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ABSTRACT Based on the Maxwell–Schrödinger system, a novel numerical scheme for controlling the
quantum states of a single electron is proposed in this paper. The key ingredient of the scheme is to employ
the electromagnetic potentials instead of the conventional fields for avoiding extra steps of the simulation.
The relevant perfect matched layer is given to simulate seemingly infinite regions. And with the help of
precise transfer between the objective and the start state, a control pulse can be designed to accurately excite
the particle into the objective state. The proposed scheme can perform an ideal quantum state switching
while of a simple numerical process.

INDEX TERMS Maxwell-Schrödinger equations, quantum state control, perfect matched layer, finite-
difference time-domain.

I. INTRODUCTION
Recent technology development in quantum regions has
opened a way to control quantum states of electrons, atoms,
molecules, and nano-scale objects [1]. These studies have
attracted great attention over the past 20 years since they
seem to have the ability to control photochemical reactions
with high efficiency. But this pioneering technology needs
to design external laser pulses to the target systems, which
are not that simple to figure out through the basic quantum
theories [2]. Hence, optical control of states through com-
putational algorithm has been a growing interest in recent
years [3]–[5]. These have prompted demand for new anal-
ysis technique of electrical structures in nano-scale where
quantum effects have to be considered. The time and mem-
ory cost should be also taken into account for long time
simulations.

We note here that many researchers have done pre-
cursory and strict works where Maxwell’s equations are
directly involved in the solutions. Since the Maxwell’s and
Schrodinger’s equations are both time- and spatial-domain
differential, finite-difference time-domain (FDTD) method
and its variants have been proved to be the most efficient,
concise and employed [6], [7]. In the attempts to easily
generate the designed control pulse, many groups have done
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excellent works, like the genetic algorithm [5] and the light-
control scheme based on optimal control theory [8], [9]. The
group demonstrates that, under the certain genetic algorithm,
the pulse can be collected through a liquid-crystal phase
modulator. The optimal control theory adds a new dimension
to design the control pulse. However, all of above seem to
rely on the assumption that the electromagnetic fields near
the atoms would not be disturbed by atoms excitation or the
disturbance can be negligibly tiny to be ignored [10]. But the
excited electron by the incident pulse is a superposition of
several states and becomes a local current source which can
radiate new electromagnetic waves [11], [12]. Thus, the fields
near the electron should be the sum of the incident waves and
the new radiated ones.

Since the Schrödinger equation gets electric scalar poten-
tial and magnetic vector potential involved instead of
the electromagnetic fields, the researchers cannot avoid
the steps where the potentials are extracted from the
fields with conventional Maxwell FDTD methods employed
[6], [7], [13]–[15]. A group introduces the length gauge [16]
which can transform the quantum system into a scheme
with the electromagnetic fields directly involved, trying to
avoid the additional steps of potential-field extraction [17].
However, this gauge is under the dipole approximation,
namely, assuming the position effects of the vector poten-
tial is neglected. This approximation makes the length-
gauge inaccurate in short wavelength simulations [17], [18].
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FIGURE 1. The geometry and coordinates of the quasi-one-dimensional
system.

C. Ryu at el propose a novel system where the electromag-
netic potentials are directly iterated, but the PML regions are
complicated [19].

This hybrid simulation of the coupled electromagnetic-
potentials-Schrodinger equations form a novel computational
algorithm, aimed to accelerate the simulation without unnec-
essary assumptions. This scheme focuses on the system
of a single particle, and studies the quantum states of the
particle effected by electromagnetic incident pulses. The
results shows the pulses can lead to the change of the states
accurately.

II. NUMERICAL MODELS
In this study, we use an electron system where the particle is
confined in a quasi-one-dimensional space and try to generate
the pulses which can transfer the probability density into
the wanted state. Hence the wavefunction of the system will
be one-dimensional and convenient to obtain the variations
of the wavefunction or the probability density in time- and
spatial- domain. The geometry and coordinates of the system
are schematically shown in Figure 1. The designed control
pulse source is uniform for the XZ- plane and polarized along
the z- axis.

The control pulse equation of our algorithm is devel-
oped from the valid method which is proved to be accu-
rate and efficient to transform the ground state to the
wanted state [18], [20]. And then the system is employed
in the conventional length gauge scheme, the conven-
tional Maxwell-Schrödinger scheme, and our proposed
scheme.

A. THE MAXWELL-SCHRODINGER SCHEME
The wavefunction of the quasi-one-dimensional system can
be described by the modified Schrödinger equation with the
z- component of themagnetic vector potential EA and the scalar
potential 8 involved:

ih̄
∂

∂t
9 (z, t) =

h̄
2m
{[−ih̄

∂

∂z
− qAz]2+q8+V }9 (z, t) (1)

where h̄ represents Planck’s constant; q is the charge of
the particle; m denotes the effective mass of the particle;
9 represents the wavefunction of the system, and |9|2 is
the probability density function of the particle; V denotes the
confinement potential.

To obtain the above potentials, the well-known Maxwell’s
equations are introduced to get the electromagnetic fields at
first,

∇ × EE = −µ
∂ EH
∂t

(2)

∇ × EH = ε
∂ EE
∂t
+ Jq (3)

The term Jq is the connection between the Maxwell part
and the Schrödinger part,

Jq =
q
2
{[
−ih̄− qAz

m
(9)]∗9)+ (9)∗[

−ih̄− qAz
m

(9)]} (4)

The vector potential EA and the scalar potential8 satisfy the
definition as,

EE = −
∂

∂t
EA−∇8 (5)

Then with the famous Lorentz gauge employed, since it
is simple in finite-difference time-domain (FDTD), all the
above equations are coupled to each other:

∇ · εEA = −µε2
∂

∂t
8 (6)

Equation (1)-(6) is the key to the conventional Maxwell-
Schrödinger system. The system is proved to be valid and
suitable for state control. The equations are not closely cou-
pled. In every step, the potentials should be extracted from
the electromagnetic field to calculate the current term Jq
and the Schrödinger equation. With the control pulse gen-
erator, the situation will be more complicated, as shown
in Figure 2.

The control pulse generator is designed to maximize the
objective state 91 of the electron from the initial state 90.
And for numerical convergence, the initial state is modified
with a small amount of the objective state as follows,

9N1 =
√
0.99999990 +

√
0.00000191 (7)

And then the pulse can be generated by solving the equa-
tion below,

E iz = −2
E0
m

Im
〈
9̃|9N1

〉 〈
9N1|qz9̃

〉
(8)

where E0 is a cutoff function, 9̃ is the transformed wavefo-
cuntion of the i-th time step.
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FIGURE 2. The program flow of the conventional Maxwell-Schrödinger
state controller.

FIGURE 3. The program steps of the pulse generator.

The transformation of 9̃ is without the dipole approxima-
tion, namely,

9̃(z, t) = exp{−
iqAz(z, t)

h̄
}9(z, t) (9)

The steps of the pulse generator are shown in Figure 3. This
scheme is certified to be accurate in [18], [20] and provides
reliable results in the experimental comparison.

B. THE LENGTH GAUGE SCHEME
The aim of the length gauge scheme is to simplify the con-
ventional Maxwell-Schrödinger system into a form without
the electromagnetic potentials involved. The time-dependent
Schrödinger equation can be modified by this gauge as,

ih̄
∂

∂t
9 (z, t) =

h̄
2m

[
∂2

∂z2
− qEz (z, t) z+ V ]9 (z, t) (10)

Once the electric fields are updated in the Maxwell part
using (2) and (3), the wavefunction can be solved directly.

Since the radiation gauge is introduced in this scheme,
the feedback term Jq is neglected based on the assumption
that the electron motions may have much less influence than
the control pulse. Then the vector potential EA is independent
of spatial- domain and the scalar potential 8 is confined to
zero by the dipole approximation as,

∂Az
∂t
= −Ez (11)

8 = 0 (12)

FIGURE 4. The program flow of the length gauge state controller.

Therefore, the transformation of wavefunction is sim-
pler as,

9̃(z, t) = exp{−
iqAz(t)
h̄
}9(z, t) (13)

Using (2), (3) and (10-13), the length gauge scheme can
work more quickly and reduce computer memory cost as
illustrated in Figure 4. But this scheme seems to be unable to
accurately excite the electron to the objective state. Because
the excited electron motions by the pulse make the electron
become a new local current source. And the new current can
radiate new electromagnetic waves and affects the Maxwell
part. Thus, the fields near the electron should be the cooper-
ation between the incident pulses and the new excited one.

C. THE PROPOSED SCHEME
Our proposed scheme is aimed at simplifying the conven-
tional Maxwell-Schrödinger system as well as constructing
a precise and tightly coupled algorithm for state control. The
length gauge is an attempt to get rid of the electromagnetic
potentials. On the contrary, the proposed algorithm sweeps
away all the terms of the electromagnetic fields and directly
employs the potentials in the numerical iterations. And as
the conventional perfect matched layer (PML) method is pre-
requisite for the conventional Maxwell system, a new hybrid
PML method is developed for this scheme.

The magnetic vector potential EA and the scalar potential8
are defined as

H = µ−1∇ × EA (14)

EE = −
∂

∂t
EA−∇8 (15)

Equation (14) and (15) are substituted into (3),

∂2

∂t2
εEA+

∂

∂t
ε∇8+∇ × µ−1∇ × EA = 0 (16)

In order to simplify the time-domain term, the Lorentz
gauge (6) is substituted into (16). So the Maxwell part of our
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FIGURE 5. (a) The program flow of the previous potential equations,
(b) the steps of the proposed Maxwell part.

system can be described by the new vector potential equation
and the Lorentz gauge,

∂2

∂t2
εEA = ε∇ε−2µ−1∇ · εEA−∇ × µ−1∇ × EA+ Jq (17)

µε2
∂

∂t
8 = −∇ · εEA (18)

Compared with our previous work [21], these two new
equations can update the potentials without the current con-
tinuity equation involved and have a succinct form for the
scalar potential iterations. These advantages making the pro-
posed method more quickly and energy-saved than our pre-
vious work. Figure 5 is the comparison between the two
methods.

As the electron should be set in the region without any
reflection from the boundary. So the absorbing boundary
should be developed for the new coupled equations to approx-
imate this situation and save memory cost. The PML equa-
tions for the z-component electric field can be written as,

ε
∂

∂t
Ezx + ρpexEzx =

∂(Hyz + Hyx)
∂x

(19)

ε
∂

∂t
Ezy + ρpeyEzy =

∂(Hxy + Hxz)
∂y

(20)

where the electric field Ez is separated into Ezx and Ezy,
the magnetic field Hx and Hy is separated into Hxz and Hxy,
Hyz and Hyx respectively.
From the (14), it is easily indicated thatHxz andHyz can be

derived from the z-component of EA as follows,

Hyz = −µ−1
∂

∂x
Az (21)

Hxz = µ−1
∂

∂y
Az (22)

And the other two separated magnetic fields are related
with only one dimensional component of EA as

Hxy = −µ−1
∂

∂z
Ay (23)

Hyx = µ−1
∂

∂z
Ax (24)

Equation (21-24) are substituted into (19) and (20) using
the relation Ez = Ezx + Ezy,

ε
∂2

∂t2
Az + 2ρpex

∂

∂t
Az + ε[−∇ε−2µ−1∇ · εEA]z

+2ρpex[∇8]z = −
∂2

∂x∂z
Ax +

∂2

∂z∂y
Ay (25)

This equation can update the z-component of the vector
potential in the PML region. The PML equations for the
other two components of the vector potential are symmetrical
with (25).

The scalar in the PML regions can be solved by introducing
the coordinate stretching,

∇s =
jwε0

jwε0+ρpml

∂

∂t
Ex+

jwε0
jwε0+ρpml

∂

∂t
Ey+

jwε0
jwε0+ρpml

∂

∂t
Ex

(26)

With (26) substituted into (18), the new equation in the
frequency domain is written as,

jωε0µε28+ ρpmlµε28 = −ε0∇ · εEA (27)

Then (26) is converted into time domain, and the scalar
potential in the PML regions can be obtained as follows,

µε2
∂

∂t
8+

ρpml

ε0
8 = −∇ · εEA (28)

For the Schrödinger part, the standard and time-dependent
Schrödinger equation is employed in the proposed scheme,

ih̄
∂

∂t
9 (z, t) =

h̄
2m
{[−ih̄

∂

∂z
− qAz]2 + q8+ V }9 (z, t)

(29)

As to sweep out the electric fields, the control pulse should
be chosen as an infinite current plane instead of the incident
waves. The generator equation is modified as,

J iz = −2
J0
m
Im

〈
9̃|9N1

〉 〈
9N1|qz9̃

〉
(30)

The cutoff function J0 can be derived as follows,

J0 = −
2η
1xZ0

exp{−
t − τ
γ

u(t − τ )} (31)

where Z0 is the impedance of air, u(t−τ ) denotes the unit step
function; η, γ and τ are the constants chosen to be 0.5 GV/m,
30 fs and 3 fs.

Using (17), (18), (29-31), the proposed scheme can handle
the simulation where a designed laser is propagating towards
a quasi-one-dimensional system. When the pulse arrives,
the electron is excited by the Schrödinger equation (26)
under the influence of the electromagnetic potentials. Then,
the motions of the electron create a new current source. This
source works as a feedback to the potential system (17)-(18).
Figure 6 shows the program flow of the proposed scheme.
This scheme avoid the extra calculation between the potential
and the fields without any approximation involved.
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FIGURE 6. The program flow of the proposed method.

III. DISCRETIZATION OF THE PROPORSED SCHEME
In order to obtain the discretized equations of our scheme,
the FDTD method is employed. In the time domain,
the second-order differences are selected. But for the spa-
tial domain, the four-order differences are chosen for higher
accuracy,

∂K
∂x
=

1
121x

[−K (i− 2)+ 8K (i− 1)

−8K (i+ 1)+ K (i+ 2)]+O((1x)4) (32)

A. THE MAXWELL POTENTIALS
Using the second-order differences in the time domain, the
discretized equations for the coupled potentials (17) and (18)
can be obtained as,

An+1v = 2Anv − A
n−1
v +

1t2

ε
(−ε∇µ−1ε−2∇ · εEA

+∇ × µ−1∇ × EA+ (Jnq )v) v = x, y, z (33)

8n+1
= 8n

−1t
∇ · εEA
µε2

(34)

EA is divided in to Ax , Ay, and Az, and EJq is divided into
EJqx , EJqy, and EJqz. Unlike the conventional scheme, the scalar
potentials do not need to be divided.

For (34), the term ∇ · εEA can be solved directly,

f1 = ∇ · εEA =
∂

∂x
εAx +

∂

∂y
εAy +

∂

∂y
εAy (35)

In the vector updated equation (33), the remained terms
should be solved. The form of term ∇ × µ−1∇ × An can be
found in our previous work [21]. The term ∇µ−1ε−2∇ · εEA
can be written as,

∇µ−1ε−2∇ · εEA = ∇µ−1ε−2f1

= Ex
∂

∂x
µ−1ε−2f1 + Ey

∂

∂y
µ−1ε−2f1

+Ez
∂

∂z
µ−1ε−2f1 (36)

B. THE SCHRODINGER EQUATION
If the software is available for complex numbers,
the Schrödinger equation can be discretized as follows,

9n+1(k) = 9n(k)+1t
h̄
2m

∂2

∂z2
9n(k)

+1t
q
m
Anz ·

∂

∂z
9n
+1t

q
2m

(
∂

∂z
Anz )9

n

− i
1tq2

2h̄m
(Anz )

29n(k)− i1t
q8+ V

h̄
9n(k) (37)

If only real number calculations are supported, the wave-
function should be divided into its real part and imaginary
part as,

9 = 9R + i9I (38)

(38) is substituted into (37), the discretized equations can
be written as,

9n+1
R (k) = 9n

R(k)−1t
h̄
2m

∂2

∂z2
9n
I (k)

−1t
q
m
Anz ·

∂

∂z
9n
R −1t

q
2m

(
∂

∂z
Anz )9

n
R

+
1tq2

2h̄m
(Anz )

29n
I (k)−1t

q8+ V
h̄

9n
I (k) (39)

9n+1
I (k) = 9n

I (k)+1t
h̄
2m

∂2

∂z2
9n
R(k)

−1t
q
m
Anz ·

∂

∂z
9n
I −1t

q
2m

(
∂

∂z
Anz )9

n
I

−
1tq2

2h̄m
(Anz )

29n
R(k)+1t

q8− V
h̄

9n
R(k) (40)

C. THE PULSE GENERATOR
The discretized formula for the current generator (30) can be
written as,

Jnin

= −
qJ01z2

m
{[
zmax∑
k=z0

9̃n
R(k)9N1(k)]×[

zmax∑
k=z0

Z (k)9̃n
I (k)9N1(k)]

− [
zmax∑
k=z0

9̃n
I (k)9N1(k)]× [

zmax∑
k=z0

Z (k)9̃n
R(k)9N1(k)]} (41)

where Z(k) denotes the discretized z- axis.

IV. EXPERIMENTS
A. THE PML TEST
The proposed PML formulas should be tested whether the
PML boundary can absorb all the energy in the simulation.
A single dipole set in the infinite space is to verify that the
PML regions can absorb the potentials without any reflection.
The simulation domain is confined to be 84 × 84 × 278
with PML region of 20 cell thickness. The dipole is EJz =
Ez sin(2π ft) where the frequency is 0.2GHz. The cell size of
all axes is 0.3m. The analytical results and the proposed PML
are compared with each other.
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FIGURE 7. (a)The plots of the analytical vector potential of z- axis versus
the simulated, (b) the plots of the analytical vector potential of z- axis
versus the simulated.

FIGURE 8. The plots of the confining potential V.

The analytical values of the single dipole are given as

A = Ez
µIl
4πr

eikrei
π
2 (42)

8 = cos θ
Il
4πr

eikrei
π
2 (43)

The vector potential plots are shown in Figure 7. The differ-
ences between the theoretical value and the proposed method
are mainly in the dipole position and the PML regions. The
theoretical vector potential value of the position where the
dipole is set should be infinite according to (42). But in
numerical calculations, the potential value is the function of
its previous and nearby values. So the potential value cannot
arrive the infinite number. The distinct lines in the PML
regions show that our proposed PML boundary can eliminate
the potentials into the PML, and the values in the normal
regions show little differences except for the error of the
dipole position after enough number time steps.

The results verify that the proposed PML well agrees with
the analytical values.

B. THE STATE CONTROL
The quasi-one-dimensional system in Figure 1 is discussed
in this section. Figure 8 displays the confining potential V of

FIGURE 9. The plots of the ground state and the objective state.

FIGURE 10. (a)The plots of the pulses by the proposed scheme and the
length gauge scheme (b) the plots of the pulses of the T. Takeuchi et al
scheme.

the system. And the ground state 90 and the objective state
91 are illustrated in Figure 9.
The simulation domain is 50 × 50 × 268 with the PML

regions of 20 cell thickness. The cell size of the z-axis is set
as 1z = 0.02nm and the cell sizes of X- and Y- axes are
1x = 1y = 0.5nm.

The pulses generated by the proposed scheme and the
length gauge scheme are displayed in Figure 10(a). The
pulses by the scheme of Takeuchi et al are shown in Fig-
ure 10(b). Notice that the pulses of our scheme and the
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FIGURE 11. The spatiotemporal plots of the probability density |9|2 of
(a) the proposed scheme, (b) the scheme of T. Takeuchi et al and (c) the
length gauge scheme.

scheme by T. Takeuchi et al show little difference because
both schemes are without dipole approximation involved. The
control abilities of the two schemes are expected to be the
same. The results between the proposed and the length gauge
scheme show appreciable deviations, leading to different con-
trol performance.

The variation of the probability density |9|2 of the electron
by the different schemes is displayed in Figure 11. As shown
in Figure 11(a) and (b), the density starts fluctuating about the
time 5 fs in the proposed and the T. Takeuchi et al scheme.
Then at the periods of time 10 ∼ 27 fs, the distribution
of the density is efficiently illuminated by the pulses and
finally changed into a double peak form. There are some tiny
differences between the two methods in these periods, but
both two are able to reach the same and stable results. For the
results of the length gauge in (c), the density never becomes
identical to the objective state even after the pulses has been
cut off. This indicates that if the quantum feedback is ignored,
the pulses are of less control ability.

A quantitative factor � of the control performance in the
three schemes is estimated by projecting the real-time trans-
formed wavefunction and the objective state 91,

� =
〈
9̃|91

〉 〈
91|9̃

〉
(44)

FIGURE 12. The quantitative factor � of the proposed scheme,
the scheme of T. Takeuchi et al and the length gauge scheme.

The resultant variations of the factor� in the three schemes
are shown in Figure 12. In the length gauge scheme, the factor
increases rapidly when the pulses gradually raise. Then the
factor stays at around 0.735 even after the pulse has disap-
peared. However, in our proposed and T. Takeuchi et al’s
scheme, the distributions indicate that the pulses of these two
have high ability to modify the state into the wanted one.
Some deviations of the proposed and Takeuchi’s method are
caused by the tiny differences of the spatiotemporal evolution
of the wavefunction.

These results show that our proposed state controller is
capable of switching the electron states stably and pre-
cisely, compared with the length gauge. And our sys-
tem has a simpler numerical process than the system by
T. Takeuchi et al when performing the same quality of the
control performance.

V. CONCLUSION
In this paper, we have proposed a novel scheme of the quan-
tum state control system, without any electromagnetic fields
involved. The critical issue to this scheme is to design a
new numerical model where the vector potential, the scalar
potential and the wavefunction are tightly coupled. And the
hybrid PML formulas are developed for the potential part.
The performance of the PML is examined by the dipole test.
Then the control ability of our proposed scheme and the other
two scheme is studied and discussed. The results indicate that
our scheme can perform an ideal control while of a simpler
numerical process.
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