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ABSTRACT This paper presents our research findings on the direct detection and position determi-
nation (DDPD) problem, which is to estimate the positions and the total number of multiple sources
with intermittent emission, using the received signals intercepted by a moving antenna array at multiple
observation slots. We combine the direct position determination (DPD) concept and the Minimum Variance
Distortionless Response (MVDR) criterion to solve the DDPD problem without the prior knowledge of the
effective number of sources (the number of sources at every observation slot). We find out that the parallel
combination of theMVDR spectrum in the cost function results in its own sensitivity to the missing emission,
which makes the location estimator bias. Therefore, we use the K-means clustering algorithm to identify the
sources with intermittent emission and their emitting slots adaptively, based on the MVDR spectrum values
over all observation slots. Then, we use the spectrum values of the identified emitting slots to reconstruct the
MVDR spectrum. Finally, we find the peaks of the reconstructed MVDR spectrum, which are corresponding
to the source positions. The results of the simulations demonstrate that the proposed method gets asymptotic
performance with the signal to noise ratio (SNR), both in the aspects of the root mean square error (RMSE)
and the bias error, and high resolution as a generalized MVDR based method.

INDEX TERMS Direct position determination, passive localization, array processing, maximum likelihood,
minimum variance distortionless response (MVDR).

I. INTRODUCTION
The localization of sources emitting electromagnetic or
acoustic energy has been studied for several decades
and applied in many engineering applications such as
the sound processor of Artificial Cochlea, Location-Based
Services(LBS) in communication systems, wild-life track-
ing, earthquake monitoring and targets detection in mil-
itary. The classical localization methods are two-step
processing [1]–[5]. Firstly, intermediate parameters that rely
on the locations of the sources are estimated from the mea-
surements of different origin (these parameters are usu-
ally the angle of arrival (AOA), time difference of arrival
(TDOA), Doppler frequency shift (DFS) or received signal
strength (RSS)). And then the estimated parameters are used
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to estimate the locations of sources based on Maximum like-
lihood (ML) criterion or others.

The DPD approach has recently been proposed [6], [7] as
a single-step ML localization technique. The DPD method
estimates the parameters of interest by minimizing a sin-
gle cost function into which all received data batches enter
jointly. This can be viewed as searching for the source loca-
tion that best explains the collected data. From the view of
information theory, the two-step method is more likely to
damage the localization information during the estimation of
intermediate parameters that DPD method avoids. This is the
reason why DPD method outperforms the two-step method
at low SNR. Furthermore, an additional data association step
to partition the intermediate estimated parameters into sets
belonging to the same source is required in multiple sources
scenario, which is avoided inherently in DPD method. Mul-
tiple hypotheses tracking (MHT) is generally accepted as
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the preferred method for solving the measurement-to-track
association problem [8]. However, in multiple sources sce-
nario, the exact ML estimator can be derived but it requires
a multi-dimensional search which is usually impractical. The
DPD method is no longer equivalent to the ML estimator.

The DPD concept was extended to the case of
multiple sources with intermittent emission [9] and the
authors Oispuu M et al used the alternating projection (AP)
technique [10] to solve the high-dimensional ML optimiza-
tion by a series of low-dimensional optimizations. Whereas
the considered DPD approach requires knowledge of the total
number of sources, but in practice this number is unknown.
Oispuu M et al proposed an iterative method to determinate
the positions and the total number of sources alternately. This
DDPD method is based on the fact that the optima of the
ML-DPD object function are χ2- distributed and requires the
knowledge of the effective number of sources, which implies
that the DDPD method is also dependent on the model order
determination and likely to suffer from the error of model
order determination.

Another alternative estimator for the ML estimator of
the DDPD problem is MVDR estimator which doesn’t
need the prior knowledge of the number of sources (the
model order). It was originally proposed by Capon [11]
for frequency-wavenumber power spectral density analysis,
but has since been used extensively as a high resolution
method. Recently, the MVDR concept and DPD are com-
bined to create a high resolution estimator that can localize
multiple dense sources that transmit unknown narrowband
signals [12]–[14]. In fact, Oispuu M et al had already intro-
duced the MVDR concept to localize multiple sources with
intermittent emission directly [9]. Unfortunately, the location
spectrum based on the Capon type object function is distorted
by the missing emission of sources and the MVDR estimator
has large bias error even at high SNR.

In this paper, we find out why the original MVDR spec-
trum is sensitive to the missing emission. The reason is
that the Capon type object function combines the received
power from a given position in every emitting slots in a way
that resembles the combination of parallel resistors. In order
to improve the robustness of the location MVDR-spectrum
under the intermittent emission condition, we proposed to
identify the emitting/non-emitting slots of a source adaptively
using classical K-means clustering algorithm and then mod-
ify the position MVDR-spectrum by eliminating the power
value of the non-emitting slots. The simulation results indi-
cate that the modified position MVDR-spectrum gets high
resolution and asymptotic performance with SNR.

The rest of this paper is organized as follow: Section II
formulates the signal model and the DDPD problem. The
original MVDR spectrum is discussed in the first subsection
of Section III to show its limitation. The modified MVDR
spectrum is proposed in the next subsection. Simulations are
outlined in Section IV and Section V concludes this paper.

Following the convention, this paper uses unified symbols
and notations defined in Table 1.

TABLE 1. Notations.

II. PROBLEM FORMULATION
We consider a scenario where there are Q fixed sources with
intermittent emission (i.e. emitting signals with probabilities
at every observation slot) located at pq = (xq, yq, zq)T ,
q = 1, . . . ,Q and an antenna array composed ofM elements,
mounted on a moving platform. The array is assumed to
receive narrowband signals (i.e. the receiving bandwidth is
much smaller than the reciprocal of the time delay across the
array) with wavelengths centered around a common wave-
length λ. The array moves along an arbitrary but known
trajectory. During the movement of the array, K data batches
are collected at the sensor positions uk , k = 1, . . . ,K with
a sufficiently high data rate. The signals of each source is
only contained in Kq ≤ K data batches since the sources
emit intermittently. The scenario is assumed to be stationary
during one batch and non-stationary from batch to batch. The
schematic of the scenario are illuminated in Fig.1.

FIGURE 1. The schematic of the scenario.

Given the output of the array be sampled sequentially at N
different and mutually exclusive snapshots and the sensor’s
displacement can be negligible during every observation. The
n-th sample of the k-th received data batch can be expressed
as

rk,n =
Q∑
q=1

ak (pq)bk,qsk,n,q + wk,n, n = 1, . . . ,N (1)

where rk,n ∈ CM×1 denotes the complex envelopes formed
from the signals received by the array elements. bk,q is a
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binary variable corresponding to the case where the q-th
source is emitting or non-emitting at k-th observation slot.
The emitting probability of the q-th source denoted by Pq =
P(bk,q = 1) is assumed constant over all observation slots [9].
Note that the assumption is used to simplify the theoretical
analysis and is unnecessary in practical application. sk,n,q is
the n-th sample of the complex envelope of the q-th source
signal measured at k-th slot if it emits, i.e. bk,q = 1. wk,n ∈
CM×1 is a white, zero-mean, complex Gaussian noise with
variance σ 2

wIM known. ak (pq) ∈ CM×1 is the array transfer
vector which is considered quasi static during each observa-
tion, i.e. it doesn’t rely on the index of samples n.
The array transfer vector expresses the complex response at

the k-th observation slot to the planar wavefront arriving from
the q-th source. We assume that the antenna array is perfectly
calibrated so the array transfer vector can be parameterized
by the source positions:

ak (pq) = (ejk
T
k (pq)d1 , . . . , ejk

T
k (pq)dM )T (2)

It can be seen that the array transfer vector depends on the
wavenumber vector

kk (pq) =
2π
λ

uk − pq
‖uk − pq‖2

(3)

and dm denotes the position of the m-th element relative to
the sensor position uk in earth-fixed coordinates.1

In practice, as the attitude of the sensor will change from
observation to observation, the relative position vector dm(k)
varied with time reads

dm(k) = R(ψk , θk , φk )d ′m (4)

where d ′m is the position of the m-th element in sensor-fixed
coordinates,2 which is constant once the array shape and
the sensor-fixed coordinates is confirmed. The orientation of
the sensor-fixed coordinates system (i.e. the attitude of the
sensor) is given by the attitude (pitch,azimuth,roll) angles
(ψk , θk , φk ) in earth-fixed coordinates, which a suitable rota-
tion matrix R(ψk , θk , φk ) (common in Navigation Technique
literatures) is based on.

For the sake of simplicity, we assume that the antenna
attitude does not change with time, i.e. the orientation of the
sensor-fixed coordinates system is fixed over all observation
slots dm(k) = dm, k = 1, . . . ,K .

The received data batches depend on the array transfer
vectors which rely on the desired source positions. Thus,
our DDPD problem is stated as follows: Estimate positions
and the number of all sources {pq}

Q
q=1 from all received data

batches {{rk,n}Nn=1}
K
k=1 without the prior knowledge of the

effective number of sources.

1A coordinate system whose origin is fixed on earth. The positions of all
sources and receivers are denoted in it.

2A coordinate systemwhich is fixed on the array. In practice, the positions
of array elements are usually denoted in it, which have to be transformed into
the earth-fixed coordinates.

III. THE ROBUST MVDR BASED DDPD METHOD
A. THE ORIGINAL MVDR SPECTRUM
The MVDR filter is used for adaptive beam forming
and targets detection in parameter domain [15]. Recent
researches [12]–[14] combine the concept DPD and MVDR
criterion to get a high resolution DPD method. Besides,
the time-varying interference caused by the intermittent emis-
sion can be suppressed byMVDRfilter adaptively. Therefore,
we choose the MVDR-based DPD method to get the high
resolution position estimation of sources with intermittent
emission. In order to build the MVDR optimization problem,
the received signal data model in (1) need to be rewritten as

rk,n = ak (pq)bk,qsk,n,q + vk,n (5)

where the first part of the summation is the received signal
from the q-th source at position pq and vk,n contains the
interference (the received signals from the rest of sources)
and the noise.

As a consequence, for a location hypothesis p, the coeffi-
cients of the traditional MVDR filter is given by

w∗k (p) = argmin
wk

wHk R̂kwk

s.t. wHk ak (p) = 1 k = 1, . . . ,K (6)

where

R̂k ,
1
N

N∑
n=1

rk,nrHk,n k = 1, . . . ,K (7)

In order to acquire the distortionless signal waveform,
the traditional MVDRfilter processes each data batch respec-
tively. Nonetheless, the distortionless constraints are unnec-
essary in our case, for we are not interested in the signal
waveform but the source location. Therefore, we can relax
the distortionless constraints to estimate the source location
using all data batches, and to increase the degree of freedom
used for noise and interference reduction.

We introduce the compact data model

rn = A(pq)(bq ◦ sn,q)+ vn (8)

by stacking the vectors on top and using a block-diagonal
matrix

rn = (rT1,n, . . . , r
T
K ,n)

T
∈ CMK×1

A(pq) = blkdiag[a1(pq), . . . , aK (pq)] ∈ CMK×K

bq = (b1,q, . . . , bK ,q)T ∈ {0, 1}K×1

sn,q = (s1,n,q, . . . , sK ,n,q)T ∈ CK×1

vn = (vT1,n, . . . , v
T
K ,n)

T
∈ CMK×1

For a location hypothesis p, the MVDR optimization prob-
lem with the relaxed linear constraint is given as

w∗(p) = argmin
w

wH R̂w

s.t. wH ã(p) = K (9)
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where

ã(p) , (aT1 (p), . . . , a
T
K (p))

T
∈ CMK×1 (10)

is composed of block-diagonal elements of A(p). And

R̂ ,
1
N

N∑
n=1

rnrHn = blkdiag[R̂1, . . . , R̂K ] (11)

is the sample correlation matrix.
Now, we get an estimator of the source location

p̂ = argmax
p
J (p)

J (p) , w∗H (p)R̂w∗(p) (12)

where J (p) is the total output energy of the optimal MVDR
filter.

Equation (9) describes minimization of a quadratic func-
tion under a linear constraint, and can be solved using the
complex gradient operator [16]. The solution is given by

w∗(p) = K
R̂
−1
ã(p)

ãH (p)R̂
−1
ã(p)

(13)

Substituting (13) into (12) and ignoring the constant factor,
we get the original location MVDR spectrum,

J (p) =
1

ãH (p)R̂
−1
ã(p)

(14)

The optimal weight vector w∗(p) in (9) minimizes the total
output energy over K observation slots except that from the
source at location p, if it emits. So the peaks of the object
function J (p) for the area of interest will appear at all sources
positions pq, q = 1, . . . ,Q. These spectrum peaks are usually
selected using Constant-False-Alarm-Rate (CFAR) method.

B. THE MODIFIED MVDR SPECTRUM
According to the independence between observation slots,
we get

R̂
−1
= blkdiag[R̂

−1
1 , . . . , R̂

−1
K ]

(15)

Substituting (10) and (15) into (14), we get

J (p) =
1∑K

k=1 a
H
k (p)R̂

−1
k ak (p)

(16)

The expression (16) presents the combination of K
MVDR-spectrums {Jk (p) = [aHk (p)R̂

−1
k ak (p)]−1}Kk=1 in a

way that resembles the combination of K parallel resistors,

J (p) =
1∑K

k=1 J
−1
k (p)

(17)

It can be seen that the objective function (17) is sensitive to
noise, i.e. the function value becomes very small as long as
one of the K MVDR-spectrum values is corresponding to the
noise energy and very small.

As a result of the sensitivity to noise in (17), the total
received energy from the q-th source over all observation
slots J (pq) is disturbed by those much smaller energy values
Jk ′ (pq). These smaller energy values are corresponding to the
observation slots in which the signals from the q-th source
are absent (i.e. bk ′,q = 0). To be more specific, the much
smaller energy value Jk ′ (pq) is at the level of noise since the
q-th source doesn’t emit at the k-th slot. The object function
value J (pq) will almost arrive at the level of noise even though
other Jk (pq), k 6= k ′ are much larger (the q-th source emits at
the k-th slot (i.e. bk,q = 1)). This means that the information
about the q-th source location in observation slots which
contain the signals (i.e. the larger Ji(pq)) can not be used
sufficiently. Thus the performance of the original location
MVDR spectrum suffers from the intermittent emission.

According to the previous analysis, we have to elimi-
nate those disturbance terms in J (p) to acquire a robust
location MVDR spectrum correctly. As a consequence,
We propose an iterative method based on K-means clustering
algorithm [17], [18] to estimate the state vector {bq}

Q
q=1 and

the sources locations {pq}
Q
q=1 alternately.

The K-means clustering algorithm initializes K different
clustering centers {µk}Kk=1 and then iterates the following
two steps until convergence: step 1, every training sample
is allotted into the i-th cluster represented by the nearest
clustering centerµi; step 2, every clustering center is updated
with the average of all training samples in the cluster [18].

In general, only the peaks corresponding to sources which
emit in the most slots appear on the original spectrum (17).
The other sources emitting in less slots can be drown out
in noise. In order to estimate the source positions and the
number of sources, we modify the location spectrum to make
all sources appear initially,

p̂(0)q = argmax
p
J (0)(p) q = 1, . . . , Q̂

J (0)(p) =
1∑I (0)

i=1 g
−1
i (p)

(18)

where

(g1(p), . . . , gK (p)) , descend[J1(p), . . . , JK (p)]

descend[·] is the descending sort operator. Q̂ is correspond-
ing to the number of spectrum peaks. I is the number of
emitting slots and usually initialized (such as I (0) = 2, 3)
to guarantee the uniqueness of the location estimation and
remove the noise spectrum values as much as possible. Obvi-
ously, if there are more than I (0) emitting slots (in general
situations), the object function (17) is over modified initially.
Though all sources appear on the over modified spectrum,
we have to estimate a new I to improve the object function
for better localization accuracy and resolution.

For the q-th source, we allot K MVDR-spectrum value
{Jk (p̂q)}

K
k=1 into two clusters (larger and smaller) using the

classical K-means clustering algorithm. Note that the cluster-
ing is not required for the source emitting over all observation
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slots. We can identify this kind of source based on the condi-
tion of detecting sources with intermittent emission,

ρ ,
µl − µs

µl
> η (19)

where µl is the clustering center of the larger cluster and µs
is the smaller one. The condition for sources with intermittent
emission (19) is based on the fact that the ratio ρ of the
difference between the two clustering centers to the larger
centers approaches 1 as SNR increases.

If the condition (19) is true (the source emits intermit-
tently), the I∗ is updated with the number of members in
larger cluster Nl . A new object function is modified by I∗.
And then the position estimation is updated based on the
new object function J∗(p). If the condition (19) is false (the
source emits continuously), then the final sources locations
will be estimated from the original spectrum (17). The whole
iterative algorithm is concluded in Algorithm 1.

Algorithm 1 The Robust MVDR-DDPD Algorithm
Input: the inverse of sample correlation matrix

{R̂
−1
k }

K
k=1 in (15);

the initial number of emitting slots I (0);
the maximum iterationsMIter ;
the condition threshold η;

Output: the source locations estimation {p̂∗q}
Q̂
q=1.

Initial {p̂(0)q }
Q̂
q=1 using (18) with I (0);

for q 1 to Q̂ do
Evaluate two clustering centers at p̂(0)q :
[µl, µs]=K-means[J1(p̂

(0)
q ), . . . , JK (p̂

(0)
q )];

if (µl − µs)/µl > η then
while p̂∗q 6= p̂q and iterations≤ MIter do

Evaluate the number of members in the
larger cluster:
Nl=K-means[J1(p̂q), . . . , JK (p̂q)];
Update the number of emitting slots:
I∗ = Nl ;
Update the location estimation p̂∗q using (18)
with I∗.

end
else

Update the location estimation p̂∗q using (12).
end

end

It’s worth pointing out that the proposed algorithm hardly
need to tune predefined parameters using computer simula-
tions, for we use the K-means clustering algorithm which is
based on the data to estimate the number of emitting slots
adaptively, instead of using an absolute threshold. The only
threshold used to detect the intermittent emission case η is
usually selected between [0.2, 0.3] since it is compared with
the relative difference between the two clustering centers.

IV. SIMULATION RESULTS AND DISCUSSION
In this section, we design several numerical simulations to
verify and evaluate the performance of the proposed method,
denoted by Modified-MVDR-DPD, and compare it with the
estimator based on alternative projection technique and the
original Capon-type estimator [9], denoted by AP-DPD and
Capon-DPD respectively, and the Cramer-Rao lower bound
(CRLB), detailed in [9].

The iterative AP-DPD estimator is given as

p̂i+1q = argmax
p

K∑
k=1

wHk (p, ξ̂
i
¬q)R̂kwk (p, ξ̂

i
¬q)

wHk (p, ξ̂
i
¬q)wk (p, ξ̂

i
¬q)

s.t. wk (p, ξ̂
i
¬q) = P⊥

Ak (ξ̂
i
¬q)
ak (p) (20)

where ξ̂
i
¬q denotes the estimation of all sources positions

except q-th source position p̂iq at i-th iteration and

P⊥
Ak (ξ̂

i
¬q)

, IM − Ak (ξ̂
i
¬q)[A

H
k (ξ̂

i
¬q)Ak (ξ̂

i
¬q)]
−1AHk (ξ̂

i
¬q)

Ak (ξ̂
i
¬q) , [ak (p̂

i
1), . . . , ak (p̂

i
q−1), ak (p̂

i
q+1), . . . , ak (p̂

i
Q)]

The AP-DPD estimator is dependent on the performance of
the model order determination since the optimization prob-
lem (20) is solved with the prior knowledge of the number
of sources, while the prior knowledge is not required for
application of MVDR on which the proposed method is
based. Furthermore, the estimation of other sources posi-
tions ξ̂¬q is required to solve the optimization problem (20)
about the q-th source position p̂q. As a consequence, all
position estimators influences one another, while there is
no such dependence among the proposed estimators in (18),
for the multiple-sources localization problem was decoupled
into several independent single source localization problems
which can be solved in parallel.

Considering that the MVDR based DPD estimator can
be biased when there exists more than one source in the
scenario [19], we don’t only focus on the RMSE but also the
bias error (BE),

RMSE =

√√√√ 1
Nsim

Nsim∑
s=1

‖p̂(s)− p‖22 (21)

BE = ‖

∑Nsim
s=1 p̂(s)
Nsim

− p‖2 (22)

where Nsim is the number of Monte carlo simulations and
we used Nsim = 2000 to obtain statistical results. p̂(s) is
the position estimation of the s-th simulation. As illustrated
in Fig.2 and Fig.3a, we consider the scenario in which a
uniform circular array (UCA) withM = 10 elements at

dm =
λ

2
(sin

π

M
)−1(cos

2mπ
M

, sin
2mπ
M

, 0)T (23)

where λ
2 (sin

π
M )−1 is the radius of the UCA. It moves along

an arc from (−500,−500, 500)Tm to (500,−500, 500)Tm
at a speed of 200m/s. the received signals are sampled at
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FIGURE 2. The problem geometry with sources positions
p1 = (0,−500,0)T m, p2 = (0,500,0)T m and emitting probabilities
Pk,1 = 1,Pk,2 = 0.7.

K = 12 positions which are distributed on the arc uniformly.
The sampling period is 0.05ms and there are N = 100
samples per batch. The carrier frequency of the received
signals is fc = 200MHz (λ = c/fc = 1.5m, c = 3×108 m/s).
Two ground sources are located at positions p1, p2 and the

constant emitting probabilities of the two sources are P1,P2.
It is assumed that the emitted waveforms of each source have
constant amplitude at all sensor positions |sk,n,q| = s and
the phase of them are selected at random from a uniform
distribution over [0, 2π ]. Thus, the SNR is defined as that of
single source signal to single element noise, SNR = s2/σ 2

w.
The number of emitting slots of each source can be initial-

ized to I (0) = 4 because it is scarcely possible to be less than
four when the total number of slots K = 12 and the emitting
probability Pq ≥ 0.7 [9]. Note that the emitting probability
is not a prior knowledge so we generally choose I (0) = 2 in
practice. The threshold η used to detect intermittent emission
case takes a common value 0.3. The parameters keep the
same in this section unless they are mentioned specially.
In our simulations, we use the simplex method of Nelder
and mead [20] to find the maximum of both object function
of (18) and (20). The initialization problem of AP-DPD is
solved by (18) with the equal I (0).

First of all, we put the two sources close to each other
(Fig.3a) to display the higher resolution of the modified
MVDR-DPD estimator than that of the single Maximum
Likelihood (SML) estimator [21],

p̂ = argmax
p
Js(p)

Js(p) =
K∑
k=1

aHk (p)R̂kak (p) (24)

The emitting probabilities P1 = P2 = 0.7 and SNR=5dB.
Fig.3c-3f are the MVDR-spectrum with different I during
the iteration. In the original spectrum (Fig.3c), it can be seen
that the peak around No.2 source is biased and not sharp
while there is no peak around No.1 source. Both of accuracy
and resolution are degraded by the missing emission. Fig.3d

shows that there are two irregular peaks on the initial spec-
trum which removes the effect of intermittent emission and
make the peaks of the two sources appear. Fig.3e and Fig.3f
display the modified spectrum for two sources respectively.
Compared to the SML spectrum (Fig.3b) on which there is
only one biased peak, the modified spectrums have accurate
and sharp peaks around the two sources. The proposed esti-
mator acquires both higher accuracy and resolution.

Theoretically, the statistical performance of the proposed
method is determined by the accuracy rate of estimating the
number of emitting slots and the ability of detecting the
intermittent emission case. Therefore, our simulations are
focus on the performance in these two aspects.

In order to display the performance of the proposed
method for the two sources clearly, we put them at p1 =
(0,−500, 0)Tm, p2 = (0, 500, 0)Tm (Fig.2), i.e. one source
is close to the sensor and the other is far away from the
sensor. The emitting probabilities is set asP1 = 1 (continuous
emission),P2 = 0.7 (intermittent emission). We start with
varying the SNR between -20 dB and 10 dB to evaluate the
effect of SNR on the accuracy rate of estimating the number
of emitting slots and their attributes on the performance of the
proposed method.

Table 2 shows that the accuracy rate of estimating the num-
ber of emitting slots increases with SNR, which makes the
asymptotic performance of the proposed algorithm expected.

TABLE 2. Accuracy rate VS SNR.

Fig.4 shows that the square-root of CRLB and the RMSE of
three algorithms for the two sources respectively. The RMSE
for the No.2 source of the proposed algorithm (the solid red
triangle line) is lower than that of the estimator based on the
original Capon-type object function (the dashed green trian-
gle line), which indicates that the Capon-type object function
suffers from the intermittent emission while the proposed
method is more robust. Besides, the similar two RMSE lines
for the No.1 source at (0,−500, 0)Tm (the red and green
square lines) coincide with each other, which indicates that
the proposed method to modify the original object function
doesn’t degrade the performance of localizing the source
with continuous emission since the false alarm probability of
detecting the intermittent emission case is zero.

The RMSE of the proposedmethod for the two sources (the
two red lines) almost coincide with that of AP-DPD (the two
blue lines) respectively. All of them approximate the CRLB as
the SNR increases, which indicates that both of the two meth-
ods have similarly asymptotic performance. The similarly
asymptotic performance is expected since the optimization
problem (20), which is derived from the ML estimation, can
be interpreted as a conventional beamformer in direction
p with deterministic nulling of sources at locations ξ̂

i
¬q [9]
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FIGURE 3. The MVDR-spectrum with true positions (circles) and estimated positions(crosses), P1 = P2 = 0.7 and SNR = 5dB. (a) The single
Maximum Likelihood spectrum. (b) The original spectrum, I = 12. (c) The modified spectrum of the No.1 source, I∗ = 7. (d) The modified
spectrum of the No.2 source, I∗ = 9.

while the proposed optimization problem (9) can be inter-
preted as an adaptive MVDR-beamformer in direction p with
adaptive nulling, which explains the independence among the
proposed estimators in (18).

Fig.5 shows the bias error of three algorithms respectively.
It can be seen that the three estimators for the No.1 source
are all nearly unbiased. For the No.2 source, the AP-DPD is
also unbiased (the bias errors at SNR = −20,−15dB result
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FIGURE 4. RMSE vs. SNR, the square marks for the No.1 source at
(0,−500,0)T m and the triangle marks for the No.2 source at
(0,500,0)T m.

FIGURE 5. Bias error vs. SNR, the square marks for the No.1 source at
(0,−500,0)T m and the triangle marks for the No.2 source at
(0,500,0)T m.

from the invalid position initialization) and the bias error
of the proposed estimator (18) converges to zero with SNR
(asymptotically unbiased) while the original Capon-DPD are
biased because of the missing emission.

Next, we evaluate the effect of the sensor height u(3) on the
accuracy rate of estimating the number of emitting slots and
their contribution to the performance of the proposedmethod.
Note that if the sensor and the two sources are collinear
in earth-fixed coordinates, it’s likely to over-estimate the
number of emitting slots since their spatial signature is DOA
in our problem formulation (2).

To be specific, the two sources have similar array transfer
vector when the sensor (assume u(3) = 0m) is close to the
y-axis of the earth-fixed coordinates (i.e. the sixth and seventh
locations of the sensor path in Fig.2). On account of the simi-
lar array transfer vector, it’s impossible to generate nulling of
No.1 source when we estimate the No.2 source position using
(18). It means that, regardless of whether the No.2 source
emits at sixth and seventh slots or not, J6(p̂2), J7(p̂2) will be
large when the No.1 source emits (it’s true in our scenario).

In order to verify the previous theoretical conclusion,
we make the No.2 source idle from fifth to eighth slots and
increase u(3) from 0 to 300m (SNR = 0dB).
In table 3, it can be seen that the accuracy rate of estimating

the number of emitting slots of the No.2 source becomes
very low (4.3%) when the sensor is located on the land
(i.e u(3)=0m) and increases to 100% as u(3) = 300m,for
the sensor and the two sources are no longer collinear. The
essential reason of the results is that the linear correlation of
the spatial signature such as DOA, TOA and DFS is damaged.

TABLE 3. Accuracy rate VS the sensor height.

Fig.6 displays the square-root CRLB and the RMSE of
the proposed method and original Capon-DPD. Note that the
RMSE of theModified-MVDR-DPD for the No.2 source (the
solid red triangle line) decreases with the sensor height u(3)
and approaches the square-root CRLB at u(3) = 250, 300m
while that of the Capon-DPD (the dashed green triangle line)
is always higher even though u(3) is up to 300m. It indicates
that the Capon-type object function suffers from the intermit-
tent emission while the robustness to the intermittent emis-
sion of the proposed method is enhanced. Besides, the similar
two RMSE lines for the No.1 source (the two square lines)
coincide with each other, which indicates that the proposed
method to improve the original object function don’t degrade
the performance of localizing the source with continuous
emission, for the false alarm probability of detecting the
intermittent emission case is zero.

FIGURE 6. RMSE vs. the sensor height, the square marks for the
No.1 source at (0,−500,0)T m and the triangle marks for the No.2 source
at (0,500,0)T m.

Fig.7 shows the bias error of Modified-MVDR-DPD and
Capon-DPD respectively. The estimators for the No.1 source
of two methods are all near unbiased. For the No.2 source,
the bias error of the Modified-MVDR-DPD is improved
obviously at u(3) = 200m since the accuracy rate
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TABLE 4. The ROC of detecting the intermittent emission case in geometry Fig.2.

TABLE 5. The ROC of detecting the intermittent emission case in geometry Fig.3a.

FIGURE 7. Bias error vs. the sensor height, the square marks for the
No.1 source at (0,−500,0)T m and the triangle marks for the No.2 source
at (0,500,0)T m.

approaches 100% and the two sources can be distinguished
at this sensor height.

Finally, we vary the threshold η from 0 to 1 to evaluate
the Receiver Operating Characteristic (ROC) of detecting
the intermittent emission case using the statistic ρ in (19).
The detection probability P̂d and the false alarm probabil-
ity P̂f are estimated over Nsim=500 simulations at SNR =
−10, 0, 10dB respectively. Table 4 and Table 5 show the ROC
of the statistic ρ under two different geometries respectively.
It can be seen that the ROC of ρ is almost perfect (i.e. P̂d
approaches 1 and P̂f approaches 0 even though the threshold
η vary between a wide range [0.2,0.8] in Table 4 and [0.3,0.7]
in Table 5) at higher SNR = 0, 10dB. The sources with
intermittent emission can be identified easily and correctly.
However, it is needed to make a trade-off between P̂d (the
higher P̂d benefits the localization of sources with intermit-
tent emission) and P̂f (the lower P̂f benefits the localization

of sources with continuous emission) in the case of low
SNR = −10dB. In geometry Fig.3a (the distance between the
two sources is up to 1km), η = [0.2, 0.3] is a good trade-off
at SNR = −10dB. While there is no satisfying choice of η
in geometry Fig.3a (the distance between the two sources is
only 0.3km).

According to the simulation results, we can conclude that
the ROC of the proposed statistic ρ gets better as the separa-
bility of sources is enhanced.

V. CONCLUSION
We research to estimate the positions and total number
of multiple sources with intermittent emission using the
received signals intercepted by a moving antenna array at
multiple observation slots. We combine the DPD concept and
the MVDR criterion to design an clustering based adaptive
algorithm to solve the DDPD problem. The algorithm doesn’t
rely on the model order determination and solves the DDPD
problem without the prior knowledge of the effective num-
ber of sources. it decouples the multiple-sources localization
problem into several independent single source localization
problems which can be solved in parallel. It can be seen
that the algorithm gets high resolution and asymptotic per-
formance of localization in simulation section. Note that the
idea of combining DPD and MVDR to localize the emitter
with missing emission can be generalized to localize the
frequency-hopping emitters or the emitters whose signals are
only intercepted by a part of receivers. Both of the two kinds
of emitters are common in practice. The related researchwork
is underway.
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