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ABSTRACT As a visual measurement method, photogrammetry is widely used in engineering measurement
fields. Photogrammetry must first complete camera pose estimation. However, due to limitations of the
port condition, photographs often have problems, such as attitude angles that are too large, coplanar or
noncoplanar control point processing, and fewer control points, which leads to the fact that the existing
algorithm may not be able to satisfy high-accuracy pose estimation. To solve this problem, a new pose
estimation method is proposed in this paper. First, estimate the first pose by iterating between the optimal
position and the attitude of the camera. Second, use geometric relationships and physical meaning to obtain
the closest value to the actual value of the camera’s attitude. Third, use the approximate camera attitude as
the initial value of the iterative algorithm to obtain an accurate camera pose. Finally, the proposed method is
compared with the best currently employed optimization methods through simulated and real crane image
experiments. The experimental results show that our method works accurately, stable, and with no severe
pose jump occurrences and can be used for pose estimation of port hoisting machinery.

INDEX TERMS Pose estimation projection operator, camera pose ambiguity, port hoisting machinery,
arbitrary initial value.

I. INTRODUCTION
Port hoisting machinery is specialized equipment for hoist-
ing and handling goods in coastal and inland ports [1].
If the port hoisting machinery is broken during a hoisting
operation, it may cause incalculable losses to property and
people’s lives. Therefore, research on safety problems has
attracted considerable attention [2] because it is necessary
to monitor the deformation of port hoisting machinery. Cur-
rently, to monitor steel structure equipment, there are fea-
sible measurement techniques: layout sensors [3], [4], laser
scanning [5], [6], use of total station [7] and photogram-
metry [8], [9]. The layout sensors method needs to attach
sensors on the surface of equipment and lay transmission
wires to receive signals, which is a time-consuming and labor-
intensive task. In addition, the results obtained by this method
are the results of the test points, which cannot reflect the
situation of the whole measurement object. Laser measure-
ment has the advantages of fast measurement speed and high
accuracy, but the initial data obtained by the laser scanner is
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a large number of three-dimensional point clouds, and these
require a large number of professional personnel and profes-
sional software for data processing, which is a tedious task.
Additionally, the total station method requires considerable
on-site measurement time and the surveyor to aim its sight at
the marking point each time, which requires a large amount
of professional work. However, port hoisting machinery is
usually very busy, and many measurement tasks need to be
performed under high load conditions, so the measurement
fieldwork must be completed quickly.

Based on these reasons, photogrammetry, as a measure that
can be automated, is the most suitable measure for a real-time
monitoring system for port hoisting machinery. However,
the performance of photogrammetry is still not satisfactory
when it is used in monitoring port hoisting machinery. As one
of the pioneers, Dr. Li of Wuhan University of Technol-
ogy (WHUT) attempted to use photogrammetry to detect a
portal crane in 2016 and planned to use the detection results
in his study of the crane safety assessment method [10].
Unfortunately, this plan failed because of the port’s special
condition limitation. Because of site operating conditions and
safety considerations, neither the seaside nor the logistics
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corridor was available for setting the measuring station in
port. In addition, the outline size of port hoisting machinery
is usually very large. These lead to a large attitude angle when
taking photos. In addition, the external surface of the port
hoisting machinery is uniformly painted and lacks texture
features, which makes it difficult to identify control points
in port hoisting machinery. Moreover, the coordinates of the
control points are usually obtained by auxiliary tools such
as a total station. Ports that use port hoisting machinery are
usually very busy, and many measurement tasks need to be
performed under high-load conditions; therefore, sufficient
control cannot be achieved. These issues resulted in having
to deal with coplanar or noncoplanar control points and fewer
control points. However, photogrammetry must complete the
camera pose estimation first. Therefore, accurately and stably
determining the calibrated camera pose whose six-degree-
of-freedom are three positions and three attitude angles is
becoming increasingly significant. This process is normally
known as pose estimation or space resection in photogramme-
try. Pose estimation algorithms for port hoisting machinery
must have stable and highly accurate solutions in these cases.

Existing pose estimation methods are broadly categorized
into two types: noniterative and iterative methods. The for-
mer has the advantage of a fast calculation speed due to
the application of a linear algorithm. However, noniterative
methods are sensitive to the noise of image points, especially
when there are fewer control points. Iterative methods are
usually more accurate than noniterative methods; however,
when the initial value is not appropriate, iterative meth-
ods can be difficult to converge to the true value that is a
global minimum. The classical noniterative algorithm is the
direct linear transformation (DLT) algorithm proposed by
Abdel-Aziz and Karara [11], which regards the nine vari-
ables of the projection matrix as independent variables for
establishing linear constraints. However, due to the neglect
of the orthogonal constraints of the rotation matrix, the DLT
algorithm requires a large number of control points to obtain
an accurate solution. Then, Přibyl et al. [12] proposed an
improved method that is DLT-Combined-Lines based on the
DLT algorithm to solve large sets of lines using linear for-
mulation of Perspective-n-Line (PnL). But this method is not
accurate enough to be used in engineering practice. Ansar
and Daniilidis [13] developed linear solutions for special
linear types of not only n points but also n lines. For pose
estimation from line features, this algorithms often lacks
sufficient accuracy. By applying the Gröbner basis technique,
Banno [14] and Zheng et al. [15], [16] devised the pose esti-
mation as a functional minimization problem and retrieved
all stationary points. However, those methods are limited
by the speed and numerical stability of a Gröbner basis
solver. Lepetit et al. [17] proposed a high-efficiency and high-
precision linear algorithm named EPnP, which is considered
to be the best noniterative algorithm. The EPnP method uses
4 virtual control points to show the coordinates of the space
points. However, when the control points are coplanar, and the
depth changes drastically, the EPnP algorithmmay not obtain

good estimation results. Thus, when there are no redundant
control points, the existing noniterative algorithms are sensi-
tive to image noise because they lack a target function and
neglect part of the constraint conditions in the calculation
process.

Iterative algorithms can obtain accurate results when
redundant control points are not available. Oberkampf et al.
[18]–[20] proposed a POSIT algorithm to estimate the per-
spective projection model by using the initial value obtained
from the scaling model. The classic iterative algorithms con-
vert pose estimation into a nonlinear least-squares problem
and solve it by nonlinear optimization methods. The most
representative algorithms define an objective function with
the minimum error in the image space or the object space.
Garro et al. [21] presented an iterative algorithm to define
the minimum square sum of residuals in an image space.
In addition, Lu et al. [22] proposed an orthogonal itera-
tive (OI) algorithm that is one of the best iterative solutions
for pose estimation. It establishes the objective function with
aminimum collinear error in the object space. Comparedwith
other iterative methods, the OI algorithm has a fast conver-
gence speed and high accuracy. However, it rely on initial
reference parameters, and if the initialization is insufficient,
it tends to be trapped in a local minimum. Subsequently,
Schweighofer and Pinz [23] considered the local minimum
and improved the OI algorithm. However, we note that the
accuracy of these methods [17], [23] may be reduced when
the attitude angle is large. Considering pose ambiguity and
large angle cases, Wu et al. [24] proposed a method to find
the correct solution by calculating all the ambiguous poses.
Nonetheless, this algorithm is only suitable for coplanar con-
trol points and too inefficient to be suitable for engineer-
ing practice. As mentioned above, existing pose estimation
methods for port hoisting machinery have some drawbacks:
(1) Some algorithms usually require a proper initial value
to converge to the true value, which may become stuck in
an inappropriate local minimum, especially when the camera
has a large attitude angle. (2) Most existing pose estimation
solutions may not be able to handle coplanar and noncoplanar
control points.

Based on the discussion above, we propose an accurate
and stable pose estimation method based on geometry for
port hoisting machinery. The central contribution of this
paper is that our method does not rely on a proper initial
value to converge to the true value and is suitable for large
attitude angles, coplanar or noncoplanar control points and
fewer control points. Its main ideas are as follows. Step one.
According to the collinear error of the space control points
in the image space coordinate, the objective function with
the minimum error is established by the projection operator.
Then, the first pose is estimated by iterating between the
optimal position and the attitude of the camera. Step two. The
collinear residual error is used to determine whether the first
attitude of the camera is a local minimum. If it is, we can
determine the closest value to the actual value of the camera’s
attitude through the constraint of the combination matrix with
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the geometric relationship and the actual physical meaning.
Step three. The approximate camera attitude is used as the
initial value of step one to obtain an accurate camera pose.
Finally, the residual comparison and physical meaning tests
of the calculated camera pose are conducted.

This paper is organized as follows: In Section 2, the pro-
jection operator is utilized in the objective function to esti-
mate optimal camera poses. Then, we illustrate the geometric
ambiguity that may lead to multiple solutions and deter-
mine the relationship between the local minimum and the
correct solution by mathematical analysis in Section 3.
In Section 4, we propose a stable pose estimation algorithm,
and Section 5 presents the experimental results using both
simulated data and real crane image data. Section 6 presents
the conclusion.

II. OPTIMAL POSE BASED ON PROJECTION OPERATOR
The aim of pose estimation is to estimate the position and
attitude of a camera given intrinsic parameters through a
sequence of space control points and their corresponding
image points. Due to measurement errors, the image points
and the space control points in the image space coordinate
have errors. This paper uses the projection operator to estab-
lish the objective function based on the collinear error of
the space control point in the image space coordinate sys-
tem. Then, the optimal camera position and attitude can be
obtained through the minimum objective function. In addi-
tion, in the process of establishing the error function, a unit
quaternion is used to form the rotation matrix representing
the attitude of the camera to avoid the Euler angles expressed
by complex trigonometric functions.

A. ROTATION REPRESENTATION
In photogrammetry, not considering image distortion,
the classic collinear equation is as follows:

x = −f
a1(X − Xs)+ b1(Y − Ys)+ c1(Z − Zs)
a3(X − Xs)+ b3(Y − Ys)+ c3(Z − Zs)

,

y = −f
a2(X − Xs)+ b2(Y − Ys)+ c2(Z − Zs)
a3(X − Xs)+ b3(Y − Ys)+ c3(Z − Zs)

. (1)

where (x, y) denotes the coordinates of an image point in
image plane (X ,Y ,Z )T denotes the coordinates of the space
control points in the object space, (Xs,Ys,Zs)T denotes the
coordinates of the camera position in the object space f is the
focal length of the camera lens; and a1 ∼ c3 are elements of

rotation matrix R, which can be transformed into the attitude
of the camera.

According to expression (1), the collinear equation can be
written as follows: X̄Ȳ

Z̄

=
 a1 b1 c1
a2 b2 c2
a3 b3 c3

X − XSY − YS
Z − ZS

=R
X − XSY − YS
Z − ZS

.
(2)

The vector form is expressed as:

p′ = R(p− ps). (3)

where p′ =
(
X̄ , Ȳ , Z̄

)T , p = (X ,Y ,Z )T , ps = (Xs,Ys,Zs)T ,
p′ point is the coordinate of the space control point in the
image space coordinate system, R is the 3∗3 rotation matrix.

The collinear equation can also be expressed as

t = −f
p′

Z̄
. (4)

where t = (x, y,−f )T

According to the property of orthogonal projection,
the orthogonal projection of the vector p′ in the direction of t
should be equal to p′ Therefore, the expression is as follows:

p′ = Vp′ (5)

R(p− ps) = VR(p− ps). (6)

where V = ttT

tT t is the projection operator

1) EULER ANGLE
The Euler angles are three angles that represent the ori-
entation of the object presented in one reference frame.
The rotation angles corresponding to the rotation order of
the y-x-z-axis are α, β, γ , which can be represented in (7),
as shown at the bottom of this page.

2) UNIT QUATERNION
In this paper, the unit quaternion is used in calculating the
rotation matrix, which can avoid complicated trigonomet-
ric functions and improve the speed of computation. The
quaternion can express the rotation around an arbitrary axis
using complex algebra extended to 3 imaginary dimensions.
Complex units i, j, k within the 3 imaginary dimensions can
be defined as k2 = j2 = i2 = kji = −1, jk = −kj =
iki = −ik = j, ij = −ji = k . The unit quaternion can be
defined with a vector form as follows: q̇ = |q0, q1, q2, q3|T

R = RγRβRα =

 cosα cos γ − sinα sinβ sin γ cosβ sin γ sinα cos γ + cosα sinβ sin γ
− cosα sin γ − sinα sinβ cos γ cosβ cos γ − sinα sin γ + cosα sinβ cos γ

− sinα cosβ − sinβ cosα cosβ

 (7)

R =

 q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q

2
1 + q

2
2 − q

2
3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q2q3 + q0q1) q20 − q
2
1 − q

2
2 + q

2
3

 (8)
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and
√
q20 + q

2
1 + q

2
2 + q

2
3 = 1. The conjugate quaternion is

expressed as: q̇∗ = |q0,−q1,−q2,−q3|T .
The rotation matrix is expressed with the unit quaternion

form as in (8), as shown at the bottom of the previous
page [25], [26]:

The unit quaternion can be converted to Euler angles by the
following:

α = arctan (−R31/R33)

β = arcsin (−R32)

γ = arctan (R12/R22) (9)

B. OBJECTIVE FUNCTION
Because of themeasurement error, function (5) has a collinear
error from which the error function can be derived. The error
function can be expressed as:

ei =
∥∥p′i − Vip′i∥∥ . (10)

where i is the number of control points
The error function based on the least squares principle can

be expressed as:

E =
n∑
i=1

‖ei‖2 =
n∑
i=1

∥∥p′i − Vip′i∥∥2
=

n∑
i=1

‖(I − Vi)R(pi − ps)‖2 (11)

which is the objective function.

C. OPTIMAL POSE ESTIMATION
1) OPTIMAL POSITION OF THE CAMERA
Assuming that R is known, only Ps in the objective function
is unknown. According to the mean value theorem, we can
obtain the optimal solution of the camera position by deriving
the objective function (11) which can be expressed as:

∂E
∂ps
=

n∑
i=1

−2RT (I − V )R(p− ps) = 0. (12)

The (I−V )T (I−V ) = (I−V ) since the projection operator
(I − V )T is symmetric.
The optimal position of the camera is

ps(R) =

[
n∑
i=1

RT (I − Vi)R

]−1
.

[
n∑
i=1

RT (I − Vi)Rpi

]
(13)

2) OPTIMAL ATTITUDE OF THE CAMERA
The objective function only containing R as an unknown
quantity can be expressed as:

E(R) =
n∑
i=1

∥∥Rpi − Rps(R)− Vip′i∥∥2
=

n∑
i=1

∥∥Rpi − p′v,i + T∥∥2 (14)

where p′v,i = Vip′i, T = −Rps(R).

The sets of measurements are centralized as follows:

p̄i = pi −
1
n

n∑
i=1

pi

p̄′v,i = p′v,i −
1
n

n∑
i=1

p′v,i

T̄ = T + R
1
n

n∑
i=1

pi −
1
n

n∑
i=1

p′v,i (15)

Then, the objective function is expressed as:

E(R) =
n∑
i=1

∥∥Rp̄i−p̄′v,i + T̄∥∥2
=

n∑
i=1

∥∥Rp̄i−p̄′v,i∥∥2+2
(

n∑
i=1

∣∣Rp̄i−p̄′v,i∣∣
)
T̄+

n∑
i=1

∥∥T̄∥∥2
(16)

where
n∑
i=1

p̄i =
n∑
i=1

(
pi − 1

n

n∑
i=1

pi

)
= 0 and

n∑
i=1

p̄′v,i =
n∑
i=1

(
p′v,i −

1
n

n∑
i=1

p′v,i

)
= 0.

To minimize the expression (16),
n∑
i=1

∥∥T̄∥∥2 has to be equal
to zero.

The above expression can be expressed as:

E(R) =
n∑
i=1

∥∥Rp̄i − p̄′v,i∥∥2
=

n∑
i=1

‖Rp̄i‖2 +
n∑
i=1

∥∥p̄′v,i∥∥2 − 2
n∑
i=1

Rp̄i • p̄′v,i (17)

where • represents the dot products.
In each case, the remaining error is minimized when the

last terms are as large as possible. That is,

C =
n∑
i=1

Rp̄i • p̄′v,i (18)

should be as large as possible.
To use the unit quaternion to represent the rotation matrix,

p̄i, p̄′v,i represented as:

˙̄pi =
∣∣0, X̄i, Ȳi, Z̄i∣∣T ,

˙̄p′v,i =
∣∣0, X̄v,i, Ȳv,i, Z̄v,i∣∣T . (19)

in the form of the unit quaternion should be included in
expression (18)

Expression (18) uses the unit quaternion as in (20) and (21),
as shown at the bottom of the next page, where NXX =
n∑
i=1

X̃iX̃v,i, NXY =
n∑
i=1

X̃iỸv,i, and so on.

Since N is a real symmetric matrix, its eigenvalues are
real numbers. Without loss of generality, we assume that the
eigenvalues corresponding to the eigenvector (ε1, ε2, ε3, ε4)
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FIGURE 1. Pose ambiguities with a geometric interpretation.

are λ1 ≥ λ2 ≥ λ3 ≥ λ4 Because the eigenvectors are linearly
independent and orthogonal, the unit quaternions based on
ε1, ε2, ε3, ε4 can be decomposed into

q̇ = d1ε1+d2ε2+d3ε3+d4ε4, d21+d
2
2+d

3
3+d

4
4 = 1 (22)

where d1, d2, d3, d4 are real numbers.
Expression (20) can be expressed as:

C = q̇TNq̇ = q̇ • (Nq̇)

= d21λ1 + d
2
2λ2 + d

2
3λ3 + d

2
4λ4 ≤ λ1 (23)

This equation describes the condition for the establishment
of the upper equivalents, which are the maximum conditions
for C such that the unit quaternion q̇ is the eigenvector
corresponding to the maximum eigenvalue of the matrix N .
At this point, the expression is as follows:

q̇ = argmax
ε
eig (N ) (24)

Then, we can obtain the rotation matrix R through expres-
sion (8) and obtain the optimal attitude of the camera.

III. MULTIPLE SOLUTIONS
A. GEOMETRIC INTERPRETATION
Camera pose estimation is defined as the position and attitude
of the calibrated camera with respect to the object reference
frame to find the minimum value of the corresponding objec-
tive function (11). We demonstrate pose ambiguity through a
specific example in which the objective function has a local
minima. Fig 1 shows three pointsD,D1,D2 that are the image
plane, the model of coplanar control points (I, II, III) and
the projection centers of different positions of the camera.
Without loss of generality, we assume that the coplanar model
coordinate axis is located in the model center DM and is con-
sistent with the origin of the object reference frame.When the
camera moves from D point to D1 point, the corresponding
model plane I rotates counterclockwise α degrees around the
Y axis of the object reference frame and then obtains plane II
However, it can be seen from the graph that the D2 point

FIGURE 2. Objective function values for various rotation angles.

FIGURE 3. The change of the objective function in the case of a small
rotating angle. (a) α = 10◦, β = 15◦. (b) α = 20◦, β = 30◦.

corresponds to the minimum of the objective function as well,
corresponding to plane III (G1,G2 points rotate clockwise
β around the Y axis). Therefore, the existence of multiple
solutions for the minimum value of the objective function
leads to camera pose ambiguity

Then, we assign values to some parameter configurations
and only change one angle parameter. The setting of our
model is p1 = [1, 1, 0]T , p2 = [1,−1, 0]T , p3 = [−1, 1, 0]T ,
p4 = [−1,−1, 0]T , ps = (0, 0, 3)T . Fig 2 shows how the
objective function changes for varying rotation angles β and
zero noise. For β = 40◦, 50◦, and 60◦, the local minimum
of the objective function can be found at −38.42◦,−49.56◦,
and −58.26◦. For β < 34.2◦, no second local minimum of
the objective function exists.

With angle γ = 15◦ fixed, when attitude angles α and
β are small, the distribution of the objective function in two
directions (x-axis and y-axis) is presented in Fig 3. The Fig 4
shows that the attitude angles α and β are large. We can

C =
n∑
i=1

RT ˙̄pi • ˙̄p′v,i =
n∑
i=1

(
q̇ ˙̄piq̇∗

)
• ˙̄p′v,i =

n∑
i=1

(
q̇ ˙̄pi
)
•
(
˙̄p′v,iq̇

)
= q̇TNq̇. (20)

N =


NXX + NYY + NZZ NYZ − NZY NZX − NXZ NXY − NYX

NYZ − NZY NXX − NYY − NZZ NXY + NYX NZX + NXZ
NZX − NXZ NXY + NYX −NXX + NYY − NZZ NYZ + NZY
NXY − NYX NZX + NXZ NYZ + NZY −NXX − NYY + NZZ

 (21)
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FIGURE 4. The change of the objective function in the case of a large
rotating angle. (a) α = 40◦, β = 50◦. (b) α = 50◦, β = 60◦.

see that in small attitude angles (α = 10◦, β = 15◦),
(α = 20◦, β = 30◦ ), the objective function only has one
minimum value. However, when the attitude angles become
large (α = 40◦, β = 50◦) and (α = 50◦, β = 60◦),
the objective function has a local minimum at (α =

−38.44◦, β = −52.32◦), (α = −47.58◦, β = −63.24◦

An Accurate and Stable Pose Estimation Method Based on
Geometry for Port Hoisting Machinery), which results in
camera pose ambiguity.

B. MATHEMATICAL ANALYSIS
There are at most 4 solutions for pose estimation prob-
lems [27], [28]. Previous studies have mainly constructed
polynomials using the distance between the control points
and the central point of the camera lens. These polynomi-
als determine the number of solutions. However, it is diffi-
cult to use in engineering practice because of the complex
judgment methods. In our study, a new method that can
quickly find the correct pose estimation solution through the
attitude angles with definite geometric features is proposed.
In expression (14), the objective function only contains R
as an unknown quantity. By expression (8), the objective
function contains only four variables (q0, q1, q2, q3). Based
on an interval based splitting approach, the stationary points
to the objective function can be found [29]. Beginning from
intervals α ∈

[
−
π
2 ,

π
2

]
, β ∈

[
−
π
2 ,

π
2

]
, and γ ∈

[
−
π
2 ,

π
2

]
,

we calculate the corresponding image point coordinate t ,
projection operator V , and then estimate the stationary points
of the objective function using Jacobian and Bernstein expan-
sions (readers can refer to [29] for detail). The minimum
of the objective function can be obtained by the estimated
Hessian matrix

Hq0,q1,q2,q3=


Eq0,q0 Eq0,q1
Eq1,q0 Eq1,q1

Eq0,q2 Eq0,q3
Eq1,q2 Eq1,q3

Eq2,q0 Eq2,q1
Eq3,q0 Eq3,q1

Eq2,q2 Eq2,q3
Eq3,q2 Eq3,q3

 (25)

for each stationary point, which may be a saddle point,
maximum, or minimum.

Obtaining the minimum requires that all the eigenval-
ues of the Hessian matrix are positive. To estimate these
eigenvalues, the roots of the characteristic polynomial det(
Hq0,q1,q2,q3 − λI

)
= 0 have to be calculated. If all the

eigenvalues of the Hessian matrix are not all positive, the sta-
tionary point is not a minimum. While the other eigenvalues
are not all positive or negative, the stationary point is the local
minima of the objective function.

The stationary point (minimum, local minima) expressed
in quaternions are transformed into α, β, γ , which is a camera
attitude with definite geometric meaning. Our new algorithm
is based on these major observations:

(1) The correct solution to the pose estimation problem
should have a lower error value.

(2) When α, β, γ are small, there is no local minimum.
However, when α, β, γ are large, local minima exist, leading
to multiple solutions.

(3) If a local minimum exists, this attitude angle (α′, β ′, γ ′)
is approximately equal or opposite to the correct solu-
tion (α, β, γ ).

IV. STABLE POSE ESTIMATION ALGORITHM
The analytical results in Section 3 indicate that the solution
tends to fall into a local minimum when the attitude angle
of the camera is large. If the local minimum is taken as the
camera attitude, pose estimation error will occur, and the
port hoisting machinery measurement cannot be completed.
To avoid this, it is necessary to find the minimum instead of
the local minimum point. According to the analysis above,
an accurate and stable pose estimation algorithm based on
geometry for port hoisting machinery is presented. That is,
estimate the first pose by iterating between the optimal posi-
tion and the attitude of the camera. In this case, the solu-
tion may be the local minimum. To examine the correctness
of the solution, the first pose is brought into the objective
function (11) to check the residual error. First, we impose

a physical meaning constraint
n∑
i
ViR(p− ps) ≥ 0, which

confirms that the observed control points are ahead of the
estimated optimal pose in the realistic scene. Theoretically,
the value of the function should be zero, but due to the
measurement error, it cannot be zero. If the first pose is the
correct value, the minimum corresponds to the correct solu-
tion. Then, the objective function value will be very small.
Therefore, we can set a threshold value to determine whether
the first pose is correct. Bringing the first estimate of data
into the objective function, if the objective function value is
less than the threshold, the camera pose is correct; otherwise,
the local minimum solution was found. According to the law
found in Section 3 through mathematical analysis, if the local
minimum exists, the attitude angles are approximately equal
or opposite to the correct solution. In addition, as Rγ only
rotates around the optical axis of the camera, the geometric
relation between the image plane and the space control points
remains constant, and the rotation only influences image
coordinates. Thus, we do not need to consider Rγ .
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FIGURE 5. The flowchart of the proposed method.

The steps of the stable algorithm are as follows:
(1) Import the raw data, including the camera-intrinsic

parameters and measured values of point coordinates t and
the coordinates p of the corresponding control points in the
object reference frame

(2) Set the initial value of the position and attitude of the
camera. Since the proposed algorithm is independent of the
initial value, without loss of generality, the initial position of
the camera is set to ps = (0, 0, 0)T , and the unit quaternion
corresponding to the attitude of the camera is set to q̇ =
(1, 0, 0, 0)T

(3) Estimate the first pose by iterating between the optimal
position and the attitude of the camera. Then, convert the
camera attitude expressed in the form of the unit quaternion
to the Euler angle based on function (9).

(4) Determine whether the pose is a local minimum. If it
is not, output the position and attitude of the camera. If it
is, find a column vector that satisfies the physical meaning
constraint, and the minimum of the objective function from

a combination matrix G =

−α1 −α1 α1
−β1 β1 −β1
γ γ γ

 composing

three rotation matrices. Then, use the found column vector as
the initial value of the camera attitude angle.

(5) Repeat steps (3) to (4) to obtain the accurate camera
pose.

The flow chart of the proposed method is shown in Fig. 5.

V. EXPERIMENTS AND RESULTS
To validate the accuracy and stability performance of the
presented method, we compared the presented method with
the DLT [11], EPNP [17] and OI algorithms [22] under the
condition of noncoplanar control points and POSIT [18],
RPNP [23] and Ansar and Daniilidis [13] under the condition
of coplanar control points based on simulated data and real
image data.

A. SIMULATED DATA TESTS AND RESULTS
In the simulated experiment, we used the following setup:

1. A virtual perspective camera with focal length 800 pixels
and image size 640∗480 pixels was given.

2. In the coplanar case, the control points were distributed
uniformly in the range [−2, 2]× [−2, 2]× [0, 0] in the object

reference frame. In the noncoplanar case, the control points
were distributed uniformly in the range [−2, 2] × [−2, 2] ×
[0, 4].
3. For each test, a random attitude rotation of Rtrue was

generated.
4. The selection of the camera position ps,ture was deter-

mined when the measured image points were located at the
camera coordinate frame.

We measured the attitude error between the Rtrue and
the calculated rotation matrix R, which was represented as
eattitude(deg rees) = max3k=1 a cos(dot(r

k
ture, r

r )) × 180/π
where rkture and rr were the k-th column of Rtrue and R.
a cos (.) and dot(., .) indicate the arccosine operation and dot
product. The position error was defined as eposition (%) =∥∥ps,ture − ps∥∥ / ‖ps‖ × 100 which was used to measure the
relative difference between ps,ture and ps

To compare the accuracy of various algorithms with vari-
ous numbers of control points, the number of control points
varied from 4 to 15 with a step length of 1 and image point
coordinates with Gaussian noise with a mean of 0 and a
standard deviation of 3 pixels were randomly generated in the
tests. The graphs in Figs 6 and 7 show the error of the position
and attitude of the camera for 1000 independent random tests
of each algorithm at each number of control point parameters
in the noncoplanar and coplanar cases.

As illustrated in Fig 6, in noncoplanar cases, our algorithm
is obviously better in accuracy and stability than other algo-
rithms, especially in the case of fewer control points.

As shown in Fig 7, in coplanar cases, the performance
of our algorithm is somewhat higher than RPNP [23] but
obviously better than the other algorithms [13], [18]. The
occurrence of this phenomenon can be interpreted as a local
minimum leading to the existence ofmultiple solutions for the
pose estimation problem. When the number of control points
is small, it is difficult for other algorithms to distinguish the
correct solution from the local minimum value. In addition,
although the RPNP [23] method can obtain better results, it is
only suitable for coplanar control points.

To compare the accuracy of various algorithms with differ-
ent noise levels, the number of control points was n = 4, and
Gaussian noise with a mean of 0 and the standard deviation of
[0, 6] whose step lengthwas 0.5were added to the image point
coordinates in the tests. The graphs in Figs 8 and 9 show the
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FIGURE 6. The relationship between the number of points and the mean
error (noncoplanar). (a) Mean position error. (b) Mean attitude error.

FIGURE 7. The relationship between the number of points and the mean
error (coplanar). (a) Mean position error. (b) Mean attitude error.

error of the position and attitude of the camera for 1000 inde-
pendent random tests of each algorithm at each noise level
parameter in noncoplanar and coplanar cases, respectively.

As illustrated in Fig 8, in noncoplanar cases, the pro-
posed method is consistently much more stable and accu-
rate than the other methods, particularly when the noise
level is higher than 1 pixel. Moreover, along with increasing

FIGURE 8. Mean error of different image pixel errors (noncoplanar).
(a) Mean position error (b) Mean attitude error.

FIGURE 9. Mean error of different image pixel errors (coplanar). (a) Mean
position error. (b) Mean attitude error.

noise disturbance, the errors increased quite slowly. As illus-
trated in Fig 9, in coplanar cases, the algorithm produces
slightly better results than RPNP [23], but it is obviously
better than the other two algorithms. This behavior can be
interpreted as follows: unlike non-iterative methods, which
are sensitive to noise, the proposed algorithm is an iterative
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algorithm that has a strong immunity to noise. After obtaining
the first pose by iterating between the optimal position and the
attitude of the camera the algorithm can update the first pose
as the initial value again by searching the minimum objec-
tive function and imposing an additional physical meaning
constraint.

To test the rate of correct poses for the proposed algo-
rithm in different attitude angles, we generated 1000 dif-
ferent models and poses for each attitude angle α from
0 to 80 degrees in the noncoplanar case. Different algorithms
from [11], [17], [22] were used for comparison with the
proposed method.

FIGURE 10. Correct probability of pose estimation at different tilt angles.
(noise=2 pixels).

Fig. 10 shows the rates of correct poses for the four
algorithms as one angle increases. In the process, we fixed
Gaussian noise at 2 pixels. As we mentioned in Section 3,
no local minimum existed in the case of small attitude angle;
therefore, the rate of correct poses between 0 and 10 degrees
for all four algorithms is above 94%. However, when the
attitude angle continues to increase, other algorithms become
much more sensitive to the angle. In particular, when the
angle is greater than 40 degrees, the rate of correct poses of
the DLT and OI algorithm decreases to less than 49%. The
rate of our algorithm correctly calculating solutions stayed
above 89% for almost attitude angles except for angles from
35 degrees to 45 degrees. Therefore, our algorithm has high
stability at almost all angles, which are important for port
shooting conditions.

B. REAL CRANE IMAGE TESTS AND RESULTS
1) TEST OBJECTS AND PREPARATIONS
To verify the feasibility of the pose estimation method based
on geometry for port hoisting machinery, a real experiment
was conducted.

As shown in Fig. 11, the object of the test was a gantry
crane commonly used in a port’s cargo storage yard in the
port machinery testing laboratory of WHUT.

The test camera was a Canon EOS 5DS. The parameters of
the test camera’s charge-coupled device (CCD) are as shown
in TABLE 1:

The camera calibration method in this experiment was
provided by Heikkilä [30], which provided the MATLAB

FIGURE 11. Gantry crane in the port machinery testing laboratory
of WHUT.

TABLE 1. Parameters of the camera.

TABLE 2. The results of the calibration.

Camera Calibrator toolbox. The results of the calibration are
shown in Table 2:

f is the focal length of the camera,1x and1y are the coor-
dinates of the principal point, k1 and k2 are the parameters of
the radial distortion, q1 and q2 are parameters of the eccentric
distortion, and s1 and s2 are parameters of the thin prism
distortion.

To validate the estimated camera pose, we used the self-
developed photogrammetric system for port hoisting machin-
ery (PSPHM), which can record the corresponding camera
pose of each photo. As shown in Figure 12, the PSPHM
consists of a rotating platform, a bracket and a common
camera. The rotating platform equipped with a position sen-
sor, gyroscopes and dials obtains the camera pose when
shooting.

2) TEST AND RESULT
The experiment was divided into two cases: noncoplanar and
coplanar control points, and the number of control points
was 4. The coordinates of control points were obtained by
the total station before the test. In addition, the selection and
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FIGURE 12. Photogrammetric system for port hoisting machinery.
(a) Measurement system. (b) Rotating platform. (c) Gyroscope.
(d) Position sensor.

numbering of control points are shown in Fig. 13. The number
of coplanar selection points is 1,2,3,4, and the number of
noncoplanar points is 1,3,5,6.

FIGURE 13. Numbering and selection of control points.

TABLE 3. The coordinates of control points.

TABLE 4. The true values of the camera’s position and attitude.

The origin of the measurement was the center of the left
front leg of the crane on the ground. The coordinates of the
control points 1, 2, 3, 4, 5, and 6 are shown in Table 3

The true values of the camera’s position and attitude were
obtained through PSPHM, as shown in Table 4.

Let 1X, 1Y and 1Z be the difference between the mea-
surements and actual values of the coordinates of camera’s
position in the object space and let 1α, 1β and 1γ be the
difference between the measurements and actual values of the
coordinates of camera’s attitude in the object space.

The relationship between1O and1X,1Y and1Z and the
relationship between 1ϕ and 1α, 1β and 1γ is as follows:

1O =
√
1X2 +1Y 2 +1Z2,

18 =

√
1α2 +1β2 +1γ 2. (26)

The experimental results of the coplanar and noncoplanar
control points are shown in Fig. 14 and Fig. 15, respectively.
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FIGURE 14. Test results under coplanar conditions. (a) Position error.
(b) Attitude error.

FIGURE 15. Test results under noncoplanar conditions. (a) Position error.
(b) Attitude error.

As illustrated in Fig. 14 and Fig. 15, our algorithm has a
higher estimation accuracy than the other algorithms in the
real image experiments. Therefore, the proposed algorithm
can be used for camera pose estimation of port hoisting
machinery in photogrammetry.

VI. CONCLUSIONS
In this paper, with consideration of multiple solutions,
we described an accurate and stable pose estimation algo-
rithm based on geometry for monitoring port hoisting
machinery. According to the collinear error of the space con-
trol points in the image space coordinate, the error function
with the minimum error was established by the projection
operator. In the process of establishing the error function,
a unit quaternion was used to form the rotation matrix rep-
resenting the attitude of the camera to avoid the Euler angles
expressed by complex trigonometric functions. In addition,
the geometric characteristics of the attitude angle can help
us to understand the relationship between the local minimum
and the global optimal solution. We proposed a convenient
and accurate solution for this problem. The central contribu-
tion of this paper is that our method does not rely on a proper
initial value to converge to the true value and is suitable for
large attitude angles, coplanar or noncoplanar control points
and fewer control points, which are suitable for port shooting
conditions.

The experimental results in Section 5 demonstrate our
method’s accuracy, stability and absence of severe pose jumps
occurrence and its possession of stronger applicability and
generality. Therefore, the paradox between the limitation of
the port condition and the high-accuracy demand of cam-
era pose estimation for port hoisting machinery has been
addressed.

Although the algorithm mentioned in this paper is pro-
posed for camera pose estimation for port hoistingmachinery,
it can still be applied in the measurement of large industrial
equipment. Moreover, as a basic algorithm in photogram-
metry and computational vision, the proposed algorithm can
be applied to many relevant applications in AR [31] and
UAV [32]. Thus, further research will be valuable.
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