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ABSTRACT Feature-based (FB) algorithms for automatic modulation recognition of radar signals have
received much attention since they are usually simple to realize. However, existing FB approaches usually
focus on several specific modulations and fail when applied to various modulations. To overcome this issue,
we propose a simple and effective FB algorithm based on Manhattan distance-based features (MDBFs)
in this paper. MDBFs are new features for radar signals that can be applied for recognition of different
modulations. The main contributions of this paper are as follows. First, radar signals are represented as
wavelet ridges, which includes important information that can distinguish different modulations, and the
piecewise aggregate approximation algorithm is introduced to reduce signal dimensions. Then, the dynamic
time warping averaging is employed instead of the traditional k-means algorithm to extract realistic centroids
for each class. Finally, the Manhattan distances between each data sample and each centroid are used to
construct MDBFs, and decisions are made using the k-nearest neighbor. In addition, we prove that MDBFs
have better class separability power than the Euclidean-based features. MDBFs contain information about
the correlations between different classes, whichmeans that these features suitable for discriminating various
modulations when their class distributions do not overlap badly in representation space. The extensive
experiments on a synthetic dataset demonstrate the outstanding performance of our proposed method and
are hardly affected by the pulse width of the signal. Thus, the proposed method with the effectiveness and
robustness could be a promising modulation recognition method of the radar signal.

INDEX TERMS Modulation recognition, Manhattan distance-based feature, wavelet ridge, dynamic time
warping averaging, class centroid.

I. INTRODUCTION
Modulation recognition is an important signal processing task
in radar reconnaissance, and it can be divided into intentional
modulation (IMOP) recognition and unintentional modula-
tion (UMOP) [1] recognition. IMOP is designed for ad hoc
objectives, such as reducing the probability of interception,
and improving the capability of anti-jamming and detec-
tion [2]. In the early IMOP recognition studies, five param-
eters, including carrier frequency (CF), PW, pulse amplitude
(PA), angle of arrival (AOA) and time of arrival (TOA), were
used to identify the IMOP. However, with the increasing com-
plexity of the electromagnetic environment, the recognition
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performance of the five parameters is insufficient for various
kinds of complicated and hybrid IMOPs.

To improve IMOP recognition performance, more studies
have begun focused on extracting the significant features
of radar signals that can be used to make decisions; such
methods are called feature-based (FB) methods. FB methods
are simple to implement and achieve near-optimal perfor-
mance when designed properly [3]. In order to make learning
algorithms less dependent on feature engineering, learning
good representations of data have become a hot issue in recent
years, especially themethods using deep learning-based, such
methods are called representation-based (RB) methods [4].
However, the recognition processing of deep learning-based
methods is hardly to explain.
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In this research, we propose a novel FB approach for both
basic modulations and complicated or hybrid modulations,
for which hybrid recognition method based on Manhattan
distance-based features (MDBFs) and k-NN is used. This
method contains three parts: radar signal representation,
feature extraction and decision making. In the first part,
we reconstruct the radar signal as a wavelet ridge that rep-
resents the instantaneous frequency of the radar signals; and
different modulations have different overall wavelet ridge
shape. Consequently, extracting the wavelet ridge of a signal
is widely used in modulation recognition problems. In the
second part, MDBF, which is a novel distance-based feature
that improves classification performance, is proposed. Simi-
lar to the classic method, we first need to obtain exact cen-
troids that directly impact the recognition performance of the
features. Thus, we use the DTW [5], [6] barycenter averaging
(DBA) algorithm instead of the traditional k-means to obtain
realistic centroids for each class. Subsequently, MDBFs are
constructed by calculating the Manhattan distance between
the data and each centroid. Distance-based features have been
applied to many pattern classification problems, e.g., intru-
sion detection [7], speech detection [8], and hand geometry
authentication [9].

Before extracting the MDBFs, we first use the singu-
lar value decomposition (SVD) [10] denoising algorithm to
remove the impact of noise on the recognition performance.
Then, to reduce the time cost, we reduce the dimensions
of data using the PAA algorithm [11]. Finally, we nor-
malize the data to eliminate the influence of amplitude.
In the last part, MDBFs are used for recognition using
k-NN. Simulation results show that our method achieves
higher recognition accuracy than the two existing meth-
ods for the nine modulations, one classic FB method pro-
posed in [2] and another distance-based feature proposed
in [7].

The rest of this paper is organized as follows.
Section 2 reviews the work related to modulation recognition.
The proposed recognition method is briefly reviewed in
Section 3. Section 4 presents a detailed description of how
the radar signal is transformed into the wavelet ridge. MDBF
extraction and time complexity are presented in Section 5.
The simulation results and analysis are presented in Section
6, and Section 7 provides the conclusions.

II. RELATED WORK OF MODULATION RECOGNITION
A. FEATURE-BASED METHOD
Hybrid expert features and machine learning algorithms are
valuable research subject in modulation recognition because
they are easy to implement, and many methods have been
proposed in the past few years. These methods mainly focus
on extracting features that can effectively distinguish radar
signals of several different modulations and then predict
modulation types by using machine learning methods such
as neural network (NN), support vector machine (SVM)
or k-NN.

In this case, time-frequency analysis has attracted much
attention since it details variations in frequency with time
in a two-dimensional (2D) time-frequency space [1], [2],
[10], [11]– [24]. For example, a recognition method based
on short-time Fourier transform (STFT) with accuracies over
94% under a low signal-to-noise (SNR) for binary phase shift
keying (BPSK), quadrature phase-shift keying (QPSK), fre-
quency shift keying (FSK) and linear frequency modulation
(LFM) was proposed in [14]. The main ridge slice feature
of the ambiguity function (AF) was extracted in [22] and
combined with the kernel fuzzy c-means (KFC) algorithm to
achieve higher recognition accuracy than the classic method
for six modulations. Seven-dimensional statistical features
of wavelet ridge were extracted in [2], and high recogni-
tion accuracy was achieved for six basic modulations using
an SVM classifier. A two-dimensional feature of the time-
frequency-energy distribution was extracted for classification
using the relevance vector machine (RVM) [24]. This method
can recognize three modulations: LFM, BPSK and QPSK.
The above features are directly extracted from the time-
frequency distribution (TFD) series, and they describe instan-
taneous properties of the radar signal. Additionally, some of
expert features, called image features, are obtained from the
TFD image. For example, in [16] and [25], Choi-Williams
time-frequency distribution (CWD) image processing was
used to extract radar signal features and successfully recog-
nition several modulations at low SNR. In [26], the signal
features were extracted based on STFT image processing,
and then a binary decision tree was exploited to obtain an
accuracy over 90% at low SNR for four modulations. Note
that image processing, including image binarization, image
enhancement, and image opening operation, is crucial for
image features extractions,

Nevertheless, most expert features that rely on the analysis
of a mathematical model of the signal leads to fail when
applied to various modulations because they focus on several
specific modulations only. In this paper, we present a univer-
sal data-driven approach that learn features from an existing
training dataset and is suitable for various modulations.

B. DEEP LEARNING-BASED METHOD
With the development of deep learning, an increasing number
of deep learning methods have been used in modulation
recognition. These methods are used to designed end-to-end
models, including deep neural networks, such as convolu-
tional neural network (CNN), the deep auto-encoder net-
work (DAE), deep belief network (DBN) to auto-learn new
features for data representations and make decisions These
approaches can generally achieve better recognition accuracy
than classic FB methods.

Converting radar signals to time-frequency representations
as input of deep learning network is the most common
method. For example, in [27] and [28], using TFD array as
input of CNN to recognition different modulations. Similarly,
the modulation identification could be regarded as an image
recognition problem in which a deep learning network can
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FIGURE 1. Framework of modulation recognition based on MDBF.

be trained using TFD images of radar signal [29]– [34].
Then, the test data would be predicted using the trained deep
model. Additionally, deep learning networks were treated as
classifier for prediction in [35] and [36], using several expert
features including second order statistics features, entropy
features, instantaneous features and five classical parameters.
In fact, a procedure that treats a deep network as a classifier
can be seen as a hybrid expert features and machine learning
method.

Unfortunately, deep learnings are black box models that
cannot explain exactly how the model works, and the features
learned from deep neural networks are beyond human com-
prehension. In contrast, we explore interpretable features in
our proposed method, and each feature denotes the correla-
tion between different classes.

III. RECOGNITION FRAMEWORK OVERVIEWS
The automatic recognition of various modulations is stud-
ied in this paper. A hybrid recognition framework based on
MDBFs and k-NN is proposed, as shown inFig. 1. The frame-
work can be divided into three parts, radar signal represen-
tation, MDBFs extraction and modulation recognition using
a k-NN classifier. The second part is crucial, because the
MDBF, which can provide valuable information for the k-NN
classifier to help improve accuracy for various modulations,
is extracted. The overall framework is described in detail as
follows:

Part I. In this part, wavelet ridges are applied to reconstruct
radar signals. Let datasetDr which includes k disjoint classes,
and De be the reconstructed training dataset and the test
dataset, respectively.

Part II. Each wavelet ridge sample in Dr first undergoes
data denoising to eliminate the influence of noise. Then each
sample undergoes dimensionality reduction to reduce the
time cost and keep the length of each sample consistent. Fur-
thermore, considering that MDBFs includes structural infor-
mation only, energy normalization is necessary to eliminate
the effect of the amplitude. After the above preprocessing,
k different centroids Dc = {c1, · · · , ck} can be extracted
from Dr using the DBA algorithm. Finally, we can obtain a
k-dimensional MDBFs by computing theManhattan distance
between it and ci, where i = 1, · · · , k .
Part III. To perform the recognition, Dr and De are first

transformed into new datasets D
′

r and D
′

e, respectively. Each
sample in D

′

r and D
′

e is formed of k-dimensional MDBF.
In the last, the decision results ofD

′

e are achieved by the k-NN
classifier based on the D

′

r .
As we know, k-NN is a simple and effective classification

algorithm, and has been applied in many practical classifica-
tion tasks [37]– [40]. In this paper, the k-NN algorithm was
chosen instead of the SVM which is widely used for three
reasons. First, SVM have many parameters to tune, while k-
NN have one parameter only and easy to implement [39],
whichmakes our experiments easy to replicate. Second, SVM
require a large dataset tomaximumprediction accuracy, while
k-NN require a relatively small [38]. Third, the performance
of the 1-NN (k = 1) directly reflects the power of different
features used [39]. In fact, MDBFs can obtain good perfor-
mance with all classical classification algorithm. For com-
parison to classification power of features better and replicate
experiments easy, the 1-NN classifier has been selected in our
paper.

For Part I and Part II, there are three important issues that
need to be addressed regarding the extraction of the wavelet
ridge of the signal, the identification of the centroids of each
class and the calculate the MDBFs. These issues will be
addressed in the following sections.

IV. RADAR SIGNAL REPRESENTATION USING
WAVELET RIDGE
In this section, we employ wavelet ridge to represent the radar
signal because it can reflect the change of frequency in a 2D
time-frequency space and because the structural information
of the wavelet ridge differs for different modulations. Theo-
retical studies have illustrated that the wavelet ridge includes
all information of the original radar signal [41], [42].

For a real radar signal s(t), let its analytic signal be Zs(t),
which can be calculated by

Zs(t) = s(t)+ iH [s(t)]=A(t)eiϕ(t) (1)

where the function H [s(t)] is the Hilbert transform of s(t),
and s(t) can be written as

s(t) = A(t)cosϕ(t) (2)

where A(t) denotes the instantaneous amplitude. From Equa-
tion (1), the instantaneous frequency of signal s(t) is
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FIGURE 2. Examples of wavelet ridge curves for six different modulations, including a CW signal, an LFM signal, a BPSK signal, a QPSK signal,
a BFSK signal and NLFM.

defined as

ω(t) =
1
2π

dϕ(t)
dt

(3)

Assuming that the analytic asymptotic wavelet is of the form
ψ(t) = Aψ (t)eiθψ (t), the wavelet transform (WT) of s(t) can
be calculated as

Wz(a, b, ψ) = 〈s, ψ〉 =
1
2
〈Zs, ψ〉

=
1
2a

∫
∞

−∞

A(t)Aψ (
t − b
a

) · exp(iφa,b(t))dt (4)

where

φa,b(t) = ϕ(t)-θψ (t − b
/
a) (5)

According to the stationary phase theorem given in [41],
Equations (4) can be approximated as

Wz(a, b, ψ) ≈
1
2a

√
2πexp(i(π

/
4)sgn(φ

′′

a,b(ts)))√∣∣∣φ ′′a,b(ts)∣∣∣
•A(t0)Aψ (

ts − b
a

)exp(iφa,b(ts)) (6)

Letting the phase coefficients ofWz(a, b, ψ) be

8(a, b)=arg[Wz(a, b, ψ)]=
π

4
sgn[φ

′′

a,b(ts)]+φa,b(ts) (7)

the derivative of 8(a, b) with respect to b can be calculated
as

∂8(a, b)
∂b

∣∣∣∣ ts=b = θ
′

ψ (0)

a
(8)

The wavelet ridge is defined as R = {(ar , b) , ts (ar , b) = b}
and Equation (8) indicates that wavelet point ar can be calcu-
lated by a simple iterating algorithm [42]. Here, we assume
that the discrete sampled radar signal can be expressed as
follows:

s(k) = s(kTs),k=0,1, · · · ,N − 1 (9)

where Ts is the sampling cycle, and N is the number of
sampling points. Let Db(8(a, b)) be the discrete differential
function of 8(a, b) with respect to b, and (ar (kTs),kTs) is the
ridge point with respect to kTs. Thus, the extraction algorithm
of the wavelet ridge is as follows:

Step 1. Let a0(kTs) be the initial estimator of ar (kTs).
Step 2. Calculate ai+1(kTs) according to Equation (10),

i.e., the value can be calculated by

ai+1(kTs) = ω0
/
Db(8(ai, kTs)) (10)

Step 3. Assuming that ξ is a small fixed positive value of
the required precision, when ai+1(kTs) satisfies∣∣(ai+1(kTs)− ai(kTs))/ai(kTs)∣∣ < ξ (11)

the algorithm finds a ridge point, and consequently ar (kTs) is
equal to ai+1(kTs). In addition, it is necessary to update the
value of k to k = k + 1.
Step 4. Repeat Step 2 and Step 3 until k > N -1; then, all

ridges are connected to a wavelet ridge [41].
Fig. 2 shows an example of the six types of wavelet

ridges of radar signals, including a wave pulse with
constant frequency (CW), LFM, BPSK, QPSK, binary
frequency-shift keying (BFSK) and nonlinear frequency
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modulation (NLFM). The complex morlet wavelet has
been selected as the mother wavelet for the WT, because
its good time-frequency localization [42]. Fig. 2 shows
that different IMOPs have different wavelet ridge curve
structures.

V. FEATURE EXTRACTION
The goal of this section is to extract theMDBFs. Compared to
the traditional features extracted by analyzing the mathemat-
ical models of signals, our method is a data-driven approach
that directly mines the valuable information in the dataset.
Our method can classify for the IMOPs more accurately and
is not limited to basic modulations. One of the reasons for
this result is that, the traditional features are generally highly
abstract and subtle information is ignored, while the MDBFs
are extracted by calculating the distance between the data
and each disjoint centroid and thus, includes global structural
information. In this section, the MDBF extraction method
will be introduced in detail. We use the Manhattan metric
instead of the conventional Euclidean metric so that the
MDBFs achieves better class separability power, we provide
a simple proof in this section.

A. DATA PREPROCESSING
Three different pre-processing steps, i.e., signal denoising,
dimensionality reductionandenergy normalization will be
considered before extracting MDBFs.

1) DATA DENOISING
Considering that received radar signal is inevitably affected
by noise in a complex electromagnetic environment, the over-
all shape of the wavelet ridge will be seriously distorted when
the SNR is too low. Thus, we employ the SVD denoising
method to eliminate the influence of the noise components
of the wavelet ridge in this paper.

2) DIMENSIONALITY REDUCTION
Employing dimensionality reduction approach can reduces
the time cost require for feature calculation and results in
consistent dimensions for each sample. Here, we employ the
PAA algorithm for the dimensionality reduction, which is
described as follows:

For a m-dimensional wavelet ridge wm = {x1, · · · , xm},
let its N -dimensional vector after dimensionality reduction
be wN = {y1, · · · , yN }, The i th element of w is calculated
by the following equation:

yi =
N
m

m
N i∑

j= m
N (i−1)+1

xj (12)

Intuitively, wm is first divided into N equal-sized ‘‘frames,’’
and then, each mean value of the data that falls within each
frame is calculated, and a new vector of these values becomes
the reduced representation [11].

3) ENERGY NORMALIZATION
To eliminate the influence of the amplitude, energy normal-
ization is used. For a wavelet ridge samplewN={y1, · · · , yN },
let its normalized vector be wN={y1, · · · , yN }. Thus, the ith
element of wN can be calculated as

yi =
yi√∑N
j=1 y

2
j

(13)

B. CENTROID EXTRACTION USING DBA
The k-means algorithm is generally used to identify centroids
(averaging object) in many studies on distance-based feature
extraction [7], [43] since it is easy to realize and its computa-
tional cost is low. However, k-means has two drawbacks. (i)
The k-means algorithm computes the centroid of the clusters
using Euclidean averaging, but Euclidean averaging may
produce spurious objects that do not resemble any parent
objects because Euclidean averaging is susceptible to the
dislocation and displacement of data. (ii) The cluster of each
iteration is not disjointed from each other clusters. To avoid
these drawbacks, a global averaging approach under dynamic
time warping is presented in [44] and [45] is used in our
method. The method averages the sample for each class and
is insensitive to warped data. DBA is considered the state-of-
the-art method for extracting centroids, its algorithm has been
described in detail in [44], and a proof of its convergence is
presented in [45].

Fig. 3 shows an example to compare the performance of
DBA with that of Euclidean averaging. Fig. 3 (a) shows
three different probability density functions (PDFs) of nor-
mal distribution. When averaged with Euclidean averaging,
the result exhibits a spurious peak that does not exist in
arbitrary parent objects (shown inFig. 3 (b)), while the results
from the DBA algorithm is resemble to the parent objects
(shown in Fig. 3 (c)).

C. DEFINITION OF MDBF AND EXTRACTION METHOD
After the centroid of each class has been identified, the dis-
tances between the data and each centroid can be calculated.
The Euclidean and Manhattan distance metrics are widely
used because of their simplicity and effectiveness. For two
data samples Q = {q1, · · · , qn} and P = {p1, · · · , pn},
the Euclidean distance is obtained as

ED (Q,P) =

√∑n

i=1
(qi − pi)2 (14)

The Manhattan distance is defined as

MD (Q,P) =
∑n

i=1
|qi − pi| (15)

In this paper, the Manhattan distance is used for the
reason that explained in Section 4.4. Because we apply
the PAA algorithm to reduce dimensionality during the
preprocessing, Equation (15) will be rewritten to guar-
antee that there are no false dismissals [11]. Sup-
pose an n-dimensional data sample Q is reduced to an
N -dimensional sample Q =

{
q1, · · · , qN

}
. Then, the
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FIGURE 3. Examples of extracting a centroid using the DBA algorithm and Euclidean averaging: (a) three types of normal distribution curves with
different means (µ) and standard deviations (σ ); (b) extracting centroid using Euclidean averaging; and (c) extracting a centroid using the DBA
algorithm.

Manhattan distance between Q and another data sample
P̄ = {p̄1, · · · , p̄N } can be calculated as

MD
(
Q,P

)
=

∑N

i=1

∣∣qi − pi∣∣ ∗√ n
N

(16)

Wewill use Equation (16) to calculate the distance between
the data sample and each centroid. Assume k different cen-
troids Dc = {c1, · · · , ck} have been identified, where ci
(i = 1, · · · , k) is an N -dimensional vector. Therefore, the k-
dimensional MDBFs of Q can be calculated. The ith MDBF
feature value of Q is defined as

MDBF (i) = MD
(
Q̄, ci

)
, i = 1, · · · , k (17)

For an arbitrary n-dimensional data sample, assume
that k disjoint centroids have been identified; then, its
k-dimensionalMDBFs extraction procedure can be described
in three steps:

Step 1. Transform the radar signal to the wavelet ridge.
Step 2. Preprocess the wavelet ridge sample using the SVD

denoising method, the PAA algorithm and energy normaliza-
tion.

Step 3. Calculate the Manhattan distance between the
wavelet ridge sample and each centroid; a k-dimensional
vector of these distance values becomes the sample represen-
tation.

D. WHY NOT EUCLIDEAN METRIC?
We want to explain the reason for choosing the Manhattan
metric instead of the Euclidean metric. For convenience,
we analyze a binary classification problem, but the conclu-
sion can be easily extended to multi-class problems. Assum-
ing that D1 and D2 are two disjoint datasets, their centroids
are c1 and c2, respectively (shown in Fig. 4). For data sample
x ∈ D1, its distance-based feature vector can be expressed as

x = [dist(x, c1), dist(x, c2)] (18)

where dist(•) represents a distance metric. Intuitively,
the larger the value of |dist(x, c1)− dist(x, c2)|, the better the
class separability power. Therefore, we need to prove that
Equation (19) is established.

MD(x, c2)−MD(x, c1) > ED(x, c2)− ED(x, c1) (19)

FIGURE 4. Distribution of centroids c1, c2, and sample x.

For convenience, we analyze in 2D space. Assuming that x =
[a, b]T, c1 = [a

′

, b
′

]T, and c2 = [c, d]T, where c > a
′

> a,
d > b

′

> b, and their relation of space is shown in Fig. 4,
let 11 be ED(x, c2)− ED(x, c1), which can be calculated as
follows:

11 =
√
(a− c)2 + (b− d)2 −

√(
a− a′

)2
+
(
b− b′

)2
=

(a− c)2 + (b− d)2 −
(
a− a

′
)2
−

(
b− b

′
)2

ED(x, c2)+ ED(x, c1)

=

(
c− a

′
) (

c− 2a+ a
′
)
+

(
d − b

′
) (

d − 2b+ b
′
)

ED(x, c2)+ ED(x, c1)
(20)

Let 12 be MD(x, c2) − MD(x, c1) so that 12 can be
calculated as:

12 = |a− c| + |b− d | −
∣∣∣a− a′ ∣∣∣− ∣∣∣b− b′ ∣∣∣

=

(
c− a

′
)
+ (d − b

′

) (21)

because (
c− 2a+ a

′
)
= (c− a)+

(
a
′

− a
)

< ED(x, c2)+ ED(x, c1) (22)

Similarly(
d − 2b+ b

′
)
< ED(x, c2)+ ED(x, c1) (23)
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FIGURE 5. T-sne visualization of classes in 2D space. (a) Distribution of the MDBFs (b) Distribution of the DSFs (c) Distribution of the WRFCCFs.

Thus, the inequality 11 < 12 is true, and Equation (19)
is established. The conclusion is also true for multiclass
problems.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
The aim of this section is to evaluate the time complexity
of extracting the MDBF in detail. Here, we analyze the time
complexity of each part, and then sum them as the total time
complexity.

An arbitrary n-dimensional wavelet ridge can be calculated
using a simple iterative search algorithm, which is described
in Section 2, with its time complexity is 2(I0 · n2 · log(n)),
where I0 is the number of iterations and n is the length of the
radar signal. After extracting the wavelet ridge, we employ
three preprocessing methods on the wavelet ridge: the elimi-
nation of the influence of noise using SVD denoising, which
has a time complexity of 2(n2), dimensionality reduction
using PAA which has a time complexity of 2(m), where
m denotes the reduced dimension, and normalization with
respect to energy, which has a linear time complexity of
2(m). For the existingM -dimensional training data, the time
complexity of the DBA algorithm is2(I ·M ·m2) [43], where
the parameter I denotes the number of iterations. Obviously,
when large training datasets or long signal lengths appear,
time complexity will increase rapidly. Finally, the calculation
of k Manhattan distances have linear complexity 2(k · m).
In fact, the wavelet ridge extraction process converges

fast [41], and the centroids can be calculated offline; thus,
the overall time complexity of extracting a MDBF is

2(DFMM) = 2
(
I0 · n2 · log(n)+ n2 + 2m+ k · m

)
= 2

(
I0 · n2 · log(n)

)
(24)

VI. SIMULATION AND RESULTS ANALYSIS
A. DATA DESCRIPTION
To evaluate the recognition performance of the proposed
approach, we simulate nine modulations: CW, LFM, BPSK,
QPSK, BFSK, NLFM, multi–discrete phase coded (MDPC)
and frequency shift keying-binary phase shift keying (FSK-
BPSK); their modulation parameters are shown in Table 1.
To improve the credibility of the simulation, we set the root

TABLE 1. Parameters for IMOP of radar signals.

mean square error (RMSE) for CF and PW to be 1 MHz and
1 µs, respectively.

According to the parameter information, each modulation
simulates twenty samples at SNR values of 10∼15 dB to train
classifier. Each modulation generates one hundred samples at
SNR values of [0, 3, 6, 9, 12] dB. Thus, a total of 900 samples
are generated at each SNR to test performance. Note that
the simulations that follow were completed in the MATLAB
environment.

B. PERFORMANCE METRIC
Considering the number of each class is identical, the correct
recognition rate (CRR) is applied to assess the discriminative
performance. CRR can be calculated by

CRR =
correct recognition samples

all samples
× 100% (25)

C. RECOGNITION PERFORMANCE
We design a simulation to verify the performance of our
method compared to the two existing methods: the distance
sum-based feature (DSF) method from [7] and the traditional
feature method from [2]. Each element of DSF is the sum of
the distances between the sample and centroids. The tradi-
tional feature is a seven-dimensional statistical feature of the
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FIGURE 6. CRR versus different SNR values for different methods, including LFM, BPSK, QPSK, BFSK, NLFM, MDPC-P1, MDPC-P2, and FSK-BPSK.

wavelet ridge, which is called the wavelet ridge frequency
cascade-connection feature (WRFCCF).

Before checking the recognition performance, we first
show the disjoint class distribution in 2D feature space. For
test data at SNRs of [0, 3, 6, 9, 12] dB in Section 5.1, DSF,
MDBF and WRFCCF are multi-dimensional vectors, thus,
we apply the t-distributed stochastic neighbor embedding
(t-SNE) algorithm [46] to visualize them in Fig. 5. The
parameters of the PAA algorithm and k-means are given in
Table 2. In generally, the class distribution has a smaller
intra-class compactness, and large inter-class scatter degree
can make the features more discriminative. From the scatter
plots shown in Fig. 5a, 5b and 5c, we can see that the class
distributions based on the MDBFs and DSFs have lower
intra-class compactness than do the WRFCCFs and a bet-
ter inter-class scatter degree. Meanwhile, the overlap of the
distribution with DSFs is greater than that of MDBFs, i.e.,
BPSK, QPSK, BFSK and MDPC are not resolved in Fig. 5b.
Thus, the class separability of MDBFs is better than those of
DSFs andWRFCCFs. Note that the dimensions in Fig. 5 have
no physical meaning and only numeric meaning.

TABLE 2. Parameter settings for the algorithms used in this paper. Let η

be the dimension of the transformed space we wish to reduce.

k k
k k

Here, we apply the k-NN classifier to obtain recognition
results, and the parameter of the classifier is given in Table 2.
To validate the performance of MDBFs, the distance features
based on the Euclidean metric (DFEM) with the DBA algo-
rithm were added into the experiment. CRR curves of nine
modulations at SNRs of [0, 3, 6, 9, 12] dB are shown in
Fig. 6. We can clearly see that the CRR of the four methods
improves with increasing SNR, and our method outperforms
DSF-based andWRFCCF-basedmethods in terms of CRR on
the simulation data and better than the DFEM-based method
(excluding for the FSK-BPSK signal). When SNR = 3 dB,
the proposed method achieves more than 90% recognition
accuracy for CW, LFM, BFSK, NLFM and P1, and the
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FIGURE 7. CRR versus η, including LFM signal, BPSK signal, QPSK signal, BFSK signal, NLFM signal, MDPC-P1 signal, MDPC-P2 signal, and
FSK-BPSK signal.

accuracy is above 90% when SNR = 9 dB, except for the
BPSK signal. For complicated and hybrid modulations (P1,
P2 and FSK-BPSK), our method obtains more than 90%
accuracy for SNR= 9 dB, while the other methods obtain low
accuracy, especially for the P1 and P2 signals. Consequently,
we can conclude that the proposed method performs better
than the compared method.

D. ANALYZING PARAMETER SENSITIVITY
In this section, the effect of the parameter η of the PAA
algorithm on the recognition accuracy will be analyzed. Let η
be 100, 150, 200, 250, 300, 350, 400, and 450, and the other
parameters are selected according to Table 1. Fig. 7 shows
the CRR versus η for nine different modulations.

Intuitively, the CRR of the nine modulations is stable under
different SNRs. For example, the parameter η hardly affects
the CRR of LFM, CW, NLFM and FSK-BPSK when SNR
> 3 dB, and has a slight effect for other modulations. We can
give the following explanation: the PAA algorithm regards the
mean value of the data in the ‘‘frame’’ as a representation of

the data in the whole ‘‘frame’’ [11]; when the signal changes
a small amount in a short time, the PAA algorithm can retain
most of the information of the signal, conversely may lose
some information. From Fig. 2, we can see that the wavelet
ridge of LFM, CW and NLFM is a smooth curve. The curve
does not change in a short time, while the wavelet ridges of
the other modulations have subtle features that are most likely
removed when using the PAA algorithm.

However, the overall effect of parameter η on recognition
performance can be ignored, and the property means that
our method is suitable for radar signals with arbitrary fea-
ture dimensions and without need to tun the parameter η to
achieve an better result.

E. ANALYZING THE IMPACT OF THE PW
In the above experiments, the PW of the signal is fixed as
1 µs. However, PW is an important modulation parameter for
the radar signal, and the radar signal received includes differ-
ent PWs in a real environment. The conventional distance-
base features do not carry the information of signal size
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FIGURE 8. Confusion matrix for CW, LFM, and BPSK with different PWs
when SNR = 12 dB.

(PW for the radar signal), although they are well applied to
intrusion detection and speech detection. Different from the
traditional distance-based features, the MDBFs are defined
with the information of signal size and can identify modula-
tions with different PWs in theory. In this section, the impact
of the PWs of CW, LFM, and BPSK is discussed for MDBFs
and WRFCCFs.

Each modulation simulates twenty samples to train the
k-NN classifier at SNR values between 10 dB and 15 dB, and
one hundred samples under SNR= 12 dB for testing. Let PW
be 5 µs, 10 µs, 15 µs, and other parameters are set as listed
in Table 1.

The confusion matrix for CW, LFM, and BPSK when
SNR = 12 dB is shown in Fig 8. As suggested by the fig-
ure, MDBF-based method can discriminate modulations with
different PWs very well, while WRFCCF-based method have
difficulty discriminating the CWwith different PWs. MDBF-
based method can completely identify the LFM signal, yet on
the CW signal and BPSK signals, it shows some inaccuracy,
primarily because the shape of the wavelet ridge is distorted
by noise.

VII. CONCLUSION
In this paper, a distance-based feature based on theManhattan
distance and the k-NN classifier for IMOP recognition
is presented. In our method, modulated signals are first

reconstructed aswavelet ridges. Subsequently, threemethods,
i.e., SVD denoising, the PAA algorithm and energy normal-
ization, are applied to preprocess the data. Finally, the cen-
troids are calculated for each class and MDBFs are extracted.
MDBFs are calculated as by the Manhattan distance between
the sample and each centroid. Although time complexity is
high in the case of large training datasets or long signal
lengths, our method can achieve higher accuracy than the
two existing methods. The second simulation shows that our
method has robust recognition performance over a wide range
of values for parameter η for the PAA algorithm. Moreover,
the ability of the MDBFs to separate modulations with differ-
ent PWs is validated though the last experiment. However, the
proposed method is realized based on some known patterns,
and future work will focus on applying the technique to an
unknown modulated signal.
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