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ABSTRACT Target detection based on heterogeneous sensor networks is considered in this paper. Fusion
problem is investigated to fully take advantage of the information of multi-modal data. The sensing data may
not be compatible with each other due to heterogeneous sensingmodalities, and the joint PDF of the sensors is
not easily available. A two-stage fusion method is proposed to solve the heterogeneous data fusion problem.
First, themulti-modality data is transformed into the same representation form by a certain linear or nonlinear
transformation. Since there is a model mismatch among the different modalities, each modality is trained
by an individual statistical model. In this way, the information of different modalities is preserved. Then,
the representation is used as the input of the probabilistic fusion. The probabilistic framework allows data
from different modalities to be processed in a unified information fusion space. The inherent inter-sensor
relationship is exploited to encode the original sensor data on a graph. Iterative belief propagation is used
to fuse the local sensing belief. The more general correlation case is also considered, in which the relation
between two sensors is characterized by the correlation factor. The numerical results are provided to validate
the effectiveness of the proposed method in heterogeneous sensor network fusion.

INDEX TERMS Heterogeneous sensor networks, multi-modal data fusion, representation learning, nature
encoded fusion, belief propagation.

I. INTRODUCTION
Heterogeneous sensor networks [1]–[3] withmultiple sensing
modalities are gaining increasing popularity because they can
provide several advantages for performance improvement in
different realistic scenarios. Fusion of data from heteroge-
neous modalities, observing a certain phenomenon, has been
shown to improve the performance of many surveillance and
monitoring tasks. The key motivation is that sensors of differ-
ent modalities will provide richer information than a single
sensor, or even several sensors of the same modality. Take
the audio-visual fusion [8] in human speech communication
for example. Speech with the help of visual cues from the
lip movements can enhance the intelligibility of speech. The
aid of visual cues increase redundancy and makes the speech
more robust to noise and interruptions.

A. RELATED WORKS
Two sensors are said to be heterogeneous if their respective
observation models cannot be described by the same proba-
bility density function [6], [7]. This heterogeneity raises the
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question of how to integrate the data from such diversity of
modalities. If the joint probability density function (PDF)
under each hypothesis is known a prior, the optimal per-
formance by the Neyman-Pearson rule for detection (binary
hypothesis testing) can be easily obtained [4], [14]. How-
ever, in practice, this information may not be available. This
usually happens when the dimensionality of the sample data
is high and when there are not enough training samples to
accurately estimate the joint PDF.

If the data from heterogeneous sensors are independent
under certain hypothesis and the local individual sensing
data is correctly received in the fusion center, the optimal
fusion decision can be obtained by the conventional product
rule. However, the problem becomes complicated when the
condition that independence among the sensors does not
hold [5], [10]. In this paper, the scenario that the joint dis-
tribution between the sensors being unknown is considered.
This is commonly seen in heterogeneous sensor networks,
i.e., sensors with disparate sensing modalities. For example,
it is not immediately clear how one could model the joint
distributions between data of an audio and a video sensor
monitoring a common target of interest.
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The heterogeneous data processing [9], [12] has been
extensively studied in the literature. The problem of binary
hypothesis testing with heterogeneous sensors has been con-
sidered in [7], where a parametric framework using the
statistical theory of copulas is developed. The application
of copula theory for fusing correlated decisions has been
recently considered in [10]. It has been shown that there is
diversity gain and redundancy loss in the detection prob-
lem [11] and the influence of statistical dependence has
been characterized. Previous fusion methods include the lin-
ear weighting methods [13], majority voting methods and
product methods for the totally independent sensors. In lin-
ear weighting methods, individual decisions are weighted
according to the reliability of the detector and then a threshold
comparison is performed to obtain the global decision. The
previous methods may result in information loss in many
practical scenarios which will degrade the fusion perfor-
mance. Paper [15] considers the maximally informative pro-
jections learning based on mutual information for the speaker
association with audiovisual fusion.

Since the data forms of different modalities are not the
same, it is difficult to process and fuse them together. For
example, the acoustic signal is one dimensional sequence,
while the visual signals are two dimensional image flows. The
data of different modalities may exhibit heterogeneous data
forms and complexities, which makes it difficult for the pro-
cessing in a single statistical model. Recently, representation
learning [16] is widely investigated in the literature. Learning
representations of the data makes it easier to extract useful
informationwhen building classifiers or other predictors [17].
In this paper, we try to learn a unified representations
of heterogeneous modal data for the convenience of data
fusion.

B. CONTRIBUTIONS AND ORGANIZATIONS
To overcome the data heterogeneity problem, a two stage
fusion framework is proposed to deal with the multi-modal
heterogeneous sensor data. Firstly, the multi-modality data
is transformed into the same representation form by cer-
tain linear or nonlinear transformation. Since there is model
mismatch among the different modalities, each modality
is trained by an individual statistical model. In this way,
the information of different modalities is preserved. Then
the representation is used as the input of the probabilistic
fusion. The probabilistic framework allows data from differ-
ent modalities to be processed in a unified information fusion
space. The inherent inter-sensor relationship is exploited to
encode the original sensor data on a graph. Then iterative
belief propagation is used to refine and fuse the local indi-
vidual belief. Instead of estimating the joint PDF, we just
need to abstract the local log-likelihood ratio from learned
representations. Then the local log-likelihood ratio is sent
to the fusion center for processing. We also consider the
more general correlation case, in which the relation between
two sensors is characterized by the correlation factor. The
belief propagation provides intuitive insights as to how the

FIGURE 1. Heterogeneous sensors model.

probabilistic updates reinforce beliefs with the help of corre-
lation factor.

In heterogeneous sensor network, due to the heterogeneity
of the sensors, such as the cameras, audio and so on, they dis-
play different sensing capability, which would provide incor-
rect and conflict information sometimes. Also, sensors may
suffer from external attacks which will provide the wrong
information to the fusion centers. The iterative information
fusion proposed in this work can be exploited to combat the
conflict and attacks in heterogeneous sensor network.

The remainder of this paper is organized as follows. The
two-stage fusion framework is briefly discussed in Section II.
We provide in detail the representation learning in Section III.
The nature encoded fusion and belief propagation, are pre-
sented in Section IV. The more general correlation case is
considered in Section V. The numerical results and related
discussions are provided in Section VI. Section VII finally
concludes the paper.

II. TWO-STAGE FUSION FRAMEWORK
The data of different modalities are processed by two stages:
representation learning and nature encoded fusion, as illus-
trated in Fig. 2.

A. REPRESENTATION LEARNING
Suppose that the data forms for the acoustic and visual signal
are sa and sv, respectively. sa and sv may be of different
dimensions and lengths. Representation learning is trying to
transform the original multimodal data into a unified repre-
sentation space, such that the further fusion can be carried out
based on the unified data space.

ya = f1(sa;Ha) (1)

yv = f2(sv;H v) (2)

where yv, ya are the representations for the two modalities.
Since the binary detection problem is considered in this paper,
yv, ya ∈ R2×1. And Ha is the parameters of the statistical
transformationmodel f1,H v is the parameters of the statistical
transformation model f2,. Also different statistical models for
the different modalities are selected, as shown with f1 and f2.
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FIGURE 2. Two stage fusion frameworks: the first stage is representation
learning, which transforms the heterogeneous data into the unified
representation, and the second stage is nature encoded probabilistic
fusion.

In this way, the information from heterogeneousmodal can be
maximally exploited in the heterogeneous sensor networks.

B. NATURE ENCODED FUSION
The learned representations yv, ya are then used to calculate
the probabilistic information of the target presence.

LLRi = log
p(C0|si)
p(C1|si)

(3)

which we refer to as the local belief of sensor si for the target.
The inter-sensor relations among the sensory signals is

taken advantage of by modeling it as a nature encoding
process. Then the belief propagation algorithm is applied to
fuse the probabilistic information. The details of the fusion
process is discussed in the following sections.

III. LEARNING REPRESENTATIONS AND
TRANSFORMATIONS
Statistical models are developed to learn latent (one-
layer or multiple-layer) representation for multi-modal data
fusion. The first stage: learning representation, is discussed
in this section. The multimodal data is transformed into the
unified representation form such that the data fusion can be
made possible to achieve improved detection performance.
The learned representation provides the probabilistic infor-
mation for the fusion stage.

A. TRANSFORMATIONS BASED ON DIFFERENT
STATISTICAL MODELS
Since video signal data is one dimensional sequence, we can
resort to the linear model ya = f1(sa;Ha), which can result
in a significant computational savings. The transformation
method for learning the representations of acoustic signal
data is the linear function of the measurements, which is
shown as follows,

ya = Hasa (4)

FIGURE 3. Multi-layer neural network based representation learning.

where ya ∈ R2×1, sa ∈ RN×1, and the binary detection prob-
lem, Ha

∈ R2×N is considered here. This linear model can
result in a significant computational savings for the acoustic
data representation learning.

The visual signal is usually two dimensional image. The
neural network [18] is an efficient and frequently used
method for the two dimension visual images. The neural
network can achieve better performance due to the shift
invariance property and nonlinear transformation.

A simple neural networks is shown in Fig. 3. Consider the
neural network [18] with I input units, activated by input
vector x. Each unit in the first hidden layer calculates a
weighted sum of the input data. For hidden unit l, we refer
to this sum as the network input to unit l, and denote it al .
The activation function θl is then applied, yielding the final
activation bl of the unit. Denoting the weight from unit i to
unit j as wij, we have

al = 6I
i=1wilxi (5)

bl = θl(al) (6)

The most common choices of activation function are the
hyperbolic tangent

tanh(x) = e2x−1
e2x+1

(7)

After calculating the activations of the units in the first
hidden layer, the process of summation and activation is then
repeated for the rest of the hidden layer units. The network
output yvk is calculated by summing over the units connected
to it,

yvk = 6
Hm
i=1wikxi (8)

for a network withm hidden layers,Hm is the number of units
in the mth layer.

B. SOFTMAX FUNCTION TO OBTAIN ESTIMATES OF THE
CLASS PROBABILITIES
For classification problems with K classes, the convention is
to have K output units, and normalize the output activations

VOLUME 7, 2019 39229



L. Wang, Q. Liang: Representation Learning and Nature Encoded Fusion for Heterogeneous Sensor Networks

FIGURE 4. Nature encoded probabilistic fusion.

with the softmax function to obtain estimates of the class
probabilities:

p(Ck |sv) =
ey

v
k∑K

k ′=1 e
yv
k′

(9)

The calculation of probabilities can be done in the same
way for the acoustic signal case. Since the binary detection
problem is considered in this paper, we assume here, K = 2.
In this way, the learned unified representation is obtained and
it provides the probabilistic information for the fusion stage.

IV. BELIEF PROPAGATION AND NATURE ENCODED
FUSION
In this section, the representation outputs of the first stage
are combined and fused under the probabilistic framework.
The probabilistic approach theoretically provides a unified
framework for data fusion in heterogeneous sensor networks.

A. CLASS PROBABILITIES AS THE INPUT OF THE
PROBABILISTIC FUSION
Instead of estimating the joint PDF of the heterogeneous
sensor observations, the local logarithmic likelihood ratio
(LLR) of each sensors based on the class probabilities derived
in the representation learning stage is calculated.

LLRi = log
p(C0|si)
p(C1|si)

(10)

which is referred to as the local belief of sensor si for the
target. The fusion framework is depicted in Fig. 4.

A nature encoded fusion method based on the belief prop-
agation principle is proposed. The joint PDF of the sensors’
observations is unknown. In the method, each sensor only
perform local inference by calculating the local LLR. It is
easily available since the local LLR can be estimated indi-
vidually in each sensor by the representation learning. Belief
fusion is an efficient way and provide an viable framework
for information fusion in heterogeneous sensor networks. The
belief updating process can provide useful insight as to how
the heterogeneous sensors’ information help reinforce the
local beliefs in the data fusion.

B. INHERENT CONSTRAINTS AMONG THE SENSORS
The inter-sensor relations among the sensory signals are taken
advantage of by modeling it as a nature encoding process.
Then the LLR can be updated in the Bayesian way by posing
some inherent constraints on the local inference of the het-
erogeneous sensors.

According to the Bayesian principle, the posterior LLR is
the summation of likelihood LLR and the prior LLR. How-
ever, there is lack of prior information in the present model.
In this paper, the prior of one sensor can be provided by
the belief of other sensors through some inherent constraints
among the sensors. Then the local belief can be propagated
among the sensors and finally a better fusion results can be
obtained.

LLRposterior = LLRlikelihood + LLRprior (11)

When there is only one target, the sensing results should
be the same for all the sensors. we can make use of this
intermodal relation to fuse all the local belief. For any two
of the sensors, we can generate a factor node by letting the
logic summation of them be zero.

x0 = x1 = x2 = · · · = xn

where xn denotes the logic presence of the target for sensor n,
which takes value 0 or 1.

The corresponding factors can be written as

f1 = x0 + x1 = 0 (12)
f2 = x1 + x2 = 0 (13)
· · · (14)

fk = xk−1 + xk = 0 (15)

which we can write it in matrix form


1 1 0 0 · · · 0
0 1 1 0 · · · 0
...
...
...
...
...
...

0 0 0 0 1 1

. Each

row corresponds to a constraint and the entries with 1 mean
that the sensor is involved in that constraint.

The constraints can be relaxed and let the summation of
any even number of sensors be zero, such as

x0 + x1 + x2 + x3 = 0

x1 + x2 + x3 + x4 + x5 + x6 = 0

which will be evaluated in the simulation. The illustration for
the factor graph is shown in Fig. 5.

C. PROBABILITY CALCULATION FOR THE FUSION
PROCESS
For the modulo-2 addition, suppose there are two binary ran-
dom variables x and y, with probability distributions p(x) =
{px0, p

x
1} and p(y) = {p

y
0, p

y
1}, then the probability distribution

for the modulo-2 addition [21] is

P(x ⊕ y = 0)=
1
2
((px0+p

x
1)(p

y
0 + p

y
1)+(p

x
0 − p

x
1)(p

y
0 − p

y
1))

(16)
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FIGURE 5. Factor graph for nature encoded fusion: graph relations
between factor nodes and local sensor belief nodes.

The result can be extended to the infinite number of random
variables xi, i = 0, 1, 2, . . . ,N , then the distribution for the
modulo-2 addition is

P(
∑
i=1

⊕xi = 0) =
1
2
(
N∏
i=0

(pxi0 + p
xi
1 )+

N∏
i=0

(pxi0 − p
xi
1 )) (17)

P(
∑
i=1

⊕xi = 1) =
1
2
(
N∏
i=0

(pxi0 + p
xi
1 )−

N∏
i=0

(pxi0 − p
xi
1 )) (18)

Then the log-likelyhood ratio (LLR) is defined as L(x) =
ln(P(x=0)P(x=1) ). We can write the corresponding probability in the
LLR form [20] as follows:

P(x = 0) =
eL(x)

1+ eL(x)
(19)

P(x = 1) =
1

1+ eL(x)
(20)

Then the LLR form of the modulo-2 variable L(
∑
i=1
⊕xi) =

L(x1 ⊕ x2 ⊕ . . .⊕ xN ) can be derived. According to (17)(18)
and (19)(20),

L(
∑
i=1

⊕xi) = ln(

∏N
i=0(e

L(xi) + 1)+
∏N

i=0(e
L(xi) − 1)∏N

i=0(eL(xi)+1)−
∏N

i=0(eL(xi) − 1)
) (21)

The equation can be rewritten as

L(
∑
i=1

⊕xi) = ln(
1+

∏N
i=0 tanh(L(xi))

1−
∏N

i=0 tanh(L(xi))
)

here tanh( x2 ) =
ex−1
ex+1 .

Then let γ =
∏N

i=0 tanh(
L(xi)
2 ), we have

tanh(
1
2
L(

∑
i=1

⊕xi)) =
eln(

1+γ
1−γ ) − 1

eln(
1+γ
1−γ ) + 1

=
(1+ γ )− (1− γ )
(1+ γ )+ (1− γ )

= γ

So the following can be obtained

L(
∑
i=1

⊕xi) = 2 tanh−1(
N∏
i=0

tanh(
L(xi)
2

)) (22)

D. LLR FORM FOR THE BELIEF PROPAGATION
Belief propagation algorithm uses message passing over the
factor graph [19]. There are two sets of variables over the
graph: variable nodes and factor nodes. The variable nodes
correspond to the sensor belief, while the factor nodes cor-
responds to the constraints in our settings. Now we will
go to the details of applying belief propagation algorithm
to the decoding of heterogeneous sensor networks. First,
the one to one correspondence ofmessage distribution and the
LLR form is defined as

λxn→fm (xn) = L(µxn→fm (xn)) (23)

λfm→xn (xn) = L(µfm→xn (xn)) (24)

So it is straight forward to convert the updating rule from
variable to factor message to the following form:

L(µxn→fm (xn)) = L(
∏

fi∈fn\fm

µfi→xn (xn)) (25)

λxn→fm (xn) =
∑

fi∈fn\fm

λfi→xn (xn) (26)

Then the updating from the factor to the variable message
is considered. Since fm =

∑
xi∈xm
⊕xi and the logic relation

between xn and fm is

xn = fm ⊕
∑

xi∈xm\xn

⊕xi (27)

It is known that the updating rule for factor to variable is

L(µfm→xn ) = L(
∑
Xm\xn

fm(xm)
∏

xi∈xm\xn

µxi→fm (xi)) (28)

That is

λfm→xn (xn) = L(ym ⊕
∑

xi∈Xm\xn

⊕xi) (29)

Based on the results (22), the following expression can be
derived,

λfm→xn (xn) (30)

= 2 tanh−1(tanh(λfm )
∏

xi∈Xm\xn

tanh(
λxi→fm (xi))

2
)) (31)

V. GENERAL CORRELATION CASE AND THEORETICAL
ANALYSIS OF THE FUSION PROBLEM
In this section, the more general correlation case is consid-
ered, in which the relation between two sensors is charac-
terized by the spatial correlation factor λij. A probabilistic
graphical model is proposed to fuse the prior information
from other sensors. The corresponding belief updating rule
is developed and the performance is analyzed theoretically.
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FIGURE 6. Factor graph for general correlated sensors.

A. CORRELATION MODELING
It is assumed that the spatial interactions between adjacent
nodes are pairwise. The correlation between sensors xi and xj
can be modeled as

ψij(xi, xj) = exp(λijg(xi, xj)) (32)

where λij ≥ 0 and it is proportional with the increased
correlation between the sensors. And the indicator function
g(xi, xj) is defined as

g(xi, xj) , xixj + (1− xi)(1− xj) (33)

The joint posterior distribution can be given as

p(x|y) ∝
∏
i=1

p(yi|xi)
∏
j∈Ni

exp(λijg(xi, xj)) (34)

which is the product of the local likelihood and the correla-
tion factor. The belief of the target for each sensor p(xn|y)
is determined, given the observations and the correlations.
The problem can be converted as the maximum a posteriori
(MAP) estimation:

x̂ = arg max
x∈{0,1}n

p(x|y) (35)

B. BELIEF PROPAGATION FOR SPATIAL CORRELATED
SENSOR OBSERVATIONS
The spatially correlated sensors can be illustrated in a factor
graph, as depicted in Fig. 6. The sensors are represented as
circles and the inter-sensor correlations are represented as
squares.

Now the sensors’ information is fused based on belief prop-
agation algorithm. Each sensor fuse the multi-prior informa-
tion from other sensors through the inter-sensor correlations.
The final belief of each sensor can be reached by iteration of
messages among the nodes.

Here, the variable nodes correspond to the sensor belief,
while the factor nodes corresponds to the inter-sensor correla-
tion in our settings. It tries to reveal the distribution of variable

nodes with the help of factor nodes. By performing message
passing among each pair of the variable and factor nodes,
the belief of the variable nodes can be updated. Usually,
the updating rules [21] are defined as:

• The message from variable nodes to factor nodes:

µxn→fm =
∏

fi∈Fn\fm

µfi→xn (xn) (36)

• Updating rule from factor to variable:

µfm→xn =
∑
∼xn

fm
∏

xi∈Xm\xn

µxi→fm (xi) (37)

where the factor node fm and the variable node xn are con-
nected. Fn is the set of factor nodes that are connected to
variable node xn and likewise, Xm is the set of variable nodes
that are connected to factor node fm.
Note that, there are two types of factor nodes connected to

each variable node. The first one is the local sensing factor,

µf→xn = f (xn) (38)

the other one is the inter-sensor correlation fm = ψni,

µfm→xn =
∑
∼xi

f (xn, xi)µxi→fm (xi) (39)

=

∑
∼xi

ψni(xn, xi)µxi→fm (xi) (40)

After each iteration, the belief of each variable node is
computed by the product of all the information from the factor
node. And then the probability is normalized and pass it to its
corresponding factor node.

C. KULLBACK-LEIBLER DIVERGENCE AND
THEORECTICAL ANALYSIS
In the detection problem, when there are two hypothesis,
the sensed data would exhibit distribution f0(x|H0) under
hypothesisH0 and distribution f1(x|H1) under hypothesisH1.
The Kullback-Leibler Divergence (KLD) [7] is usually used
to evaluate the performance of detection, which is defined as

D(H0‖H1) = EH0 [log
f (x|H0)
f (x|H1)

] (41)

where EH0 is the expectation taken with respect to the joint
distribution of x under hypothesisH0. KLD can be interpreted
as the error exponent in the Neyman-Pearson framework,
which means that the probability of miss detection goes to
zero exponentially with the number of observations at a rate
equal to KLD.

If the sensor observations are independent of each other,
then p1(x, y) = p1(x)p1(y), p0(x, y) = p0(x)p0(y). Then KLD
can be written as

D(p1(x, y)‖p0(x, y)) = D(p1(x)‖p0(x))+ D(p1(y)‖p0(y))

(42)
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In the case of correlated modalities p1(x, y) 6= p1(x)p1(y),
The KLD for the two hypothesis can be given according to
the chain rule,

D(p1(x, y)‖p0(x, y))=D(p1(x)‖p0(x))+D(p1(y|x)‖p0(y|x))

(43)

there is a lemma in [10] which proves that condition-
ing does not reduce relative entropy, which means that
D(p1(y)‖p0(y)) ≤ D(p1(y|x)‖p0(y|x)). In this paper, the two
stage fusion framework is proposed, which exploits this kind
of correlations between the sensor observations via belief
propagation.

Also in [11], it gives a proposition that the KLD is non-
decreasing with the increased number of sensors. For any
S ′ ⊆ S, D(S ′) ≤ D(S). This means that the heterogeneity
among the sensors can improve the detection performance.

VI. PERFORMANCE ANALYSIS AND NUMERICAL
RESULTS
Numerical simulations are performed to illustrate our pro-
posed fusion algorithm for the heterogeneous sensor net-
work. To model the heterogeneous modalities, we make some
abstractions and generate the sensing data based on different
distributions. A sensor network with N = 5 sensors is
considered. Each sensor generates the local belief of the target
by representation learning. The training of the representation
learning is performed individually based on the training data
sets.

The correlation between sensors is quantified by the power
exponential model.

λij = e−d
2
ij (44)

where dij is the distance between node i and j. Each sensor’s
data follow Gaussian distribution with different mean values
θ and variance σ 2. They can be adjusted to meet different
SNR scenarios.

A. FUSION FOR THE CONFLICTED BELIEF
We first consider the robustness of the belief propaga-
tion based nature encoded fusion method. Two differ-
ent initial LLR settings are evaluated, which are the
[1,−2,−1,−2,−1] and [1,−1,−2,−5,−6]. The conver-
gence results for both cases are shown in Fig. 7 and Fig. 8.
For both cases, the first sensor’s initial belief is negative and
is opposite to the rest of sensors. After a few iterations, all
the sensors’ belief become positive. The belief propagation
forces the ambiguous belief to be correct thanks to the corre-
lations among the sensors. After the fusion, we can apply the
majority voting method and the detection performance would
be robust to the error and uncertain noise.

B. IMPACT OF THE CORRELATION COEFFICIENTS
The scenario that the correlation among the sensors λij goes
large is considered in Fig. 9 and Fig. 10. The LLR values
of all the sensors are forced to be the same belief in Fig. 9.

FIGURE 7. Iterations of belief propagation based fusion,
LLR = [1, −2, −1, −2, −1].

FIGURE 8. Iterations of belief propagation based fusion,
LLR = [1, −1, −2, −5, −6].

FIGURE 9. General correlation case: Initial LLR = [−6 1 2 3 2].

Even when the first sensor exhibits high negative LLR value,
the iterative belief propagation can correct that belief and
achieve a consensus fusion result. The reason why the case
in Fig. 10 does not converge is that the factor graph contains
loops in this example. Also we can see that the first three
sensors’ LLRs are negative and exhibit weak belief as to
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FIGURE 10. General correlation case: Initial LLR = [−0.2 −0.2 −0.5 8 3].

FIGURE 11. Performance comparison with product rule, linear combining
rule, and majority voting.

whether the hypothesis is H0. Still they can be refined to be
positive thanks to the correlation among the sensors. If major-
ity voting is applied after the refinement, we can achieve
better detection performance. Correlation among the sensor
observations makes some sensors’ measurements redundant,
which provides more robustness in the fusion process.

C. PERFORMANCE COMPARISON
The performance of proposed nature encoded fusion is com-
paredwith themajority voting and linear weighted combining
method. The linear weighted combing is computed as

pfusion =

∑
i wipi∑
i wi

(45)

Fig. 11 shows that the belief propagation based fusion can
achieve superior detection performance compared with the
other three fusion methods. It may result in information loss
duo to hard processing of majority voting scheme. Also much
training overhead is required to obtain the optimal weighting
coefficient for the linear combining method. The product rule
will cause error propagation which will degrade the fusion
performance.

VII. CONCLUSIONS
In this paper, a two-stage framework for fusing information
from heterogeneous sensors is proposed. The representation
learning stage transforms the data into a unified data form.
The nature encoded fusion allows data from different modal-
ities to be processed in a unified probabilistic space. The
inherent inter-sensor relationship is exploited and it can be
seen as a nature encoded sensing with heterogeneous sensors.
Then iterative belief propagation is used to refine and fuse the
local individual belief. Instead of estimating the joint PDF,
we just need to abstract the local log-likelihood ratio from
each sensor. Then the local log-likelihood ratio is sent to
the fusion center for processing. Further the more general
correlation case is considered, in which the relation between
two sensors is characterized by the correlation factor. The
belief propagation provides intuitive insights as to how the
probabilistic updates reinforce beliefs with the help of corre-
lation factor.
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