial time, so that s =

∑
x∈Iatt cxλx , where λx is the

public shared value of the attribute corresponding to the
secret value s on the x-th row in the access matrix. The
ECN runs the Decrypt.out algorithm to calculate the
intermediate ciphertext ICT . The concrete calculation
process of pre-decryption is as follows:

Rx = e
(
C2,x ,K ′uid

)
· e
(
C3,x ,Fj,ρ(x)

)
· e
(
C4,x ,F2,j

)
× if ρ (x) is a universal attribute

Rx = e
(
g−tx ,

(
F (ρ (x))zj · gβj(zj+uuid)

) 1
q
)

· e
(
hλxgβjtx,

(
guuid

) 1
q

)
· e
((
F (ρ (x)) · gβj

)tx
,
(
gzj
) 1
q

)
= e

(
hλx ,

(
guuid

) 1
q

)
= e (h, g)

λx uuid
q

× if ρ (x) is a time attribute

Rx = e
(
g−tx ,

(
F (ρ (x))zj

′

·
(
grj
)βjzj ′
· guuidβj

) 1
q
)

· e
(
hλxgβjtx,

(
guuid

) 1
q

)
· e
((
F (ρ (x)) gβjrj

)tx
,
(
gzj
′
) 1
q
)

= e
(
hλx ,

(
guuid

) 1
q

)
= e (h, g)

λx uuid
q

T =
∏
j∈IAA

e
(
C1,F1,j

)∏
x∈IAAj

(Rx)
cxNAA

=

∏
j∈IAA

e
(
gs, (gαj · huuid)

1
q

)
∏

x∈IAAj

(
e (g, h)

λx uuid
q

)cxNAA
=

e (g, h)
suuid NAA

q · e (g, g)
s
∏
j∈IAA

αj
q

e (g, h)
uuid NAA

∑
x∈Iatt cxλx
q

= e (g, g)
s
∏
j∈IAA

αj
q

ICT = (T ,C0) .

• Local decryption: After obtaining the intermediate
ciphertext ICT , the DU runs theDecrypt.final algorithm
with the local key Lkuid,FID to generate the symmetric
key k . The concrete calculation process of k is:

C0
T q =

k·e(g,g)s·
∏
αj(

e(g,g)
s
∏
j∈IAA

αj
q

)q = k

Then, the DU can take the symmetric key k to decrypt
the data ciphertext CT data and obtain the plain data M
as M = Dec (CT data, k).

C. SECURITY ANALYSIS
Based on the security game proposed in Section III, we prove
that the proposed TMO is secure and can resist collusion
attacks.
Theorem 1: If there doesn’t exist an adversary A can

win the security game (the size of challenge matrix M∗ is
l∗ × n∗ (n∗ < q)) with non-negligible advantage ε > 0 in
polynomial time, then there isn’t a polynomial time simulator
that can selectively break the decisional q-parallel BDHE
assumption.
Proof: Assuming that in our security game, the adversary

A with non-negligible advantage ε can only select an access
matrix M∗ with a maximum number of q − 1 columns.
However, A can perform an arbitrary universal private key
query, time private key query and transformable key query.
One restriction exists, that is, all the obtained keys (even com-
bined with the keys in the corrupted AAs) still cannot satisfy
the attributes requirements in the access policy. Under this
restriction, the security game of the multi-authority system
is equivalent to that of the single-authority system. (Detailed
proof is presented in Appendix.)
Theorem 2: TMO scheme is still secure under collusion

attacks.

VOLUME 7, 2019 40247

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

Proof: Every user has a globally unique uid , and the user
identity parameter uuid is embedded in each attribute key
(no matter it is a universal attribute key or a time attribute
key). Without loss of generality, assuming there are two
malicious users in a collusion attack, then the decryption key
should contain two uuid . In this situation, one of the linear
pairing calculations e

(
hλx · gβjtx , guuid

)cx in the decryption
phase will not correctly recover the component e (h, g)suuid

which contains the secret value s. Hence, when there are
multiple users’ private key, even if the attribute set satisfys
the access policy requirements, the ciphertext still cannot be
successfully decrypted.

V. POLICY UPDATE
Due to the high mobility of the users and devices in the edge
computing environment, the access policy will be changed
frequently. Based on the usage scenario, we proposed the fol-
lowing two efficient policy update approaches: Time Range
Update and Access Policy Update.

A. TIME RANGE UPDATE
For time attributes, the valid access time is defined by the
time range embedded in the ciphertext. When the effec-
tive time period expires, the time range should be quickly
updated to prevent encrypted data from being exposed to
users whose access rights have expired. Let ST j,FID denote
the set of time attributes received from AAj in the ciphertext
FID. If the valid time expires, the component of the ciphertext
which corresponds to attribute x ∈ ST j,FID will need to be
updated. If the DOwant to extend the access time, a new time
range [ta, tb] (ta ≤ tb) should be given, otherwise, they can
set an unreasonable time range [ta, tb] (ta > tb) to refuse the
request. Both situations require a new random time parameter
r ′j ∈ ZP, and the ciphertext update key is calculated as

UK j =
(
K1,j = gr

′
j ,

∀ρ′ (x) ∈ ST j,FID : Kj,x =
(
gβj
)tx r ′j−tx rj)

Next,the DO send the new time parameter tuple(
FID, [ta, tb] ,K1,j

)
to the correspondingAAj which is respon-

sible for generating new time private key for decryption later.
The update keys

{
Kj,x

}
are also sent to the cloud, and it

will distribute the keys to the ESNs that store the original
ciphertext. Then, they will perform the following update
algorithm to calculate the new ciphertext:

C ′4,x = C4,x · Kj,x = F
(
ρ′ (x)

)tx
· gβjr

′
j tx where

∀ρ′ (x) ∈ ST j,FID

B. ACCESS POLICY UPDATE
In the proposed TMO scheme, the access policy is repre-
sented as a combination of an access matrix and a row map-
ping function (A, ρ) in a LSSS structure. Since the updat-
ing of the accessible attributes, a new access policy

(
A′, ρ′

)
should be applied in the system. In order to save the com-
munication costs and the computing overhead, we extend the

PolicyCompare algorithm proposed in [13] to TMO scheme
and only modify the public shared value of the s to build
the new ciphertext. Specifically, after knowing the difference
between the original and new access policies, the DO exe-
cutes the CTUKGen algorithm to generate the update key.
Then, same with the Time Range Update, the cloud will
distribute the update key to all ESNs. The CTUpdate algo-
rithm will be performed to calculate the new ciphertext on all
storage nodes.

Policy Compare: To compare the difference between the
original and new access policies, we define the algorithm as:

PolicyCompare
(
(A, ρ) ,

(
A′, ρ′

))
→
((
S1,A′ , S2,A′ , S3,A′

)
,
(
AS1,A′ ,AS2,A′

))
Take the original and new access policies as inputs, the algo-
rithm divides the attributes of new access matrix A′ into
three sets S1,A′ , S2,A′ , S3,A′ and generates two AA sets
AS1,A′ ,AS2,A′ .

From the access attribute aspect, the difference of access
matrix can be classified into the following three cases:

• Case 1 (Set S1,A′): The original matrix A has the same
attribute att as the new matrix A′, and the number of
attributes in A′ is less than or equal than the one in A.

• Case 2 (Set S2,A′): The original matrix A has the same
attribute att as the new matrix A′, and the number of
attributes in A′ is more than the one in A.

• Case 3 (Set S3,A′): The new attributes that appear in A′

but don’t exist in A.

From the attribute authority aspect, the difference of access
matrix can be classified as AS1,A′ , which indicates the AAs
that are included in both the original and new access policies,
and AS2,A′ , which indicates the new AAs that only appear in
the new access policy.

Update key generation: The ciphertext update key gener-
ation algorithm is defined as:

CTUKGen
(
ParamCTFID ,

{
ApkAAj

}
, (A, ρ) ,

(
A′, ρ′

))
→

({
UK x,i

}
x∈[1,l′] ,UKC0

)
With the encrypted parameters of the key ciphertext, the pub-
lic key of each involved AA, the original and new access
policies, the algorithm outputs update keys.

Due to the different number of the rows in the access
matrixes A′ and A, the data owners need to reassign the
shared values of the secret value s. Thus a random vector
Ey′ =

(
s, y′2, . . . , y

′

n′
)
∈ Zn

′

p is been selected to generate the
new shared values λ′k

(
k ∈

[
1, l ′

])
as: λ′k = A′k ·Ey

′. Let T (att)
be the function that maps the attribute att to its corresponding
AA. The updated key for each x ∈

[
1, l ′

]
is calculated based

on its classification in the PolicyCompare phase. In detail:

• Case 1: (x, i) ∈ S1,A′ , Let t ′x = ti and part of the update
keys is K1,x = hλ

′
x−λi . Based on the states of the same

40248 VOLUME 7, 2019

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

attribute in the original and new matrixes, the update
keys can be calculated as:
1) ρ (i) and ρ′ (x) are the same type: UK x,i = K1,x .
2) ρ (i) and ρ′ (x) are different types:

UK x,i =
(
K1,x ,K2,x)

a) ρ (i) is a time attribute, ρ′ (x) is a universal
attribute:

K2,x =
(
gβT (ρ(i))

)t ′x−rT (ρ(i))ti)
where rT (ρ(i)) is the time parameter of the time
attributes received from the authority AAj in the
ciphertext.
b) ρ (i) is a universal attribute, ρ′ (x) is a time
attribute: If the time parameter of this cipher-
text for the authority has not been determined,
the DO needs to randomly select a time parameter
r ′T (ρ′(x)) ∈ Zp and set a new range of access time[
Tbegin,Tend

]
. The tuple of the time parameters(

Tbegin,Tend , g
r ′
T(ρ′(x))

)
is then sent to the corre-

sponding authority T
(
ρ′ (x)

)
.

K2,x =
(
gβT (ρ(i))

)t ′x r ′T(ρ′(x))−ti)
• Case 2: (x, i) ∈ S2,A′ , the DO first needs to randomly
select vx ∈ Zp to re-randomize the original compo-
nent and let t ′x = vx · ti. Then, based on the states
of the same attribute, part of the update keys is same(
K1,x = hλ

′
x−vxλi

)
and the remaining update keys can

be calculated as:
1) ρ (i) and ρ′ (x) are the same type:

UK x,i =
(
K1,x , vx

)
2) ρ (i) and ρ′ (x) are different types:

UK x,i =
(
K1,x , vx ,K2,x

)
a) ρ (i) is a time attribute, ρ′ (x) is a universal
attribute:

K2,x =
(
gβT (ρ(i))

)t ′x−rT (ρ(i))vx ti
b) ρ (i) is a universal attribute, ρ′ (x) is a time
attribute: If the time parameter of this ciphertext
for the authority has not been determined, then DO
repeats the same operations as in Case 1. The K2,x
is different and the update key is

K2,x =
(
gβT (ρ(i))

)t ′x r ′T(ρ′(x))−vx ti
• Case 3: (x, i) ∈ S3,A′ , the DO first needs to randomly
select an element t ′x ∈ Zp, and part of the keys are the
same

UK x,i =
(
K1,x ,K2,x ,K3,x

)
K1,x = hλ

′
x

(
gβT(ρ′(x))

)t ′x
,K2,x = g−t

′
x

Only new attributes are added, so there are only two
types of the update key:

1) ρ′ (x) is a universal attribute:

K3,x = F
(
ρ′ (x)

)t ′x (gβT(ρ′(x)))t ′x
2) ρ′ (x) is a time attribute: Same with the previous

cases, data owners need to create time parameters
and send to corresponding AAs. Then the update
key can be calculated as:

K3,x = F
(
ρ′ (x)

)t ′x (gβT(ρ′(x)))r ′T(ρ′(x))t ′x
Since the component C0 of the key ciphertext involves the

public key e (g, g)αj of the authority, we also need to update
the AA-related part. Let ASA denote the set of AAs involved
in the original access policy. Specifically, the public key of the
AA that in the set

(
ASA − AS1,A′

)
need to be removed, and

the ones that in the set AS2,A′ should be added. The update
key of the C0 component is calculated as:

UKC0 =

(
K1,K2

)

K1 =

 ∏
j∈ASA−AS1,A′

e (g, g)αj

−s

K2 =

 ∏
j∈AS2,A′

e (g, g)αj

s

Ciphertext update: With the update keys, storage nodes
can update the ciphertext based on the following algorithm:
CTUpdate

(
CT FID,

{
UK x,i

}
,UKC0

)
→ CT ′FID

With the original key ciphertext CT FID, the update key{
UK x,i

}
which correspond to the three sets S1,A′ , S2,A′ , S3,A′

and the AA update key UKC0 , the algorithm generates the
new ciphertext.

For the attribute component part, the update parameters are
defined based on the attribute classification:

• Case 1 (S1,A′): C ′2,x = C2,i · K1,x ,C ′3,x = C3,i.
If the update key K2,x is not empty, then the C4,i also
should be updated as C ′4,x = C4,i · K2,x .
Otherwise, C ′4,x = C4,i.

• Case 2 (S2,A′): C ′2,x =
(
C2,i

)vx
· K1,x ,C ′3,x =

(
C3,i

)vx
If there isK2,x , then theC ′4,x =

(
C4,i

)vx
·K2,x . Otherwise

C ′4,x =
(
C4,i

)vx .
• Case 3 (S3,A′): C ′2,x = K1,x ,C ′3,x = K2,x ,

C ′4,x = K3,x

For the attribute authority part, the updated operation of the
C0 ciphertext component is C ′0 = C0 · UK 1 · UK 2.
The concrete structure of the new key ciphertext is:

CT ′FID =
(
C ′0,C1,∀x ∈

[
1, l ′

]
: C ′2,x ,C

′

3,x ,C
′

4,x

)
VOLUME 7, 2019 40249

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

TABLE 2. Notations used for performance evaluation.

C. SECURITY ANALYSIS
Theorem 3.After the ciphertext update algorithm is executed,
the updated ciphertext is still secure.
Proof: We demonstrate the time range update and the

access policy update respectively.
Time range update: The DO only modifies the time

parameters of the time attributes and the corresponding
ciphertext components. Therefore, we believe that the DO is
trustable. Otherwise, the security discussion of the ciphertext
is meaningless. In this scenario, only the time parameters
and the update key that are sent to AA may expose the
ciphertext. For time parameters, even if a malicious oppo-
nent intercepts the time parameter gr

′
j , the decryption key

still cannot be generated without the authority private key
βj. Besides, the update key is sent to the node where the
ciphertext is stored, and it cannot be used to decrypt the
ciphertext. Therefore, the time range update operation is
secure.

Access policy update: The DO re-defines a new access
policy A′, and the original ciphertext structure is leveraged
as much as possible to reduce the communication and cal-
culation overheads. In the ciphertext update phase, the stor-
age nodes only know the relationships between the original
access policy and the new access policy. Besides, the update
keys which are transmitted in the network are not helpful in
decryption. Moreover, similar to the time range update case,
interception of the time parameters also cannot contribute
to the ciphertext decryption. Therefore, the access attribute
update operation is also secure.

VI. PERFORMANCE EVALUATION
To comprehensively evaluate the performance of the pro-
posed TMO scheme, we compared its storage cost and
computing overhead with the two popular encryption meth-
ods: DACMACS [16] and OOMADO [29]. Both of them
are multi-authority outsourcing ABE schemes, DACMACS
is suitable for cloud storage situations and OOMADO with
an offline/online encryption feature is preferred in a mobile
environment. Besides, the influences of time attribute and
time AA on our proposed scheme is also evaluated. More-
over, we analyzed the performance of policy updating under
various cases. The notations used in the theoretical analysis
are listed in Table 2.

TABLE 3. The storage comparison of the three schemes.

A. STORAGE COST
The storage size is a key factor that greatly influences the
large-scale deployment of an access control scheme. Specif-
ically, the ciphertext and the keys are the most frequently
transmitted data among data owners, data storage nodes
(cloud or ESN) and data users. Hence, as shown in Table 3,
we compare the key ciphertext size and the AA private key
size of the three encryption schemes. In TMO, the size of a
symmetric key ciphertext is (3l + 1)F1+F2, which is smaller
than the other two schemes. Besides, the size of the private
key obtained from each AA is (2 |IAA| + |Su| + 1)F1, which
is slightly smaller than DACMACS scheme and larger than
the OOMADO scheme. This is due to the different encryption
structures, OOMADO only stores one key per attribute, while
our scheme needs to record more keys to support efficient
outsourcing.

B. COMPUTING OVERHEAD
The computing overhead is mainly generated in the encryp-
tion phase(data owner), the pre-decryption phase(cloud or
ECN) and the local decryption phase(data user). Noted that
attribute-based encryption methods are employed to encrypt
the symmetric key, so the data blocks encryption is not con-
sidered. Specifically, We compared the computing overheads
of the three schemes from the aspects of algorithm, authority
and attribute.

1) EXPERIMENTAL SETUP
The operating system used in the experiments is the Win-
dows 10 Professional (x64) platform, the processor is Intel(R)
Core(TM) i7-7700 CPU @3.60GHz and the memory is
8.00GB. The JPBC 2.0.0 library is applied to build the three
encryption schemes, and a 160 bits type A elliptic curve
which is based on the 512-bit finite field is the base curve
of pairing.

2) ALGORITHM ANALYSIS
Generally, the encryption algorithm is composed of expo-
nential operation and multiplication operation. In our exper-
iments, each operation is executed 100 times, and we take
the average value as the result. In the group G, the time
of exponential operation and multiplication operation are
10.897ms and 3.114ms respectively. In the groupGT , the cor-
responding time are 1.964ms and 2.277ms. Since the time
difference is relatively small in GT , we use the same nota-
tion E2 to represent the multiplication and the exponential
operation for simplicity. In Zp, a multiplication operation only
takes 0.00779ms, so we ignored such small costs. In addi-
tion, the time of the linear pairing operation is 8.379 ms.

40250 VOLUME 7, 2019

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

FIGURE 2. Comparison of the three schemes’ performance under different number of attribute authorities. (a) Comparison of encryption time
(OOMADO’s result. (b) Comparison of outsourcing decryption time. (c) Comparison of local decryption time. (d) Comparison of AA private key generation
time. (e) Comparison of keys transformation time.

TABLE 4. The computing overhead comparison of the three schemes.

These basic operations are used to compare the comput-
ing overheads of the three encryption schemes. As Table 4
presents, TMOperforms |IAA|+1 exponential(multiplication)
operations in GT , 2l multiplication and 5l + 1 exponen-
tial operation in G when encrypting the symmetric key,
the computing overhead is between the DACMACS and the
OOMADO. In the pre-decryption phase, the overhead of
TMO is less than the other two schemes. For the local decryp-
tion, data users only perform two multiplications in GT to
obtain the data, the cost is half of the OOMADO case.

3) ATTRIBUTE AUTHORITY IMPACT
Since DACMACS and OOMADO do not support time
attribute, in the following experiments, all the attributes are
universal attributes. To better evaluate the influence of AAs,
asides from the three metrics(the encryption time, the out-
sourcing decryption time and the local decryption time) used
in the algorithm analysis section, we also compared the AA
private key generation time and the user key transforma-
tion time. In the experiments, each AA is responsible for
10 attributes, and the number of AA increased from 1 to 20.
The results are shown in Figure 2.

As demonstrated in Figure 2(a), the encryption time of
TMO is the smallest, while the result of DACMACS should
be less than ours based on Table 4. The main reason is
that the process of mapping an attribute to an element in

the group G is implemented differently. TMO calculates the
element by a hash function in real time, whereas DACMACS
calculates the result in the AA setup phase and then stores
in a HashMap for searching later. In the outsourcing pre-
decryption case (Figure 2(b)) and the local decryption case
(Figure 2(c)), the results are consistent with the theoreti-
cal analysis in Table 4. For the AA private key generation
time(Figure 2(d)), the time of TMO is between the DAC-
MACS case and the OOMADO case. The results can also
be verified as the storage size difference showed in Table 3.
Besides, due to the size of the private key set, the key trans-
formation time of TMO is greater than the OOMADO case
(Figure 2(e)). When the number of AA is 1, the size of the
key set in the OOMADO case and the TMO case are 10 and
12 respectively. With the number of AA increase, the differ-
ence of key set size also increases. Moreover, Figure 2 also
presents that the time of encryption, key transformation and
outsourcing pre-decryption are proportional to the number
of AA.

4) ATTRIBUTE IMPACT
Similarly, all the attributes are universal attributes in this
group of experiments. The number of AA is set to 10, and
the number of attributes increased from 1 to 10 in each
AA. We also evaluated the five metrics’ data, since the
results/trends of the encryption time, outsourcing decryption

VOLUME 7, 2019 40251

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

FIGURE 3. Comparison of the three schemes’ performance under different number of attributes. (a) Comparison of AA private key
generation time. (b) Comparison of keys transformation time.

FIGURE 4. Encryption time and private key generation time under the impact of time attributes. (a) Operation time distribution in the
time AA variation case. (b) Operation time distribution in the time attribute variation case.

time and local decryption time are the same with the previous
AA evaluation case, Figure 3 only demonstrates the AA
private key generation time and the user private keys transfor-
mation time data. As Figure 3(a) shows, TMO’s AA private
key generation time is still between the DACMACS case
and the OOMADO case, and the AA private key generation
time is proportional to the number of attributes. For keys
transformation time (Figure 3(b)), the trend is also the same,
OOMADO is faster than our scheme. When the number of
attributes is 1, the size of the key set in the OOMADO case
and the TMO case are 10 and 30 respectively. Hence, there is
an obvious time difference. When the number of AA is fixed,
the time difference is almost stable. Additionally, the time
of encryption, AA key generation, keys transformation, out-
sourcing decryption and local decryption are all proportional
to the number of attributes.

C. TIME ATTRIBUTE INFLUENCE
To evaluate the time attribute influence, we analyzed the
results from the aspects of encryption time and AA key
generation time. Since there is no difference between the
private key structure of time attribute and universal attribute,
their decryption time (outsourcing pre-decryption and local
decryption) are close. So the decryption process is not con-
sidered in this evaluation. Specifically, the number of AA is
set to 10, and the total number of attributes in each AA is also
10. The baseline case is that the attributes in every AA are all
universal attributes.

Time AA variation: Generally, assuming the attributes of
Time AA are composed of 5 time attributes and 5 universal

attributes. As we can see from Figure 4(a), the encryption
time tends to increase slowly with the number of Time
AA increases. The DO needs to set a time parameter for
time attributes in each AA and embeds it in the ciphertext.
So the encryption process becomes longer with more time
AA involving. For AA private key generation time, Time AA
cost 50 ms more on average than the baseline case that with
all universal attributes. The extra time is spent on executing
a multiplication and exponential operation of the group G
according to the structure of the encryption scheme. Besides,
since we calculate the average time, the increasing of Time
AA will not affect the key generation time.

Time attribute variation: In this experiment, every AA
has time attributes which can change from 1 to 10. As Fig-
ure 4(b) presents, since the number of time parameters is
mainly related to the number of AA, the time attribute varia-
tion in each AA does not affect the encryption time. Besides,
due to that the computing overhead of each time private
key is increased by an extra calculation in group G, the AA
key generation time is proportional to the number of time
attributes.

The experimental results show that TMO can support
time attribute with acceptable encryption performance and no
effect on decryption process.

D. POLICY UPDATE EVALUATION
For the policy update schemes, we analyzed the following two
updating situations:

Time range update: The number of time parameters is
directly related to the number of AA (not the time attributes),

40252 VOLUME 7, 2019

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

TABLE 5. Attribute state updating information.

FIGURE 5. Comparison of the updating performance. (AAD: the ciphertext
component updating caused by the difference of AA).

and the DO creates the update key for each AA. So, without
loss of generality, we set up the experiment with four AAs:
three universal AA (each contains 8 universal attributes) and
one time AA which contains 4 time attributes and 4 universal
attributes. After running the experiments 10 times, the update
key generation time of the time parameter is 40.517ms, and
the update time of the ciphertext is 0.243ms. The results show
that the time range update is efficient in TMO scheme.

Access policy update: This approach is used in large
scale policy updating situations. Specifically, the update key
is calculated with considering both attributes difference and
authority difference. In the experiments, we created an orig-
inal access policy and a new access policy based on the
following configurations: 1) Each of the three attribute sets
(S1,A′ , S2,A′ , S3,A′) contains 4 attributes; 2) Adding 2 new
authorities and deleting 2 old authorities, and the total number
of AA in access policy is 10. That is, AS1,A′ = 8, and
AS2,A′ = 2. The changing of the attribute states in the three
attribute sets (three cases) are shown in Table 5, for example,
Case 1 Type 3 refers that the time attributes in the original
access policy change to the universal attributes in the new
access policy, and the attributes belong to S1,A′ set.

As Figure 5 shows, when the attribute state is the same,
the update key generation time is relatively short regard-
less of the cases. Besides, if the attribute state changes,
the update key generation time will be increased due to
the adding/deleting of a time parameter. For the ciphertext
update algorithm, it takes a long time in Case 2 because the
original ciphertext component needs to be re-randomized.
Fortunately, Case 2 did not happen frequently in the real
scenario. The ciphertext update time is very short in other
cases, it takes about 0.1ms in Case 1 and 0.002ms in
both Case 2 and Case 3. Moreover, comparing with the
time spend in attribute updating, the ciphertext component

corresponding to the authority difference only spends a very
short time to finish the updating. Hence, our policy update
algorithm can efficiently update a ciphertext with a low cost.

VII. CONCLUSION
With the blooming of IoT and ever-increasing demands of
users, edge computing is proposed to leverage the computing
and storage resources on the edge to process the massive
data. With the benefit of reducing response time and saving
bandwidth, edge computing also encounters huge challenges
in security and privacy. Hence, in this paper, we proposed
TMO, a time domain multi-authority outsourcing attribute-
based encryption scheme, to enhance data security in the
edge computing environment. The proposed TMO takes time
as a key encryption factor to provide a flexible data acqui-
sition mechanism. Besides, edge nodes are used to support
multi-authority and outsourcing features, which can greatly
improve the security and reduce the costs. Moreover, an effi-
cient dynamic policy updating method is also developed,
which updates the access policy online without wasting the
network bandwidth. The security analysis and the compre-
hensive performance experimental results show that TMO
can indeed improve the data security with less overhead in
edge computing environment. In the future, we will explore
the usage of historical data accessible time range, it is helpful
to profile data users and predict data open possibilities. More-
over, wewill improve TMO to support a large number of users
and devices with more features in the edge environment.

APPENDIX
SECURITY ANALYSIS OF THEOREM 1
In Theorem 1, we states that there isn’t a poly-
nomial time simulator that can selectively break the
decisional q-parallel BDHE assumption. The decisional
q-parallel Bilinear Diffie-Hellman Exponent Assumption
(q-BDHE) [22] is defined as follows: Let a challenge ran-
domly choose a, s, z, b1, b2, . . . , bq ∈ ZP. Suppose the
adversary can get the following terms

Eγ = (g, gs, g
1
z , g

a
z , . . . , g

aq
z , ga, . . . , g(a

q), g
(
aq+2

)
, . . . g

(
a2q
)
,

∀1 ≤ j ≤ q : gs·bj , g
a
bj , . . . , g

aq
bj , g

aq+2
bj , . . . , g

a2q
bj ,

∀1 ≤ j, l ≤ q, l 6= j : g

(
a·s· blbj

)
, . . . , g

(
aq·s· blbj

)
)

No polynomial time adversary can distinguish the term
e (g, g)a

q+1s over GT from a random element in GT .
Based on the proposed security models, we challenge the

decisional q-parallel BDHE assumption by constructing a
simulator B.

Init: The simulator B receives the following data: 1) tuple
γ in the decisional q-parallel BDHE assumption sent by the
challenger C ; 2) a unique ciphertext FID∗ with the access
policy (M∗, ρ∗) from the adversary A, and the size of the
access matrix M∗ is l∗ × n∗ (n∗ ≤ q− 1).
Setup: Assume SAA denotes a set of all AA in the sys-

tem, S ′AA (S ′AA ⊂ SAA) refers to the set of AAs which have

VOLUME 7, 2019 40253

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

been statically corrupted. The simulator executes the CASetup
algorithm to generate the global parameters GP, and sends
the public parameters g, h to the adversary. The adver-
sary shares S ′AA with the simulator. Then, simulator exe-
cutes the AASetup algorithm for all uncorrupted authorities
AAj

(
j ∈ SAA − S ′AA

)
, and sends the public parameter ApkAAj

to adversary. For the corrupted authorities AAj
(
j ∈ S ′AA

)
,

the AASetup algorithm is executed by the adversary itself to
obtain the corresponding public and private keys. The simu-
lator randomly selects two elements α′j, βj∈ Zp and implicitly
sets αj = α′j + a

q+1. Then the public key of the uncorrupted
authority is calculated as:

e (g, g)αj = e
(
ga, ga

q
)
· e (g, g)α

′
j

APKAAj =
(
e (g, g)αj , gβj

)
The simulator builds the random prediction oracle F of

attributes through a table. If the element F (x) correspond-
ing to the attribute x already exists in the table, it directly
returns F (x). Otherwise, let Rx denote the set of all the
row indexes i in the access matrix M∗ that corresponds
to the attribute x, then it selects a random element hx ∈
Zp. The random prediction oracle F of the attribute is
calculated as:

F (x) = ghx
∏

i∈Rx g
a2M∗i,1/bi · ga

3M∗i,2/bi · · · g
an
∗
+1M∗i,n
bi

Note that if Rx = ∅, then F (x) = ghx is still randomly
distributed because the element ghx is random in group G.
The result tuple (x,F (x)) is recorded on the table.

Phase 1: At this phase, the adversary can perform the
three queries: 1) arbitrary universal private key query via
(uid, Suid); 2) time private key query through the tuple(
uid,FID′, ST uid,FID′

)
; and 3) transformable keys query by(

uid,FID′,
{
Usk j,uid

}
,
{
UTsk j,uid,FID′

})
j∈SAA−S ′AA

. Similarly,
there is a restriction on these key queries. Combining with the
private keys from the corrupted authorities, the adversary’s
private keys for the ciphertext FID∗ still cannot satisfy the
requirements in the access policy M∗.
The simulator first selects a vector Ew = (w1,w2, · · · ,wn∗)
∈ Zn

∗

p , (w1 = −1). For all indexes i that ρ∗ (i) ∈ Suid ∪
ST uid,FID′ , there exists Ew·M

∗
i = 0. According to the definition

of LSSS structure, such a vector must exist because Suid ∪
ST uid,FID′ cannot simultaneously satisfy the ciphertext FID∗

and the attribute requirements in M∗.
The simulator selects two random elements ruid , u′uid ∈

Zp, and implicitly sets uuid = u′uid − aq. Then, the user’s
identity key is Kuid = guuid = gu

′
uid−a

q
. Note that according

to the definition of guuid , there is an element ga
q+1

that we
cannot simulate. However, this element will be canceled by
gαj in D1,j.
For the universal private key query, the simulator ran-

domly selects an element rj ∈ ZP for each uncorrupted AAj.
The authority key is calculated as:

zj = rj + w1aq−1 + w2aq + · · · + wn∗aq−n
∗

D1,j = gα
′
aidk
+aq+1

· ga(u
′
uid−a

q) = gα
′
aidk
+au′uid

D2,j = grj ·
n∗∏
i=1

gwi·a
q−i

To calculate the universal private key Dj,xj (∀xj ∈ Sj,uid),
where Sj,uid is the universal attribute set provided by the
adversary, and Suid =

{
Sj,uid

}
which consists of the attributes

from each uncorrupted authorities AAj. If the attribute xj is
used in the access matrixM∗(i.e. there is a row index i in the
matrix, such that ρ∗ (i) = xj), then it contains the element

g
aq+1
bk that we can’t simulate. Fortunately, due to Ew ·M∗i = 0,

this element can be cancelled. Hence, we have

Dj,xj = gβjuuid ·
(
ghxj · gβj

)rj
·

 n∗∏
i=1

gwi·a
q−i

(
βj+hxj

)

·

∏
k∈Rx

n∗∏
i=1

(
g
ai+1
bk

rj
)M∗k,i
·

∏
k∈Rx

n∗∏
i=1

 n∗∏
j=1,j6=i

g
aq+1+i−j

bk
wj

M∗k,i

For the universal attribute xj /∈ Sj,uid that does not exist in
M∗, its corresponding Dj,xj is calculated as:

Dj,xj = gβjuuid ·
(
ghxj · gβj

)rj
·

 n∗∏
i=1

gwi·a
q−i

(
βj+hxj

)

For the time private key query, the simulator also re-
randomly selects an element r ′j ∈ Zp for each uncorrupted
AAj, thus the authority keyD′2,j in which rj is embedded needs
to be recalculated as

zj = r ′j + w1aq−1 + w2aq + · · · + wn∗aq−n
∗

D′2,j = gr
′
j ·

n∗∏
i=1

gwi·a
q−i

Then, after receiving the ciphertext number FID′ submit-
ted by the adversary, the simulator randomly selects a time
parameter tj,FID′ ∈ Zp for each AAj. The time attribute key is
Dj,xj

′
(
∀xj ∈ ST j,uid,FID′

)
, and ST j,uid,FID′ refers to the set of

time attributes. Similarly, ST uid,FID′ =
{
ST j,uid,FID′

}
consists

of time attributes from each uncorrupted authority AAj. If the
time attribute xj exists in the access matrix M∗, its time
attribute key Dj,xj

′ is calculated as

Dj,xj
′
= gβjuuid ·

(
ghxj · gβjtj,FID′

)rj
·

 n∗∏
i=1

gwi·a
q−i

(
βjtj,FID′+hxj

)
·

∏
k∈Rx

n∗∏
i=1

(
g
ai+1
bk

rj
)M∗k,i

·

∏
k∈Rx

n∗∏
i=1

 n∗∏
j=1,j 6=i

g
aq+1+i−j

bk
wj

M∗k,i

40254 VOLUME 7, 2019

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

For the time attribute xj /∈ ST j,uid,FID′ that does not exist
in M∗, its Dj,xj

′ is calculated as

Dj,xj
′
= gβjuuid ·

(
ghxj · gβjtj,FID′

)rj
·

 n∗∏
i=1

gwi·a
q−i

(
βjtj,FID′+hxj

)

For the transformable keys query, the adversary submits
the universal private key set Uskuid =

{
Usk j,uid

}
and the

time private key set UTskuid,FID′ =
{
UTsk j,uid,FID′

}
for the

ciphertext FID′. The simulator queries whether such trans-
formable keys already exists on the table T. If exists, the trans-
formable key Tkuid,FID′ is directly returned to the adversary.
Otherwise, the simulator generates the transformable keys
by running the TransKeyGen algorithm. The result tuple(
Uskuid ,UTskuid,FID′ ,Tkuid,FID′

)
will be saved to the table T,

and the transformable keys will also be sent to the adversary.
The simulator selects a random element q ∈ Zp as the local
key, and the Tkuid,FID′ is calculated as

Ekuid,FID′ =
({

D1,j
1
q

}
,
{
D2,j

1
q

}
,
{
Dj,xj

1
q

}
xj∈Suid

,{
D′2,j

1
q
}
,
{
Dj,xj

′
1
q
}
xj∈ST uid,FID′

)
Lkuid,FID′ = q

Tkuid,FID′ =
(
Ekuid,FID′ ,Lkuid,FID′

)
Challenge: At this stage, the simulator mainly encrypts the
symmetric key. The adversary submits two equal length sym-
metric keys k0, k1. The simulator randomly selects a secret
value s and a symmetric key kυ (υ ∈ {0, 1}) to encrypt with
the access policy specified by the adversary. The ciphertext
CT key of the symmetric key is calculated as follows:

C0 = kυ ·
∏

j∈IA e (g, g)
s·αj ,C1 = gs

The public shared value of s can be constructed as:

λx = s ·M∗x,1 +
∑n∗

j=2
(
saj−1 + yj

)
M∗x,j

Meanwhile, the simulator also randomly selected l1, l2, . . . ,
ll ∈ ZP, and for any attribute x, its ciphertext component is:

C2,x = gβjlx · gaλx = gβjlx · gasM
∗

x,1 ·

n∗∏
j=2

g
(
saj+ayj

)
M∗x,j

C3,x = g−lx

Besides, the ciphertext component C4,x is calculated accord-
ing to the state of the attribute. Let ST denote the set of time
attributes contained in the access policy.
For a universal attribute x,

∀x /∈ ST : C4,x = g(βj+hx)lx ·
∏
k∈Rx

n∗∏
i=1

(
g
ai
bk

)M∗k,i·lx
For a time attribute x,

∀x ∈ ST : C4,x = g(βjtj,FID+hx)lx ·
∏

k∈Rx

∏n∗
i=1

(
g
ai
bk

)M∗k,i·lx

Phase 2: Same as Phase 1.
Guess: The adversary guesses which symmetric key is

encrypted. There are only two possibilities:
1) If the guess is correct, υ ′ = υ, the simulator returns 0,

which means T = e (g, g)a
q+1s. The simulator perfectly runs

our security game. The advantage of the adversary is ε, so the
advantage of B wining the secure game is

Pr
[
B
(
Ey,T = e (g, g)a

q+1s
)
= 0

]
=

1
2
+ ε

2)If the guess is wrong, υ ′ 6= υ, the simulator returns 1,
which means T is a random element in the group GT . The
symmetric key kυ is completely hidden from the adversary,
so the advantage of B winning the game is

Pr
[
B (Ey,T = R) = 0

]
=

1
2

Finally, B’s advantage in the game is

B =
1
2

(
Pr
[
B
(
Ey,T = e (g, g)a

q+1s
)
= 0

]
+Pr

[
B (Ey,T = R) = 0

])
−

1
2

=
ε

2
Therefore, our scheme is secure under the static corruption

of attribute authorities.

REFERENCES
[1] M. Hung. (2017). Leading the Iot—Gartner Insights on

How to Lead in a Connected World. [Online]. Available:
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf

[2] G. Rolph, A. Stein, and B. Stunder, ‘‘Real-time environmental applications
and display system: Ready,’’ Environ. Model.Softw., vol. 95, pp. 210–228,
Sep. 2017.

[3] H. Gao, W. Huang, X. Yang, Y. Duan, and Y. Yin, ‘‘Toward service
selection for workflow reconfiguration: An interface-based computing
solution,’’ Future Gener. Comput. Syst., vol. 87, pp. 298–311, Oct. 2018.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision
and challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[5] J. Ni, K. Zhang, X. Lin, and X. S. Shen, ‘‘Securing fog computing for
Internet of Things applications: Challenges and solutions,’’ IEEECommun.
Surveys Tuts., vol. 20, no. 1, pp. 601–628, 1st Quart., 2018.

[6] J. Li, Y. Zhang, X. Chen, and Y. Xiang, ‘‘Secure attribute-based data
sharing for resource-limited users in cloud computing,’’ Comput. Secur.,
vol. 72, pp. 1–12, Jan. 2018. doi: 10.1016/j.cose.2017.08.007.

[7] H. Gao, Y. Duan, H. Miao, and Y. Yin, ‘‘An approach to data consistency
checking for the dynamic replacement of service process,’’ IEEE Access,
vol. 5, pp. 11700–11711, 2017.

[8] S. Deng, Z. Xiang, J. Yin, J. Taheri, and A. Y. Zomaya, ‘‘Composition-
driven Iot service provisioning in distributed edges,’’ IEEE Access, vol. 6,
pp. 54258–54269, 2018.

[9] H. Gao, K. Zhang, J. Yang, F.Wu, and H. Liu, ‘‘Applying improved particle
swarm optimization for dynamic service composition focusing on quality
of service evaluations under hybrid networks,’’ Int. J. Distrib. Sensor Netw.,
vol. 14, no. 2, pp. 1550–1583, Feb. 2018.

[10] K. Sha, W. Wei, T. A. Yang, Z. Wang, and W. Shi, ‘‘On security challenges
and open issues in internet of things,’’ Future Gener. Comput. Syst., vol. 83,
pp. 326–337, Jun. 2018.

[11] R. Roman et al., ‘‘Mobile edge computing, fog: A survey and analysis
of security threats and challenges,’’ Future Gener. Comput. Syst., vol. 78,
pp. 680–698, Jan. 2018.

[12] M. Satyanarayanan et al., ‘‘Edge analytics in the internet of things,’’ IEEE
Pervas. Comput., vol. 14, no. 2, pp. 24–31, Apr./Jun. 2015.

VOLUME 7, 2019 40255

http://dx.doi.org/10.1016/j.cose.2017.08.007

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

[13] K. Yang, X. Jia, K. Ren, R. Xie, and L. Huang, ‘‘Enabling efficient access
control with dynamic policy updating for big data in the cloud,’’ in Proc.
INFOCOM, Apr. 2014, pp. 2013–2021.

[14] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[15] Y. Rouselakis and B. Waters, ‘‘Efficient statically-secure large-universe
multi-authority attribute-based encryption,’’ in Proc. Int. Conf. Financial
Cryptogr. Data Secur. New York, NY, USA: Springer, 2015, pp. 315–332.

[16] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, ‘‘DAC-MACS: Effective
data access control for multiauthority cloud storage systems,’’ IEEE Trans.
Inf. Forensics Security, vol. 8, no. 11, pp. 1790–1801, Nov. 2013.

[17] H. Ma, R. Zhang, Z. Wan, Y. Lu, and S. Lin, ‘‘Verifiable and excul-
pable outsourced attribute-based encryption for access control in cloud
computing,’’ IEEE Trans. Dependable Secure Comput., vol. 14, no. 6,
pp. 679–692, Dec. 2017.

[18] H. Wang, D. He, J. Shen, Z. Zheng, C. Zhao, and M. Zhao,
‘‘Verifiable outsourced ciphertext-policy attribute-based encryption in
cloud computing,’’ Soft Comput., vol. 21, no. 24, pp. 7325–7335,
Jun. 2017.

[19] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ‘‘Attribute-based encryption
for fine-grained access control of encrypted data,’’ inProc. 13th ACMConf.
Comput. Commun. Secur., Oct. 2006, pp. 89–98.

[20] A. Sahai and B. Waters, ‘‘Fuzzy identity-based encryption,’’ in
Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn., 2005,
pp. 457–473.

[21] S. Yu, K. Ren, W. Lou, and J. Li, ‘‘Defending against key abuse
attacks in KP-ABE enabled broadcast systems,’’ in Proc. Int. Conf.
Security Privacy Commun. Syst. New York, NY, USA: Springer, 2009,
pp. 311–329.

[22] B. Waters, ‘‘Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,’’ in Proc. Int. Workshop Public
Key Cryptogr., Mar. 2011, pp. 53–70.

[23] J. Lai, R. H. Deng, Y. Li, and J. Weng, ‘‘Fully secure key-policy attribute-
based encryption with constant-size ciphertexts and fast decryption,’’
in Proc. 9th ACM Symp. Inf., Comput. Commun. Secur., Jun. 2014,
pp. 239–248.

[24] Q. Xu, C. Tan, Z. Fan, W. Zhu, Y. Xiao, and F. Cheng, ‘‘Secure data access
control for fog computing based on multi-authority attribute-based sign-
cryption with computation outsourcing and attribute revocation,’’ Sensors,
vol. 18, no. 5, p. 1609, 2018.

[25] S. Ruj, M. Stojmenovic, and A. Nayak, ‘‘Decentralized access control with
anonymous authentication of data stored in clouds,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 2, pp. 384–394, Feb. 2014.

[26] M. Chase, ‘‘Multi-authority attribute based encryption,’’ in Proc.
Theory Cryptogr. Conf. New York, NY, USA: Springer, 2007,
pp. 515–534.

[27] A. Lewko and B. Waters, ‘‘Decentralizing attribute-based encryption,’’ in
Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn. New York, NY,
USA: Springer, 2011, pp. 568–588.

[28] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, and R. Attia, ‘‘PHOABE:
Securely outsourcing multi-authority attribute based encryption with pol-
icy hidden for cloud assisted iot,’’ Comput. Netw., vol. 133, pp. 141–156,
Mar. 2018.

[29] S. J. De and S. Ruj, ‘‘Efficient decentralized attribute based access control
for mobile clouds,’’ IEEE Trans. Cloud Comput., to be published.

[30] M. Green et al., ‘‘Outsourcing the decryption of abe ciphertexts,’’ in Proc.
USENIX Secur. Symp., Jun. 2011, no. 3, 2011.

[31] C. Zhang, H. Zhao, and S. Deng, ‘‘A density-based offloading strat-
egy for iot devices in edge computing systems,’’ IEEE Access, vol. 6,
pp. 73520–73530, 2018.

[32] P. Zhang, Z. Chen, J. K. Liu, K. Liang, and H. Liu, ‘‘An efficient
access control scheme with outsourcing capability and attribute update
for fog computing,’’ Future Generat. Comput. Syst., vol. 78, pp. 753–762,
Jan. 2018.

[33] C. Zuo, J. Shao, G. Wei, M. Xie, and M. Ji, ‘‘CCA-secure ABE with
outsourced decryption for fog computing,’’ Future Generat. Comput. Syst.,
vol. 78, pp. 730–738, Jan. 2018.

[34] Q. Liu, G. Wang, and J. Wu, ‘‘Time-based proxy re-encryption scheme
for secure data sharing in a cloud environment,’’ Inf. Sci., vol. 258,
pp. 355–370, Feb. 2014.

[35] J. Hong et al., ‘‘Tafc: Time and attribute factors combined access control
for time-sensitive data in public cloud,’’ IEEE Trans. Services Comput.,
to be published.

[36] K. Yang, Z. Liu, X. Jia, and X. S. Shen, ‘‘Time-domain attribute-
based access control for cloud-based video content sharing: A
cryptographic approach,’’ IEEE Trans. Multimedia, vol. 18, no. 5,
pp. 940–950, May 2016. [Online]. Available: http://ieeexplore.ieee.org/
abstract/document/7422115/

[37] A. Beimel, Secure Schemes for Secret Sharing Key Distribution. Haifa,
Israel: Technion-Israel Institute of technology, 1996.

YOUHUIZI LI received the B.E. degree in com-
puter science from Xidian University, in 2010,
and the Ph.D. degree in computer science from
Wayne State University, in 2016. She is currently
an Assistant Professor with the Key Laboratory
of Complex Systems Modeling and Simulation,
Ministry of Education, Hangzhou. She is also with
the School of Compute Science and Technology,
Hangzhou Dianzi University, China. Her research
interests include energy efficiency, edge comput-

ing, and mobile systems. She is a member of CCF.

ZEYONG DONG is currently pursuing the M.S.
degree with the School of Computer Science and
Technology, Hangzhou Dianzi University, China.
His research interests include edge computing and
access control.

KEWEI SHA received the Ph.D. degree in
computer science from Wayne State University,
in 2008. He was the Department Chair and
an Associate Professor with the Department of
Software Engineering, Oklahoma City University
(OCU). He is currently an Associate Director of
the Cyber Security Institute and an Assistant Pro-
fessor of computer science with the University of
Houston–Clear Lake (UHCL). His research has
been supported by NSF, NSFC, UHCL, and OCU.

His research interests include the Internet of Things, cyber-physical systems,
edge computing, network security and privacy, and data management and
analytics. He is a Senior Member of the ACM. He received the IEEE Out-
standing Leadership Award, in 2015, and the 2018 Albert Nelson Marquis
Lifetime Achievement Award.

CONGFENG JIANG received the B.E. degree in
hydro-electrical engineering from the North China
University ofWater Resources and Electric Power,
in 2002, and the Ph.D. degree in hydro-electrical
engineering from the Huazhong University of Sci-
ence and Technology, in 2007. He is currently
an Associate Professor with the Key Laboratory
of Complex Systems Modeling and Simulation,
Ministry of Education, Hangzhou. He is also with
the School of Compute Science and Technology,

Hangzhou Dianzi University, China.
Since 2007, he has been an Assistant Professor with the School of Com-

pute Science and Technology, HangzhouDianzi University. He has published
more than 50 articles in grid computing, cloud computing, virtualization,
and big data systems. His research interests include system optimization and
performance evaluation, and distributed system benchmarking.

Dr. Jiang is a member of ACM and CCF.

40256 VOLUME 7, 2019

Y. Li et al.: TMO ABE Scheme for Data Acquisition in Edge Computing

JIAN WAN received the B.S. degree in mechani-
cal engineering, the M.S. degree in mathematics,
and the Ph.D. degree in computer science from
Zhejiang University, in 1990, 1993, and 1996,
respectively. From 2000 to 2015, he was the Dean
of the School of Compute Science and Technology,
HangzhouDianzi University. He is currently a Pro-
fessor with the School of Information Engineering,
Zhejiang University of Science and Technology,
Hangzhou, China. He is also the Vice President of

the Zhejiang University of Science and Technology and the Vice Director of
the Key Laboratory of Complex SystemsModeling and Simulation, Ministry
of Education, Hangzhou. He has published more than 150 articles in grid
and services computing, cloud computing, virtualization, and distributed sys-
tems. His research interests include distributed systems, computer networks,
and big data analytics.

YUAN WANG received the Ph.D. degree in com-
puter science from Zhejiang University, in 2006.
He is currently the Vice President and an Exec-
utive Director of NetEase (Hangzhou) Network
Co., Ltd., where he is fully responsible for public
technical support work, cloud computing, and big
data business of NetEase group, mainly includ-
ing cloud computing and server-side architecture,
front-end technology, big data mining and anal-
ysis, information security, multimedia, operation

and maintenance, quality assurance, and so on.

VOLUME 7, 2019 40257

	INTRODUCTION
	RELATED WORK
	SYSTEM ARCHITECTURE AND DEFINITIONS
	PRELIMINARIES
	BILINEAR MAPS cpabe
	LINEAR SECRET SHARING SCHEMES(LSSS) LSSS

	SYSTEM ARCHITECTURE
	DEFINITION
	SECURITY MODEL

	TIME DOMAIN OUTSOURCING MULTI-AUTHORITY ATTRIBUTE-BASED ENCRYPTION SCHEME
	TMO OVERVIEW
	CONSTRUCTION OF TMO
	SECURITY ANALYSIS

	POLICY UPDATE
	TIME RANGE UPDATE
	ACCESS POLICY UPDATE
	SECURITY ANALYSIS

	PERFORMANCE EVALUATION
	STORAGE COST
	COMPUTING OVERHEAD
	EXPERIMENTAL SETUP
	ALGORITHM ANALYSIS
	ATTRIBUTE AUTHORITY IMPACT
	ATTRIBUTE IMPACT

	TIME ATTRIBUTE INFLUENCE
	POLICY UPDATE EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	YOUHUIZI LI
	ZEYONG DONG
	KEWEI SHA
	CONGFENG JIANG
	JIAN WAN
	YUAN WANG

