
Received February 17, 2019, accepted March 19, 2019, date of publication March 25, 2019, date of current version April 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2907171

A New Infrastructure Elasticity Control
Algorithm for Containerized Cloud
WALID A. HANAFY , AMR E. MOHAMED, AND SAMEH A. SALEM
Department of Electronics, Communications, and Computers, Faculty of Engineering, Helwan University, Helwan 11792, Egypt

Corresponding author: Walid A. Hanafy (walid_ashraf@h-eng.helwan.edu.eg)

ABSTRACT In the last decade, containers have become a superior alternative to hypervisor-based vir-
tualization. Containerization has revolutionized data centers from being an infrastructure-oriented to be
application oriented. Modern cloud consumption patterns such as flash crowds require a certain amount
of elasticity that is realized with controlling the amount of provisioned resources autonomously. Cloud
elasticity is significant as it influences the performance of utilized resources, service level commitment, and
power consumption. In this paper, an infrastructure elasticity control algorithm for a containerized cloud
is proposed. The proposed algorithm augments the load balancing criterion with elasticity control. Several
experiments with various metrics are carried out to examine the performance of the proposed algorithm.
The results demonstrate the superiority of the proposed algorithm and the effects of elasticity across various
measures.

INDEX TERMS Containers, cloud computing, elasticity control, containers migration, load balancing.

I. INTRODUCTION
Container virtualization technology, which is also called
lightweight operating system virtualization, have become
state of the art cloud deployment model [1]. Container
engines provide a shared operating system environment that
increases server consolidation percentage. A Linux container
mainly relies upon two kernel features namely cgroups and
namespaces [2]. Cgroups [3] provides resource limitation
facilities while namespaces provide resource isolation capa-
bilities.

As shown in Figure 1, containers utilize the namespaces
and cgroups kernel features and the union file system. Union
file system [4] stacks multiple images to form the final view
for the container. An image is a read-only file system layer
that adds up to form the files seen by a container. Container
images are stored in a container registry machine where
all images and their hierarchy information are mapped and
saved there. Containers gained instant success due to their
high utilization efficiency, fast start-up time and performance
supremacy [5].

Currently, organizations are racing to employ containers
in various applications that include applications deployment,
application middleware and cloud platforms [6]–[8]. Aside

The associate editor coordinating the review of this manuscript and
approving it for publication was Gaurav Bhatia.

from these basic container employment techniques, contain-
ers have emerged as a best practice deployment model in fog
computing and IoT platforms [9], [10]. The advancements in
containers and containers platforms allowed the appearance
of containerized cloud infrastructures [11] and Containers
as a Service ‘‘CaaS’’ computing model [12] that acts as a
middle layer between Infrastructure as a Services ‘‘IaaS’’ and
Platform as a service ‘‘PaaS.’’

Modern applications and computing services are built with
considerations for rapid change in the number of active cus-
tomers known as flash crowds [13]. Daily deals and time-
limited offers became a widely adopted strategy by compa-
nies [13]. The offers usually accompanied by an unpredicted
increase in the number of active customers. This rapid
increase in the number of customers requires a level elasticity
that is not tackled by current provisioning mechanisms.

Al-Dhuraibi et al. defined elasticity as the ability to scale
autonomously in an optimalmanner [14], as optimalitymeans
time and provisioning efficiency. They classified different
scopes, approaches, and methods for elasticity in cloud com-
puting. According to them, authors perform elasticity control
on either application/platform or infrastructure level. Infras-
tructure elasticity is the alteration in the provisioned physical
resources. They also stated that elasticity could be classi-
fied into vertical and horizontal elasticity. Vertical elasticity,
known as resizing, the application resources in terms of CPU,

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

39731

https://orcid.org/0000-0001-5765-8194

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

FIGURE 1. Container Structure.

Memory, and IO are altered at runtime. On the other hand,
Horizontal elasticity, known as replication, is the process of
adding or removing resources instances.

Kan proposed a horizontally elastic web deployment plat-
form by utilizing proactive/reactive elasticity controllers [6].
The proactive controller exploits a prediction algorithm to
anticipate the required load while the reactive acts as a safety
valve for sudden load changes. Also, Al-Dhuraibi et al. [2],
proposed an application level vertical elasticity controller.
The proposed controller update the allocated resources if it
surpassed its upper or lower bounds. Moreover, if the host
reaches its limits, the elasticity controller executes a live
container migration.

Piraghaj et al. introduced an infrastructure elasticity man-
agement algorithm [15]. Such algorithm utilizes a two-
layer virtualization scheme, where containers run in virtual
machines ‘‘VMs’’ rather than directly on the host itself.
The algorithm tries to maximize the power efficiency by
adjusting the number of utilized machines. The proposed
method migrates containers from unstable to stable machines
where upper and lower thresholds define stability. However,
the aforementioned elasticity methods were not designed to
cover flash crowds scenarios. Additionally, elasticity effects
on other metrics such as load balancing, resource utilization,
service level commitment, and power efficiency were not
studied extensively.

Eager et al. introduced a load balancing algorithm that
works iteratively [16]. The algorithm consists of a sender
and receiver initiated (Push and Pull) load sharing methods
based on queue length. As a result of its low complexity
and performance superiority, this algorithm has been adopted
vastly in parallel systems, distributed systems, and cloud
computing. For example, Forsman et al. adopted the algo-
rithm in a virtualized data center [17].

This paper proposes an infrastructure elasticity control
algorithm based on eager’s load balancing algorithm by alter-
ing the main procedures to adapt to flash crowds elasticity

requirements. The proposed algorithm considers two agents,
namely the master and host agents. The master agent is
responsible for elasticity and coordination between hosts
while the host agent is responsible only for its host well-
being. The host agent monitors and predicts its utilization
using Autoregressive Moving Average ‘‘ARMA’’ [18] which
derives its state. In the case of a non-normal state, the host
sends the appropriate request to the master that initiates an
auction against other hosts. The auctions are based on mul-
tiple selection criteria and among a subset of the available
hosts. The master performs elasticity by handling failures in
load interchange scenarios.

The rest of the paper is structured as follows. In section
II, the notations, assumptions, and problem formulation are
discussed. Section III, discuss system components and hosts’
states. In section IV, the proposed work and evaluation
methodology are discussed. Section V includes the results
and discussions. Finally, Section VI presents the conclusion
and future work.

II. NOTATIONS, ASSUMPTIONS, AND PROBLEM
FORMULATION
A. NOTATIONS
Assume a container set C c1, c2, c3, . . . , cN where a container
ci is based on a container image Ij where container images are
located on a machine container registry machine r . Contain-
ers run on a host machine h. LetH denotes the host machines
set{h1, h2, . . . , hN }, where H can be either homogenous or
heterogeneous.

Given a host machine hi state denoted by si, where si ∈
{OFF, IDLE,UNDER− UTILIZATION ,NORMAL,
OVER − UTILIZATION ,EVACUATION . Util (hi) → R

computes the utilization for a given host hi. Additionally,
Cost

(
Hx ,Cy

)
→ R receives the hosts and containers sets

and returns the overall cost. Finally, all host machines are
controlled by a master machinem.

B. ASSUMPTIONS
The network throughput is modeled according to Mathis
equation [19], throughput T is calculated as,

T =
MSS ∗ C
RTT ×

√
p

(1)

where the equation utilizes the Maximum Transmission Seg-
ment ‘‘MSS,’’ C a constant that equals

√
3/2, Network Round

Trip Time ‘‘RTT,’’ and packet loss probability ‘‘p.’’ The net-
work throughput defines the time taken by all data transfer
operations such as image loading and migrations across the
network.

C. PROBLEM FORMULATION – OPTIMAL ELASTICITY
CONTROL PROBLEM
Given 2-tuple< H ,C >, find the optimal migration policy at
given timeT , such that:

Cost∗
(
H∗l ,C

)
= min arg

Ht⊂H
Cost(Ht ,C) (2)

39732 VOLUME 7, 2019

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

FIGURE 2. Infrastructure Components.

III. COMPONENTS AND STATES
A. SYSTEM COMPONENTS
The adopted containerized cluster is composed of the three
types of machines namely, master, host and container registry.
Every machine is packed with a management agent; for ease,
the machine and agent keywords are used interchangeably.
Each agent is composed of multiple components as shown
in Figure 2. The proposed master agent has four main mod-
ules:
• The State Monitormodule acts as a hosts’ state informa-
tion hub where it knows all hosts’ states and configura-
tion all the time.

• The Machine Controller is responsible for controlling
the hosts’ power state.

• Also, the InteractionManageris responsible for commu-
nication and communication validity between themaster
machine and host machines. Besides, it delimits the
number of active requests and responds automatically in
case of congestion.

• Finally, TheManagement Module contains management
and elasticity policies. In addition, it acts as a coordina-
tor between different master tasks.

The host machine is the actual worker that executes and hosts
containers and follows master agent commands. The host
agent main modules are:
• TheHostManager is responsible for thewellbeing of the
host itself. It triggers load absorption/eviction requests,
evaluates the benefit of an incoming request and reports
changes to the master agent.

• The Interaction Manager is responsible for communica-
tion management. For example, it rejects requests when

a host is participating in an auction either as an owner or
as a bidder.

• The Engine Manager is responsible for controlling the
containerization engine.

Finally, the container registry is an image store where the
image manager module is responsible for managing images,
maintaining images’ trees, and reporting them to hosts.

B. HOST STATES
Each host hi, contains a set of containers Ci where the load
is modeled as a collection of resources such as CPU, RAM,
and Network IO. The load of a host hi is denoted by li, where

li = l (Ci)+ l (Osi) (3)

l (Ci) is the total load of containers hosted at host hi and
l (Osi) is the base load occupied by the OS. However, the con-
sidered host’s load is the ARMA [18] predicted load rather
than the current load. The predicted load denoted byl(t + 1)
is calculated as follows:

l (t + 1) = β × l (t)+ γ × l (t − 1)

+ (1− (β + γ))× l (t − 2) (4)

given that, β and γ are the prediction coefficients. Host hi
utilization is denoted by ui,

UTIL (hi) = ui =
li (t + 1)
max li

(5)

where utilization is the ratio between the predicted load and
max load.

Figure 3, illustrates the transition of the host machines
between states. The set of hosts in the OFF, IDLE,

VOLUME 7, 2019 39733

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

FIGURE 3. Hosts’ States.

FIGURE 4. Algorithm’s Events Diagram.

UNDER − UTILIZATION ,OVER − UTILIZATION , and
EVACUATION states are denoted by HOFF ,HIDLE ,HUNDER
,HOVER, andHE respectively, where |HIDLE | is maintained
as a percentage of the operating machines. Moreover,
the relations between theUNDER−UTILIZATION ,OVER−
UTILIZATION states are determined based on the minimum
and maximum thresholds denoted by MinTH andMaxTH .

IV. METHODOLOGY
A. PROPOSED ALGORITHM
This work proposes an elasticity control algorithm based
on Eager et al. load balancing algorithm [16]. Initially, the
algorithm separates the utilized load sharing strategy, to be
either Push or Pull. However, this paper proposes a client-
server architecture that allows the utilization of both strate-
gies simultaneously.

Figure 4 describes the algorithm’s sequence of events.
As shown, the host initiates the cycle by sending a request
to the master according to Algorithm 1. The master handles
the requests using Algorithm 2 and executes Algorithm 3
to perform elasticity tasks. Finally, a probed host follows
Algorithm 4 in order to either participate or reject an auction.
Algorithm 1 describes the actions taken by a free host in a

none-normal state. The host’s state derives the action it takes.
As shown, if the host is UNDER − UTILIZED, it demands
the master to send it a container to correct its state (Pull
Request). Conversely, anOVER−UTILIZED scenario where
the host demands the master to redistribute some of its load

Algorithm 1 Container Structure
Input : Host(hi),HostContainers(Ci)
1: Begin
2: S ← GetState(hi)
3: if S = UNDER− UTILIZED then
4: SendPullRequest()
5: else if S = OVER− UTLIZEDorS =

EVACUATION then
6: Cx

i ← max arg
ci

CSP (Ci)

7: SendPushRequest(Cx
i)

8: R← MasterResponce()
9: if R.GetState() = Success then
10: ExecuteMigration()
11: if S = EVACUATION and c = ∅ then
12: UpdateState (hi, IDLE)
13: else
14: if (R.hasNewState())then
15: UpdateState (hi,R.GetNewState())
16: BackOff()
17: end

(Push Request). However, only in the case of Push request,
the machine selects a container using Container Selection
Policy denoted as CSP currently set to ratio between con-
tainer utilization and migration count to avoid containers
exhaustion.

39734 VOLUME 7, 2019

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

Algorithm 2 Master Handeling Algorithm
Input : HostRequest (ri) ,Hosts(S)
1: begin
2: X← σLT,TT(H)
3: if X = ∅ then
4: Exectute Algorithm 3
5: else
6: Execute auction across X
7: V ← Valid Bids
8: if V 6= ∅ then
9: find bx using HSP where bx ∈ V
10: respond to hi by bx
11: esle
12: Exectute Algorithm 3
13: end

A successful response indicates that the host will push or
pull a container. Nonetheless, an evacuating host that ejected
all its containers informs the master machine to elasticize the
infrastructure down. On the other hand, a rejection response
can be accompanied by a state update to start or stop evacua-
tion. Also, rejections lead to the execution of a binary expo-
nential backoff algorithm similar to the one used in wireless
networks [20].

As depicted in Figure 4, A host request reaches the master
which reacts according to Algorithm 2. The master initiates
the auction against a subset of the available hosts (candidates
list). These hosts are filtered against Logical and Testing
Thresholds denoted by LT and TT respectively. LT is exe-
cuted according to the auction type and the host’s state. So,
in the case of a Push Request, the candidate list is filled with
underutilized hosts; alternatively if none was found, it is filled
with normal hosts. On the other hand, in case of a pull request,
the candidate list is filled with overutilized hosts then with
normal in case none was found. In either case, the percentage
of the tested hosts among available and matching candidates
is filtered by TT. TT ∈ {25%, 50%, 75%, 100%}. Such as,
in the case of 100 host with 25 % as the TT, only 25 hosts are
probed.

After performing the auction, the Management Module
then tries to find an approving host according to Host Selec-
tion Policy denoted as HSP. Selection policy defines the
selection criteria between valid bids only. The proposed
algorithm utilizes a different set of host selection policies
namely Least Full,Most Full, Least Pulls, and RandomSelec-
tion. Finally, the master implements elasticity by remedia-
tion, such as if no candidates or no valid bids was found
Algorithm 3 is put into action.
Algorithm 3 describes the actions taken by the master

machine to elasticize the infrastructure. The elasticity man-
agement algorithm acts differently according to the request
type and the host state. The PowerController elasticize the
infrastructure up or down. Also, rejections can be accompa-
nied by an update in the requested state. Moreover, in some
cases, the master returns a rejection without executing any
actions.

Finally, the tested (probed) hosts act based on Algorithm4.
The host sends a valid bid only if the container addition or
removal process does not change its state. The migration is
initiated if the auction results in the selection of its bid.

Algorithm 3 Elasticity Managemnt
Input : Host Request (ri) , Hosts(H)
1: begin
2: action ← NONE
3: t ← ri.GetType()
4: snew ← ri.GetRequesterState()
5: if t = Push then
6: if (hi∈HE) then
7: action← (SetsnewtoUnder − Utilized)
8: else if HE∪HUNDER= ∅ then
9: action← Activatehost(hj)
10: else
11: if HUNDER= ∅ then
12: action← (SetsnewtoEVACUATION)
13: Executeaction and Reject ri
14: end

Algorithm 4 Probed host Procedure

Input:Request
(
rj
)
,Host (hi) ,Containers (Ci)

1: begin
2: t←ri.GetType()
3: B ← NONE
4: if t = Push then
5: Cx

j ← ri.GetContainer()

6: if Util
(
hi + Cx

j

)
< MaxTH then

7: B ← ValidBid
8: else
9: Cx

i ← max argl imitsciCSP(Ci)
10: if Cx

i 6= null and Util
(
hi − Cx

i

)
≥ MinTH then

11: B ← ValidBid
12: respond by B
13: R← Master Responce
14: if (R.GetResponce() = Selected)then
15: ExecuteMigration()
16: end

B. EVALUATION METRICS
Infrastructure elasticity affects multiple data center metrics.
For example, the change in provisioned resource changes the
load balancing, network traffic, and utilized power. For this
reason, this paper illustrates the performance of the elasticity
and its repercussions. Elasticity can be evaluated by mea-
suring the adherence between actual and required resources.
We propose using Root Mean Square Error ‘‘RMSE’’ in
measuring elasticity where RMSE determines the difference
between needed and actual provisioned machines. RMSE is

VOLUME 7, 2019 39735

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

denoted as follows:

RMSE =

√√√√ 1
N

N∑
i=0

(Hi − Ĥi)
2

(6)

Hi is the actual number of hosts, Ĥi is the optimum number
of hosts and N is the number of samples. Elasticity affects
the number of hosts, which shapes the amount of power
consumption of the data center. The power consumption is
not measured per host individually but measured by the total
data center consumptionPdc(t),

Pdc(t) =
N∑
1

Pi(t) (7)

where N is the total number of active hosts, and host power
consumption Pi is calculated as follows,

Pi = (Pmax − Pidle)× µ+ Pidle (8)

Pmax is themaximum consumed power,Pidle is the idle power,
and µ is the resource utilization percentage. Additionally,
operations like elasticity require migration and have multiple
effects on the infrastructure network. Therefore, the effect
on the network traffic will be measured in multiple metrics
namely, total migrations, total message, pull requests, and
total transmitted data.

In general, the elasticity aims for service level agreement
‘‘SLA’’ compliance management, in this work SLA is mea-
sured using two metrics namely containers downtime and
utilization SLA. The containers Downtime is the total time
the container was paused during the migrations attempts.
While the utilization SLA in a cloud data center was defined
by [21] as an indicator of compliance between the actual
and provisioned resources. SLA is the ratio between needed
and actual resources and the following equation is used to
calculate the SLA,

SLA =
N∑
i=1

Mi∑
j=1

u(hi, cj)r − u(hi, cj)a
u(hi, cj)r

(9)

u(hi, cj)r and u(hi, cj)a are required and allocated resources
for container cj on host hi and N is the number of hosts and
Mi is containers per host hi.
Lastly, Entropy was adopted by [17] to measure the infras-

tructure Load balancing capabilities. Entropy measures load
distribution using normalized entropy to compute a value
independent of the number of machines. The entropy of a
perfectly balanced load over multiple hosts approaches one.
The normalized entropy E (H) is computed as follows,

E (H) =
−
∑N

i=1 uilogui
logN

(10)

where ui is the utilization percentage of host hi and N is
the number of hosts. In conclusion, these metrics presents
conclusive measures of the data center performance under the
effect of any elasticity algorithm.

V. EXPERIMENT AND RESULT
The proposed algorithm is evaluated against the algorithms
proposed by Forman et al. [17] and Zhao and Huang [24]
across the metrics as mentioned earlier.

Forsman’s method is based Eager’s Algorithm, where a
suffocating or an underutilized machine initiates an auc-
tion across all machines. The auction selects successful bids
upon its load balancing profitability. Additionally, they utilize
Exponentially Weighted Moving Average ‘‘EWMA’’ for load
prediction.

On the other hand, Zhao and Huang [24] incubates a
periodic compare and migrate approach. At each period,
all machines check whether the existence of VMs at other
machines will benefit the overall infrastructure balance.
Zhao’s algorithm shares some similarities with Forsman; as
it: adopts a master-less philosophy, tests all available hosts,
and lacks the ability to elasticize. However, only the work
done by Zhao contains a shared memory model, implements
all applicable migrations, and does not implement any load
prediction mechanisms.

A. EXPERIMENTAL SETUP
All algorithms and policies are simulated using Container
Simulator [22] that simulates native container data center
where an isolated entity simulates each machine, container,
and policy. The data center network follows a fat tree archi-
tecture adapted from [23]. The experiment assumes a set of
Containers C distributed across hostsH with a preconfigured
start utilization percent.

The algorithm tries to elasticize the infrastructure accord-
ing to the preconfigured policies. The algorithm is bench-
marked against Forsman and Zhao. Then the effects of
the Host Selection Policies are assessed. Finally, the test-
ing threshold influence on the algorithm performance is
evaluated.

TABLE 1 shows different simulation trials. These trials
cover flash crowd behaviors using load burst and drain sce-
narios. Each trial a combination of start utilization and mid-
time action. The start utilization equalsX +U (−n, n), where
X is the utilization median value and n is the displacement
value which is set to 20. For the mid-time, the simulation
manager subjects containers to either burst or drain. These
events are implemented by subjecting half the containers to a
50% sudden change in load demand.

Finally, TABLE 2 describes the simulation parameters
such as containers’ and hosts’ size, and the number of
hosts. The parameters also include power coefficients imple-
mented from [25] and ARMA prediction coefficients adopted
from [18]. Also, the network delay model is computed using
Mathis model [19] where it mainly depends on the probability
of packet drop (P) and the Round Trip time (RTT), and
realistic parameters are adopted from [23]. Finally, the simu-
lation is considered a 6-hour snapshot of a Container-Service
cluster where the measures are collected every one min,
and the experiments are repeated for 30 times for accurate
results.

39736 VOLUME 7, 2019

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

TABLE 1. Simulation scenarios.

TABLE 2. Simulation parameter settings.

TABLE 3. Effect of selection policies in scenario 1 (mid-utilization with burst effect).

B. BENCHMARKING PROPOSED ALGORITHM
The algorithm performance is evaluated against Forman and
Zhao infrastructures management algorithms. Figure 5 illus-
trates the proposed algorithm with its peers in the first sce-
nario (Mid-Utilization with Burst effect). Figure 5(a) shows
that the proposed work achieves better elasticity and therefore
better power efficiency as shown in Figure 5(b). Figure 5(c),
illustrates the abilities of each algorithm to balance the
infrastructure where it shows a minor delay in the proposed
algorithm.

Figure 5 (d) shows the total messages accounted by each
algorithm, where the proposed work and Zhao send the least
and most amount of messages respectively. Figure 5 (e),
shows the total number ofmigrations performed by each algo-
rithm. Figure 5 (f, g, h), shows the side effects of the migra-
tions in terms of downtime, image pulls and consequently,

to the total migrated data. Moreover, Figure 5 (i) describes
the SLA violation percentage that mostly equals zero due to
the nature of the simulation case itself.

The proposed algorithm outperforms its peers in power
metrics due to its ability to adapt the number of hosts accord-
ing to the needed load. On the other hand, Forsman and Zhao
do not execute elasticity policies which maximize the utilized
power. Moreover, the proposed algorithm performs the least
number of messages due to the logical and threshold filtering
methods. Also, it accounts less entropy, more migrations,
more downtime, image pulls and transferred data because
it commits elasticity which accounts more migrations and
therefore more network usage.

Forsman sends a large number of messages as it executes
an auction against all host in every request. Moreover, Fors-
man’s profitability based selective migrations benefits them

VOLUME 7, 2019 39737

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

FIGURE 5. Algorithms comparisons (Mid-Utilization with Burst effect).

FIGURE 6. Algorithms comparisons (High-Utilization with Drain effect).

in the number of migrations performed and network metrics.
Zhao compares and migrate policy maximizes its entropy
but affects the number of messages, migrations, and network

usage. Nevertheless, sometimes Zhao’s experiences some
SLA violation due to the usage of roulette-wheel selection
algorithm that sometimes can select an overutilized host.

39738 VOLUME 7, 2019

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

FIGURE 7. Effect of testing threshold (th) (mid-utilization with burst effect).

TABLE 4. Effect of selection policies in scenario 2 (high-utilization with drain effect).

Finally, it shall be noted that the second scenario (High-
Utilization with Drain effect) depicted in Figure 6 encounters
quasi-conclusions.

C. EFFECT OF DIFFERENT SELECTION POLICIES
TABLE 3 shows the effect of host selection policy ‘‘HSP’’ on
the proposed algorithm in the first scenario (Mid-Utilization
with Burst effect) with a testing threshold ‘‘TH’’ equals
100%. Lest Full selection policy targets the host with the
least utilization; therefore it outperforms its peers in elasticity
and power consumption. However, it commits the largest
number of migrations thus biggest downtime, total pulls and
transferred data.

However, as expected, the least pulls excelled at the num-
ber of images pulls, the total number of messages, and total
transferred data. The Most Full policies and exhibits the best

performance in the migrations and consequently containers
downtime. Nevertheless, it cameworst in the elasticity, power
consumption, and total messages. Finally, the SLA is not
violated due to the nature of the scenario itself.

TABLE 4 the effect on the selection policies on the second
scenario (70 % utilization with Drain effect) with a testing
threshold (TH) equals 100%. As shown in TABLE 4 the
policies behave the same way as the first scenario, but the
results are proximate.

D. EFFECT OF TESTING THRESHOLD
Figure 7, describes the effect of the testing threshold (TT) on
the performance metrics in the first scenario (Mid-Utilization
with Burst effect) across all selection policies. As shown,
the results of 75 and 100% thresholds are almost identical
with the best achievable performance in almost all metrics

VOLUME 7, 2019 39739

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

FIGURE 8. Effect of testing threshold (th)-(high-utilization with drain effect).

except for the total messages. Nevertheless, the 50% thresh-
old is almost superior in the total migrations, containers
downtime and transferred data. Finally, it shall be noted that
the total messages increase linearly with the tested percent-
age without much of an increase in the other performance
metrics. Moreover, the threshold effects are similar in High-
Utilization with Drain effect as shown in Figure 8.

VI. CONCLUSION
This paper introduced a new infrastructure elasticity control
algorithm for a containerized cloud. The proposed algorithm
is boosting the load sharing methodology to include infras-
tructure elasticity. A series of experiments have been car-
ried out to evaluate the performance of the proposed algo-
rithm through elasticity centric metrics. The results demon-
strated the algorithm capabilities to elasticate and handle
flash crowds along with decreasing the management over-
head and maintaining proximate load balancing. As demon-
strated, the proposed algorithm is able to conserve 20% of
the power at various utilization scenarios while keeping a bal-
anced infrastructure. However, the elasticity process is based
on containers’ migrations which affect containers downtime,
pulled images and migrated data.

In addition, the algorithms showed performance variability
concerning the selection policy and testing threshold. For
example, when selection policies are applied, the Least Full
selection policy outperformance its peers in the elasticity
and power consumption, while the least pull has a supe-
rior performance in network traffic minimization. Moreover,

the results testing thresholds vindicated the advances of min-
imizing network traffic by different filtering methods without
performance degradation

Finally, future work includes applying the proposed algo-
rithm with different selection policies and to existent con-
tainer management frameworks.

REFERENCES
[1] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, ‘‘Cloud container tech-

nologies: A state-of-the-art review,’’ IEEE Trans. Cloud Comput., to be
published.

[2] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P.Merle, ‘‘Autonomic vertical
elasticity of docker containers with ELASTICDOCKER,’’ in Proc. IEEE
Int. Conf. Cloud Comput., Jun. 2017, pp. 472–479.

[3] Cgroups. Accessed: Jan. 19, 2018. [Online]. Available: https://www.
kernel.org/doc/Documentation/cgroup-v2.txt

[4] R. Dua, V. Kohli, S. Patil, and S. Patil, ‘‘Performance analysis of union and
CoW file systems with docker,’’ in Proc. Int. Conf. Comput., Anal. Secur.
Trends (CAST), 2016, pp. 550–555.

[5] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, ‘‘An updated perfor-
mance comparison of virtual machines and Linux containers,’’ in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Philadelphia, PA,
USA, 2015, pp. 171–172.

[6] C. Kan, ‘‘DoCloud: An elastic cloud platform for Web applications based
on Docker,’’ in Proc. 18th Int. Conf. Adv. Commun. Technol. (ICACT),
2016, pp. 478–483.

[7] S. G. Saez, V. Andrikopoulos, R. J. Sanchez, F. Leymann, and J. Wettinger,
‘‘Dynamic tailoring and cloud-based deployment of containerized service
middleware,’’ in Proc. IEEE 8th Int. Conf. Cloud Comput. (CLOUD),
Jun. 2015, pp. 349–356.

[8] X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, ‘‘Applica-
tion deployment using microservice and docker containers: Framework
and optimization,’’ J. Netw. Comput. Appl., vol. 119, pp. 97–109,
Oct. 2018.

39740 VOLUME 7, 2019

W. A. Hanafy et al.: New Infrastructure Elasticity Control Algorithm for Containerized Cloud

[9] C. Dupont, R. Giaffreda, and L. Capra, ‘‘Edge computing in IoT context:
Horizontal and vertical linux container migration,’’ in Proc. Global Inter-
net Things Summit (GIoTS), 2017, pp. 1–4.

[10] R. Morabito, ‘‘Virtualization on Internet of Things edge devices with
container technologies: A performance evaluation,’’ IEEE Access, vol. 5,
pp. 8835–8850, 2017.

[11] D. Zhao, N. Mandagere, G. Alatorre, M. Mohamed, and H. Ludwig,
‘‘Toward locality-aware scheduling for containerized cloud services,’’ in
Proc. IEEE Int. Conf. Big Data, Nov. 2015, pp. 263–270.

[12] A. Giaretta, N. Dragoni, andM.Mazzara, ‘‘Joining jolie to docker: Orches-
tration of microservices on a containers-as-a-service layer,’’ in Proc. Adv.
Intell. Syst. Comput., vol. 717, 2018, pp. 167–175.

[13] Y. Niu, F. Liu, X. Fei, and B. Li, ‘‘Handling flash deals with soft guarantee
in hybrid cloud,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
May 2017, pp. 1–9.

[14] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, ‘‘Elasticity in cloud
computing: State of the art and research challenges,’’ IEEE Trans. Services
Comput., vol. 11, no. 2, pp. 430–447, Mar./Apr. 2018.

[15] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, ‘‘A frame-
work and algorithm for energy efficient container consolidation in cloud
data centers,’’ in Proc. 8th IEEE Int. Conf. Data Sci. Data Intensive Syst.,
8th IEEE Int. Conf. Cyber, Phys. Social Comput., 11th IEEE Int. Conf.
Green Comput. Commun., Dec. 2015, pp. 368–375.

[16] D. L. Eager, E. D. Lazowska, and J. Zahorjan, ‘‘Adaptive load sharing in
homogeneous distributed systems,’’ IEEE Trans. Softw. Eng., vol. SE-12,
no. 5, pp. 662–675, May 1986.

[17] M. Forsman, A. Glad, L. Lundberg, and D. Ilie, ‘‘Algorithms for automated
live migration of virtual machines,’’ J. Syst. Softw., vol. 101, pp. 110–126,
Mar. 2015.

[18] N. Roy, A. Dubey, and A. Gokhale, ‘‘Efficient autoscaling in the cloud
using predictive models for workload forecasting,’’ in Proc. IEEE 4th Int.
Conf. Cloud Comput. (CLOUD), Jul. 2011, pp. 500–507.

[19] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, ‘‘The macroscopic behavior
of the TCP congestion avoidance algorithm,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 27, no. 3, pp. 67–82, 1997.

[20] Part 3: Carrier Sense Multiple Access With Collision Detect on
(CSMA/CD) AccessMethod and Physical Layer Specifications, IEEEStan-
dard 802.3, 2000.

[21] A. Beloglazov and R. Buyya, ‘‘Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,’’ Concurrency
Comput., Pract. Exper., vol. 24, no. 13, pp. 1397–1420, Sep. 2012.

[22] W. A. Hanafy. (2018). Net Container Simulator. [Online]. Available:
https://github.com/washraf/.NetContainerSimulator

[23] C. Guo et al., ‘‘Pingmesh: A large-scale system for data center network
latency measurement and analysis,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, pp. 139–152, 2015.

[24] Y. Zhao and W. Huang, ‘‘Adaptive distributed load balancing algorithm
based on live migration of virtual machines in cloud,’’ in Proc. 5th Int.
Joint Conf. (INC, IMS IDC), 2009, pp. 170–175.

[25] R. I. Dinita, G. Wilson, A. Winckles, M. Cirstea, and A. Jones, ‘‘Hardware
loads and power consumption in cloud computing environments,’’ in Proc.
IEEE Int. Conf. Ind. Technol., Feb. 2013, pp. 1291–1296.

WALID A. HANAFY received the B.Sc. andM.Sc.
degrees in computer engineering from the Faculty
of Engineering, Helwan University, in 2011 and
2018, respectively, where he is currently a Teach-
ing Assistant, involved in many of its research
projects. His current research interests include
cloud computing, distributed systems, software
architecture, software automation, and machine
learning.

AMR E. MOHAMED received the Ph.D. degree
in signal processing from Helwan University as a
joint supervision (channel) grant with Connecticut
University, Connecticut, USA, 2011. He is cur-
rently an Assistant Professor of electronics, com-
munication, and computer engineering with the
Faculty of Engineering, Helwan University. His
research interests include signal processing, multi-
agent cooperative systems, and cloud computing.

SAMEH A. SALEM received the B.Sc. and
M.Sc. degrees in communications and electron-
ics engineering from Helwan University, Helwan,
Egypt, in 1998 and 2003, respectively, and Ph.D.
degree in engineering from the Department of
Electrical Engineering and Electronics, University
of Liverpool, U.K., in 2008. In 2008, he was
appointed as an Assistant Professor with the
Department of Electronics, Communication, and
Computer Engineering, Faculty of Engineering,

Helwan University. He is also selected to be a Coordinator and an Aca-
demic Advisor with the Department of Communication and Information
Technology, Uninettuno University, Italy, incorporation with the Faculty of
Engineering, Helwan University. Furthermore, he is reviewing several pro-
posals and research projects at the National Telecommunication Regulatory
Authority (NTRA), Egypt. Moreover, he is the Postgraduate Coordinator
between the Faculty of Engineering, Helwan University, and the Faculty of
Engineering Sciences, Sinai University. In 2014, he was promoted to be an
Associate Professor, and received an Honorary Research Fellow Position
with the Department of Electrical Engineering and Electronics, University
of Liverpool. He is currently a Consultant with the Egyptian Computer
Emergency Response Team (EG-CERT) and the Head of Electronics, Com-
munications, and Computer Engineering Department, Helwan University.
His research interests include clustering algorithms, machine learning, data
mining, parallel computing, and cloud computing.

VOLUME 7, 2019 39741

	INTRODUCTION
	NOTATIONS, ASSUMPTIONS, AND PROBLEM FORMULATION
	NOTATIONS
	ASSUMPTIONS
	PROBLEM FORMULATION – OPTIMAL ELASTICITY CONTROL PROBLEM

	COMPONENTS AND STATES
	SYSTEM COMPONENTS
	HOST STATES

	METHODOLOGY
	PROPOSED ALGORITHM
	EVALUATION METRICS

	EXPERIMENT AND RESULT
	EXPERIMENTAL SETUP
	BENCHMARKING PROPOSED ALGORITHM
	EFFECT OF DIFFERENT SELECTION POLICIES
	EFFECT OF TESTING THRESHOLD

	CONCLUSION
	REFERENCES
	Biographies
	WALID A. HANAFY
	AMR E. MOHAMED
	SAMEH A. SALEM

