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ABSTRACT Trigger warning and other delay-sensitive applications for environmental, healthcare, and
industrial or military surveillance and monitoring are usually based on networks. Surveillance nodes (like
in the Internet of Things or wireless sensor networks) send the data to selected nodes (hubs) that forward
the alert or alarm further to the next system level. The maximum length of the shortest paths from the nodes
to their nearest hub should be optimized to minimize the maximum necessary number of hops required
to route a warning. For k hubs, this requirement is expressed as k-source minimization of the maximum
vertex eccentricity problem, i.e. minimization of d in a d-hop dominating set of a given cardinality k. In this
contribution, several heuristic algorithms selecting the initial set H of hubs (i.e. the dominating set) are
combined with our greedy and k-means-like approaches adapted from Euclidean to graph (i.e. geodesic)
distance. The presented algorithms were tested on static geometric network models, standardly used for
models of Wi-Fi networks. The best results were produced by the k-means-like algorithm with initialization
provided by the centers of communities found by edge-betweenness community detection. When compared
with, e.g., random selection of hub locations, our method can cut the worst case number of hops by half, and
when compared with a classical k center approach, our improvement was more than 50%.

INDEX TERMS Clustering methods, communication networks, heuristic algorithms, optimization.

I. INTRODUCTION
Environmental and health monitoring, military surveillance
and process control in the industry are all based on networks.
Typically, these networks consist of an array of cheaper
sensor nodes or other detection devices, which are not con-
nected to a decision center directly but through intermedi-
ates or hubs. In most cases, the sensor nodes send their data to
a hub through other sensor nodes, without being connected to
the closest hubs directly. The same is true for wireless sensor
networks or other wireless communication networks, such as
cellular systems and/or mobile ad-hoc networks. As a part of
risk analysis and reduction [17], alerts for critical situations
may include a gas leak or fire, both at home or in a mine,
as well as pollution or traffic alarms for accidents, medical
emergencies, or incoming missiles in military applications.
At the same time, since such events are rare both in time and
in the number of nodes involved, such cases implicate dense
networks and sparse communications. An emergency or high
priority traffic is typically caused by threshold detection,
where the measured data signifies an event triggering an
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alarm. In such a case, an optimal system should deliver the
alert to the next level as soon as possible, including from the
most eccentric nodes. The warning sent by the shortest route
to the nearest hub should go through the minimum number of
hops, even for the nodes farthest from the nearest hubs.

Selection of the set of nodes which shall serve as hubs in
the network is therefore crucial to minimize the warning lag
time. The current approach assumes knowledge of the whole
graph/network.

A similar problem was studied by Amis et al. [2] and
later by others [7], [10]. However, their heuristics tried to
select the minimal set of hubs, when the maximum number
of hops was specified. The problem studied in our paper is
somewhat different, as the number of hubs is prescribed and
the heuristics should select them to get the smallest maxi-
mum number of hops. Both problems are NP complete, even
though for trees and interval graphs there exist linear time
algorithms [5], [27].

Achieving the minimum of the average number of hops
to the nearest hub was a typical task for IoT networks [21].
A similar technique was used to minimize the maximum
latency between particular centroid and its nodes for multi-
controllers in a Software Defined Network [25], but in this
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work the authors also minimized the sum of the shortest path
distance from all nodes in the cluster to the hub.

An approach related to k-means clustering, but applied for
community detection in networks, was used by [8], but they
employed the ratio of the connecting edges and the size of
the cluster to decide to which hub/cluster a node should be
attached. This is different from the k-means-like clustering
approach in this paper where a node is attached to the nearest
hub (with the shortest length of the path to the hub). Even
direct k-means clustering employing Euclidean distance has
been used as a basis for cluster head selection [26]. Diverse
applications of similar approaches include for example EEG
signal analysis [14], [22].

Among other techniques to initialize the positions of hubs
before the first iterations, the present paper employs the edge
betweenness clustering. Although sink betweenness central-
ity was used in [37], their algorithm was concerned with
optimization of other criteria and constraints.

In graph theory, a requirement to optimize the worst case
among shortest paths to the closest hubs is expressed as
k-source minimization of the maximum vertex eccentricity
problem, i.e. minimization of d in a d hop dominating set
of a given cardinality k . Although even the distributed algo-
rithms exist to find k-hop dominating sets, the sets have to
be connected, or the algorithm uses a number of additional
technology related information [38].

Practically the same problem is referred to in graph theory
as the k center problem, which has a long history of heuristic
approaches [18], [20]. However, unlike the problem studied
here, the k center problem is typically studied for graphs with
weighted edges (i.e. the length of the path is computed as the
sum of weights of its edges). The cutting edge approaches
use stochastic metaheuristics like tabu search or simulated
annealing [13], thus paying too much CPU time for slight
improvements of a solution.

Selection of cluster heads, aiming for similar results as
k-hop dominating sets, can be solved also by nature based
metaheuristics like ant colony optimization [1], particle
swarm optimization [36], firefly optimization [23], multi-
objective evolutionary based algorithm [31], differential evo-
lution [35], or compressive sensing [11]. However, proper
evolutionary machine learning requires a number of trials,
which is larger than in the typical heuristics in the orders of
the magnitude.

A problem related to the one present in this paper is also
the Influence maximization problem (IMP), where the task is
to select k nodes in a network that can spread information fur-
ther towards the maximum of the remaining nodes [28]. The
difference is that, unlike in our problem, the nodes typically
represent people in a social network and the probability that
everyone will send the information further is not 100 per cent
for IMP.

Many other approaches optimizing the ad-hoc or IoT net-
works exist [6], [9], [21], [33], [34], but they are mostly
concerned with multicriteria optimization satisfying many
constraints. A typical requirement is optimization of energy

consumption and an ability to adapt to dynamic changes of
the network topology over time. Another typical optimization
goal is to provide k-coverage, where every location is cov-
ered by at least k different sensor nodes. Such optimization
requires changing the node coordinates, while our approach
requires selection of a subset of nodes, when their coordinates
are already given. Routing is also often optimized, but in
our case, the knowledge of shortest routes from a node to a
nearest hub is already taken for granted, not assuming sudden
dynamical changes. The approach in this paper also does not
contain any technology-related constraints.

Similarly to models used by Amis and many others [2],
our network is modeled as a graph G = (V , E) and the
positions of all nodes in the two-dimensional plane are given.
Two nodes are always connected by an edge when their
Euclidean distance is less or equal to a given transmission
radius r . This is called unit disk graph or geometric network;
it is an established family of graphs typically representing
networks commonly used for modeling ad-hoc wireless net-
works [15], [19], [24].

In this paper, we describe new and adapted heuristics for
the initial selection of a set of hubs among all nodes and
merge them in a combination with a greedy and k-means-like
heuristic. Our aim is to minimize the longest of a minimum
length path from a node to its nearest hub.We then investigate
the effectiveness of this new approach on generated models
of networks. Histograms of worst paths lengths after a given
number of iterations provide the results of the tests and
are compared for all the combinations of initializations and
heuristics, together with graphs showing their convergence in
time. Our paper thus addresses the improvement of the worst-
case scenario of the warning lag time.

II. HEURISTICS
A. ECCENTRICITY BASED MULTI-HOP CLUSTERING
Taking into consideration the goal of optimization, stated
in the introduction, the objective function defined in details
includes assumption that the network (graph) is composed of
a set of nodes, hereafter denoted as V = {v1, v2, . . . , vn},
and all of the nodes are capable of taking the role of a hub.
With the proposed mechanism, each node vi transfers its data
to its selected hub instead of transmitting the data directly to
an Internet server so that the number of Internet connections
required for the network equals the given number of hubs.
The objective of the proposed algorithms is to find the set
H ⊆ V with cardinality |H | = k of the selected hubs hi,
i = 1, 2, . . ., k , minimizing the maximum hop count between
a node vj and its closest (in hop counts, i.e. graph/geodetic
distance) hub for all nodes.When dist(a,b) equals a hop count
in the shortest path between nodes a and b, i.e. graph distance
of those nodes, we define member nodes ∀vj ∈ Mi ⊆ V that
belong to a hub hi as those, whose graph distance to any other
hub is longer or equal to the graph distance d(vj, hi) to the
hub hi.

Mi =
{
∀vj ∈ V | d

(
vj, hi

)
≤ d

(
vj, hm

)
,∀hm ∈ H

}
(1)
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for which holds
k⋃
i=1

Mi = V , but a node vj can be a mem-

ber node of two different hubs hm and hn, if d
(
vj, hm

)
=

d
(
vj, hn

)
,Mm ∩Mn 6= ∅.

The objective function for a network G(V,E) with the
selected hub set H ⊆ V to be minimized is formulated as
follows:

dmax(G,H ) = min
∀H⊆V ,|H |=k

max
∀i,1≤i≤k,∀vj∈Mi

d
(
vj, hi

)
(2)

The member nodes ∀v ∈ M i that belong to a hub hi can be
considered as a cluster. However, since nodes on the outskirts
of the cluster can have equal geodetic distance to two or more
clusters, the defined clusters are not necessarily disjunctive.

B. INITIALIZATION METHODS OF THE SET OF HUBS
An iterative optimization procedure usually requires an initial
starting point in the search space. In order to start with a rea-
sonable initial selection of hubs from the set of nodes V , our
inspiration was taken from the initialization of the classical
k-means clustering algorithm.

One of the simplest methods used is choosing the centers,
i.e. hubs, randomly from the data points [29]. There is always
a danger of choosing outliers or points that are too close
to each other, but this is usually rectified by multiple runs.
In the approach adapted for networks here, the hubs are
chosen uniformly at random from the set of nodesV. In further
description, this initialization method shall be denoted as
Random.

In Random Partitions [16], each point is assigned to one of
the k clusters uniformly at random. Since centroids computed
as the initial means tend to be placed near the center of the
dataset, in this paper this method was emulated by calculat-
ing eccentricity (the maximum graph distance between the
selected vertex and any other vertex) of all vertices. Then the
first k vertices with the smallest eccentricity were selected
as hubs. In further description, this initialization method is
denoted as Centers.
The k-means++ method [3] chooses the first center ran-

domly from data points and the i-th (i ∈ {2, 3, . . . , k}) center
x’ is chosen at random using a weighted probability distribu-
tion where a point x’ is chosen with probability proportional
to D(x ′)2. The D(x’) denotes the distance from a point x’ to
the nearest of previously selected centers. The method in this
paper is only adapted by using a geodetic (i.e. graph) distance
denoting the length of the path in the number of edges instead
of the Euclidean distance used in the standard k-means++
method. This initialization method is denoted as k-means++
like.
Also, the community detection algorithms [30] were used

for the initial selection of hubs. First, the communities were
found, and then in each community the node with the smallest
eccentricity within the selected community was selected as
a hub. Standard parameterization of the methods was used,
as in G. Csardi and T. Nepusz in the igraph package of the
R language. All popular community detection methods were

considered, but only the hierarchical ones enable a user to
enter the number of communities as an input parameter. This
requirement has ruled out Louvain, label propagation and
spinglass methods. Implementation of the Leading eigenvec-
tor method was rejected due to numerical difficulties (could
not handle too few required communities) and the walktrap
method was excluded due to excessive differences between
the sizes of the communities it has found. This left only edge
betweenness and fast greedy approaches, which were used for
the hub set initialization.

C. GREEDY MULTI-HOP ECCENTRICITY
OPTIMIZATION HEURISTIC
The greedy approach to optimization of the objective function
(2) is presented in the Algorithm 1. Given the initial set of
hubs, the Algorithm 1 finds the hub with the most distant
member node (i.e. no other hub is closer to this node). Then
the algorithm moves the hub one step on the path towards
this distant node, and if the maximum distance given by
the equation (2) did not increase, the new hub position is
accepted, otherwise the hub returns to its previous position.
These moves of the hubs are iteratively repeated a given
number of times.

Algorithm 1 Greedy Multi-hop Eccentricity Optimization
Input: G(V ,E) (network determined by a set of V nodes
and E edges)

k (required number of hubs to be selected)
MaxIters (limit of iterations)

Output: H = h1, h2, . . . , hk (set of k hubs as a subset
of V )
step 1: Select initial set H = {h1, h2, . . . , hk} of k hubs
among nodes by a chosen method; iter← 1.
step 2: Distribute all the vertices v(v ∈ V ) to one of the k
clusters using v ∈ cluster i , if d(v,h i) ≤ d (v,h j) , ∀j ∈
{1,2, . . . , k}
where d (u, v) represents the shortest path between nodes
u and v.
step 3: Make a copy of hub set H

′

← H
among all hubs and their clusters find a vertex v with the
maximum distance from its hub, ∀ i,j ∈ {1,2, · · ·, k} and
∀v ∈ clusteri, ∀u ∈ clusterj , d (v,hi) ≥ d (u,hj)
find the second node hi∗ on a shortest path from hi to v
and update the hub set H ′ = {h′1, h

′

2, . . . , h
′
k} by replacing

h
′

i← h∗i
step 4: Distribute all the vertices v(v ∈ V ) to one of the k
clustersH ′ using v ∈ clusteri ’, if d(v, h∗i ) ≤ d (v, h∗j ) , ∀j ∈
{1,2, . . . , k}
step 5: find dmax(G,H ′)
If dmax(G,H

′

) ≤ dmax (G,H) then replace the hub set by
a new one H ← H

′

together with corresponding clusters;
iter← iter+1
step 6: Repeat steps 2-5 while iter ≤ MaxIters
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FIGURE 1. Illustration of failure of Algorithm 1, which unsuccessfully tries
to move one of the hubs from the initial selection of hubs. The move
would increase dmax, so the algorithm cannot achieve the optimum
selection of the hubs shown at the bottom diagram.

One can stop the algorithm, when no improvement is
achieved, but usually, there are several hubs in the same
maximum distance from some nodes in their clusters. More-
over, one hub can move towards one of several equal distant
member nodes and even when both the hub and the node
are selected, this couple can be connected by several shortest
paths. A random selection between the mentioned choices
may bypass a local barrier in the objective function. This
is also the reason, why one cannot assure convergence. The
algorithm can be improved by avoiding the already tested
solutions, e.g. by employing some equivalent of a tabu search,
but it was not studied here, since the most likely improvement
should come from repeated starts with different initial hub
selection and with permutation of node indices.

An illustration of a potential failure of Algorithm 1 is
shown in Figure 1. The upper part shows a simplified network
with 8 nodes, from which nodes 4 and 8 were selected as
the initial positions of its two hubs and marked by red discs.
The dmax of this selection is 3, because to send a message
from the hub 4 either to node 1 or 7 requires traversing
three edges. Algorithm 1 then randomly selects node 7 as
one of the most distant from any hub, and tentatively tries to
move the nearest hub from node 4 one step towards node 7,
which moves the hub from node 4 to node 5. This is shown
in the middle of Figure 1. However, the dmax of the new
selection is 4, because a message from the hub at node 5 has
to traverse four edges before arriving at node 1. As the dmax
increases, the move is considered unsuccessful and the hubs
return to the previous positions. The optimal selection of hubs
shown at the bottom of the Figure 1 cannot be achieved by

Algorithm 1 from the current initial selection. Prevention
of dmax increase would require a concurrent move of both
hubs, which Algorithm 1 does not allow. While repeated runs
with different initial selections can avoid being stuck in this
particular local optimum, other similar obstacles can easily
prevent Algorithm 1 from achieving the global optimum.

D. K-MEANS-LIKE MULTI-HOP ECCENTRICITY
OPTIMIZATION HEURISTIC
Since most greedy algorithms tend to get stuck in local
optima when applied to NP-complete problems, another
approach was designed, based on a popular k-means cluster-
ing algorithm. However, classical k-means clustering can be
applied only to data points, not to nodes or vertices of net-
works or graphs. Nevertheless, while data points in k-means
clustering are attached to the closest centroid, the data points
can be swapped in the algorithmwith nodes and the Euclidean
distance of data points towards the centroid can be replaced
by the graph (geodesic) distance of nodes from the hubs.
The major difference is that the probability of having more
data points within the same distance from their closest cen-
troids is so negligible that it is typically ignored, while in
graphs or networks the corresponding occurrence is quite
likely.

Algorithm 2 k-Means-Like Multi-hop Eccentricity
optimization
Input: G(V , E) (network determined by a set of V nodes
and E edges)

k (required number of hubs to be selected)
MaxIters (limit of iterations)

Output: H = {h1, h2, . . . , hk} (set of k hubs as a subset
of V )
step 1: Select initial set H = {h1, h2, . . . , hk} of k hubs
among nodes by a chosen method; iter← 1.
step 2:Distribute all the vertices v(v ∈ V ) to their cluster(s)
from H using v ∈ clusteri , if d (v,hi) ≤ d (v,hj) ,∀j ∈ {1,2,
. . . , k}
where d (u, v) represents the shortest path between node u
and v.
step 3: For each cluster i,∀i ∈ {1, 2, . . . , k}find a ver-
tex vi with the minimum eccentricity within the subgraph
defined by the cluster vertices, which differs from hubs
h1, h2, . . . , hi−1 already selected in this step and update the
hub set H = {h1, h2, . . . , hk} by replacing hi← vi
step 4: iter←iter+1; H ← H

′

step 5: Repeat steps 2-4 while iter≤MaxIters

This algorithm, comparably to the original k-means clus-
tering is also a greedy approach, which does not guarantee
achieving an optimum. Moreover, it includes randomness,
which was not an automatic part of the original k-means clus-
tering. If several nodes have the same minimal eccentricity
within the current cluster, the new hub is selected among them
uniformly at random. This element of randomness prevents
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FIGURE 2. Illustration of the basic principles of the Algorithm 2. The network in (A) is divided into two parts by community detection algorithm. The
circles in (B) contain eccentricities of the nodes for each subgraph apart, dotted circles correspond to the selected hubs with minimal eccentricities. The
network in (C) is divided anew; each node belongs to the closest hub (with shortest path length). The new division of the network corresponds to new
eccentricity values, and so in (D) are newly selected hubs with minimum eccentricities, marked by dotted circles.

automatic convergence; when no hub was replaced by a new
one, the algorithm should not stop, as it would in classical
k-means clustering. In the new algorithm, one must resort to
stopping the algorithm by setting the maximum number of
iterations.

Illustration of the principles of the Algorithm 2 with the
initial set of hubs determined using edge betweenness com-
munity detection on a simple network is shown in Figure 2.

If we prescribe k = 2, it means that the algorithm should
select two hubs in the network. First comes hierarchical
community detection algorithm, in our case edge between-
ness, with prescribed number of communities equal two. The
result is shown in the diagram A of the Figure 2, where
the network is divided into two parts, visualized by red and
yellow backgrounds. The subgraphs corresponding to these
parts or communities are then treated as separate graphs, and
for each of their nodes, its eccentricity (path length to the
farthest node in the subgraph) is found. This is shown by
numbers within the node circles in the diagram B in Figure 2.
Separately for both subgraphs, the arrows show directions of
edges from each node towards the selected node with themin-
imum eccentricity. The nodes with the minimum eccentricity
are marked by dotted circles. The first such node in the red
background subgraph has an eccentricity 1, which means that
it is connected directly by an edge with all the three remaining
vertices of the subgraph. The second such a node in the yellow
background subgraph has eccentricity 3. One has to travel

though three edges to get to the rightmost node. There are
actually two such nodes with the eccentricity three, and the
leftmost is chosen randomly. These marked nodes compose
the initial set H of k hubs from the step 1 in Algorithm 2.

Next step is to distribute all the vertices towards their
clusters, in which the centers are the previously determined
hubs. This new distribution of nodes into clusters marked
by the red and yellow background would be the result of
the step 2 of the Algorithm 2. It is shown in the diagram
C of Figure 2, where the rightmost node of subgraph with
the red background belongs in diagrams A and B to the
yellow background subgraph. Since this node ‘‘shifted its
allegiance’’, the eccentricities in the diagram C are slightly
different from the diagram B. For example, the node, which
shifted its allegiance, had originally the eccentricity 5 in
the diagram B, since it took five-edge long path to get to the
rightmost node. Now this node in diagram C belongs to the
red subgraph and its eccentricity changed to two, since it takes
two edges to travel to the leftmost ‘‘red’’ node. However, its
graph distance towards the red hub is only one edge, while its
graph distance towards the yellow hub is two.

While the ‘‘red’’ hub in the diagram C of Figure 2 retains
the minimum eccentricity, it is not true for the ‘‘yellow’’ hub,
marked by the green dotted circle. It has still an eccentricity
value three, but its neighbor to the right has the minimum
eccentricity value two. Therefore, the ‘‘yellow’’ hub must be
chosen anew, with the minimum eccentricity two, as shown in
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FIGURE 3. Illustrative result of the selection of hubs in a random geometric network on a unit square with a
1000 nodes, with r = 0.05 and with 10 selected hubs denoted by bigger circles. The clusters corresponding to the hubs
are color differentiated.

FIGURE 4. The first set of graphs shows averages of maximum number of hops depending on iterations of the greedy Algorithm 1 for
all studied initializations of the algorithm. The following bar graph shows the quality of results after 25 iterations in more details.
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FIGURE 5. The first five graphs show averages, maximum and minimums of max number of hops depending on iterations of the
k-means-like Algorithm 2 for all the studied initializations of the algorithm. The last graph compares the averages in one figure.

the diagram D. This corresponds to the step 3 of Algorithm 2.
Further steps of the algorithm would just repeat the proce-
dures which principle was shown in the diagrams C and D.

III. RESULTS AND DISCUSSION:
TESTING THE HEURISTICS
In order to test the proposed heuristic strategies, the strategies
were applied to 10 randomly generated connected geometric

networks (all with one component), based on the distance of
random points on a unit square. The number of nodes in each
network was set to |V | = 1000. The radius within which the
vertices were connected by an edge was set to r = 0.05 in
agreement with [4]. For a required number of k = 10 hubs,
we tried ten times the best approach (k-means-like algorithm
with the initial selection of hubs by edge betweenness com-
munity detection) for each of the generated networks, each
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FIGURE 6. The bar graph shows the maximum number of hops after 25 iterations for the k-means-like
algorithm for all its studied initializations.

time with different initial permutation of indices of nodes of
the network. Edge betweenness clustering is a deterministic
algorithm which for the same network provides the same
value of maximum edge betweenness. However, when there
are more edges with the same betweenness value, the algo-
rithm depends on indexing, and for different permutations
of node indices the algorithm may provide different results.
In all tested networks, the minimum of maximum node graph
distance to its closest hub was 7; however, it was not always
achieved - not even by the best algorithm. An example
of the result can be seen at Figure 3, where each cluster
belonging to a different hub is colored differently (the nodes
with equal distance to two hubs are randomly assigned to
one of them in the figure). The hubs are denoted by bigger
circles.

The results for the Algorithm 1 are shown at Figure 4.
The first graph shows the dependence of average values of
maximal number of hops to the closes hubs on iterations
of the algorithm, calculated for the 10 randomly generated
connected geometric networks. The results are color differ-
entiated for different methods of initial selection of hubs.
The lower the line is, the better the results are. The quality
of results decreases from edge betweenness, fast greedy,
k-means++ like, up to random and center as the worst.
While all the methods seem to converge slowly, the edge
betweenness begins already with an average close to 9 in

the initial iterations, which is near the (probable) optimum 7.
The bar graph on the right of Figure 4 shows in more details
the situation after 25 iterations. For the edge betweenness
(our best initialization method), half of the networks after
25 iterations converge to the (probable) optimum 7, the rest
were one or two hops worse. The only other method which
achieved this probable optimum at least once was a random
selection of initial hubs, but the majority of these results were
worse by four hops. Results for all initialization methods had
a significant variance.

The results of Algorithm 2 are shown in Figure 5 in greater
details. The first five pictures show averages, maximums, and
minimums of the maximum number of hops depending on
iterations of the k-means-like Algorithm 2, calculated for the
same 10 randomly generated connected geometric networks
that were used for testing the Algorithm 1. The last picture
compares the averages of the maximum number of hops in
one picture. Although after about 15 iterations there does not
seem to be much difference between the initial selections
of the hubs, the more detailed bar graph in Figure 6 shows
clear differences in the quality of results after 25 iterations.
The first twomethods, based on community detection, clearly
outperform the rest of the methods.

The Figure 7 shows that a range of hops is a reasonable
indicator of the convergence of the algorithm, but it is still
too imprecise to be used as a stopping criterion.
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FIGURE 7. Maximum number of hops depending on the range of maximum number of hops from different
centers with color-coded iterations.

In order to compare these results to the results of a classical
k center heuristic, Gonzalez [18] approach was tried on the
test networks. It provided an average maximum number of
hops 10.7, which is more than 50 per cent worse than the
achieved optimum by our multi-start approach. The Gonzalez
algorithm tended to place most of the hubs near the edges
of the unit square - within which the nodes were generated -
which was far from ideal.

Furthermore, new sets of geometric networks (RGN) were
generated with the radius r = 0.06 and 0.07. For each
network of the set, max route length was calculated from
Gonzalez [18] approach and was compared with multistart
(10x) k-means-like approach with edge betweenness initial-
ization. As Table 1 shows, Gonzalez approach provides about
50 percent worse results when compared to multistart k-
means-like approach.

Every optimization approach includes at least some tuning
parameters. However, in both the present approaches such
parameters have mostly discrete values (e.g., the number
of iterations) and categorical values (the used hub selec-
tion initialization method). Optimization of the performance
greatly depends on the size of the studied network. Short-
est paths from a single hub in unweighted networks can
be determined by a by breadth-first search with complexity
O(|E| + |V |), which must be multiplied by the number of
hubs k . If we set the number of iterations as a given constant,

TABLE 1. Results of optimum routing by k-means-like algorithm with
edge-betweenness, compared to Gonzalez [18] approach.

the complexity of the whole method is determined by the
initialization method. For a large network, one would likely
pick random, k-means++ like, or graph center initialization
of hubs. It can be assumed that for a bit smaller networks,
fast greedy O(|E| + |V |log2|V |) provides better results, and
for networks roughly up to 1000 vertices, edge betweenness
O(|V ||E|^2) likely provides best results for a given CPU time.
Since the optimal values largely depend on the size of net-
works, their type and their density, among other parameters,
we refrained from a detailed running time analysis and tuning
of parameters.

VOLUME 7, 2019 40377



M. Šimon et al.: Multi-Hub Location Heuristic for Alert Routing

The question remains whether the Algorithm 2 can be
stopped early based on some more sophisticated criterion
than maximum number of iterations. During the calculations,
it has been noticed that either the converged algorithm tends
to get the same number of maximum hops for all the hubs
in the network, or the difference is at most one. When the
number of iterations is low, the range of maximum number
of hops for each hub can be quite wide. The number of
iterations shown by a color code in Figure 7 also indicates
that the progress during the iterations tends to move from
the right upper corner to the left lower corner. Unfortunately,
this criterion is not perfect; sometimes even the configuration
with only two different values of maximum number of hops
for different hubs and their clusters may not signify conver-
gence to the optimum. A further run of the algorithm then can
improve such results. Optimum results can be expected with
early stopping of the iterations due to a low maximum range
of hops for different hubs, and repeated runs with different
permutation of indices of nodes.

IV. CONCLUSION
The best combination of initial hub selection by edge
betweenness followed by k-means-like approach seems to
provide very good results compared, for example, to the
random selection of hubs: our method reduced the worst-case
number of hops by about a half.

Both the greedy Algorithm 1, as well as the k-means-like
Algorithm 2 were able to substantially improve the initial
selection of hubs, whatever selection method was used. How-
ever, the greedy Algorithm 1 was more prone to get stuck in
a local optimum, and most of the time it failed to achieve
the (likely) assumed global optimum. Only for the initial
selection of hubs using the edge betweenness community
detection was the Algorithm 1 not stuck. Edge betweenness
achieved for both, the Algorithm 1 as well as the Algorithm
2, the assumed optimum in at least half of the trials, and
in the rest of the trials, the solution was at worst two hops
longer than the assumed optimum. The initial selection also
made a great difference in the initial iterations of Algorithm 2,
but after ten iterations of the algorithm, the differences were
nearly unsubstantial.

As the complexity of the algorithm is concerned, edge
betweenness [30] for sparse graphs is O(|V|3) as is one
iteration of the k-means-like algorithm. Although similarly
to evolutionary heuristics the number of iterations of the
algorithm has no natural bounds, one can still set it reasonably
to a couple of tens of iterations, so that the complexity would
remain unaffected. An alternative stopping method of the
Algorithm 2 might be the reduction of the range of different
maximum hop numbers for different hubs with their clusters
to two. On the other hand, Algorithm 2 converges rather
quickly, after a few tens of iterations there is usually not much
point in continuing further. In such case, it would be much
more effective to use multiple restarts, similar to common
k-means clustering.

Even though Algorithm 2 is fast enough to work for slowly
changing dynamic networks, in this contribution it was tested
on a standard static model. Better adaptation to dynamic
networks would require rewriting the Algorithm 2 as a dis-
tributed algorithm and such action would likely decrease the
algorithm efficiency, similarly to results in [32].

Our k-means-like Algorithm 2 with the initial selection of
hubs using edge betweenness community detection can be
currently claimed as Pareto optimal, giving the most reason-
able tradeoff between execution time and the maximum alert
lag. Much faster approach (complexity O(|V |k)) is balanced
by fifty per cent worse maximum alert lag in a classical k
center greedy heuristic [18]. On the other hand, if one would
require better results at the price of an increase in compu-
tational resources by a few orders of magnitude, simulated
annealing like [13] or one of the evolutionary approaches
might be better suited.
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