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ABSTRACT Conditional generative adversarial networks (cGANs) are used in various transformation
applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs
have been applied to the transformation of still images, but their use could be extended to the transformation
of video contents, which has a much larger market. This paper considers problems with the cGAN-based
transformation of video contents. The major problem is flickering caused by the discontinuity between
adjacent image frames. Several postprocessing algorithms have been proposed to reduce that effect after
transformation. We propose a recursive cGAN in which the previous output frame is used as an input in
addition to the current input frame to reduce the flickering effect without losing the objective quality of
each image. Compared with previous postprocessing algorithms, our approach performed better in terms of
various evaluation metrics for video contents.

INDEX TERMS Image-to-image transformation, generative adversarial network, reducing flicker, video
transformation.

I. INTRODUCTION
Image-to-image transformation is the transformation of an
input image into a desired output image. Many applications
have already been developed including sketch2photo [11],
which converts a sketch image to a real image, and image
quilting [3], which synthesizes an image with a desired
shape and texture. More examples are colorization [4],
image denoising [1], [6], image inpainting [2], and super-
resolution [5].

In recent years, convolutional neural networks (CNNs)
have been used to perform various image-to-image trans-
formation tasks [7]–[10]. CNN learns to minimize the loss
function, which is the goal of evaluating the quality of the
results. The learning process is automated, but it requires
a lot of manual effort to design an effective loss function.
However, if we simply set CNN’s loss function to minimize
the Euclidean distance between the predicted pixels and the
ground truth pixels, it would tend to cause blurry results. This
is because the Euclidean distance is minimized by averaging
all valid outputs. Setting up a loss function that forces CNN
to do what we really want is a difficult problem and generally
requires specialized knowledge.

The associate editor coordinating the review of this manuscript and
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Therefore, in GANs [15], the loss function is automatically
learned (instead of setting a specific loss function) so that pre-
dicted pixels and ground truth are not distinguished. GANs
simultaneously perform faking and identifying in the learning
process so that the generated distribution becomes equal to
the true distribution. GANs consist of a generative network
and a discriminative network. In GANs, the discriminative
network learns to distinguish the generated image from the
ground truth, while at the same time the generative network
learns the true distribution by faking the discriminative net-
work. Therefore, GANs have been widely used for creating
images [38]–[40].

GANs learn only the true distribution of data, but condi-
tional GANs (cGANs [16]) can learn the conditional distribu-
tion of data. A generative network of cGANs uses the noise
and condition data together as input, whereas a generative
network of GANs uses only noise. Thus, we can use cGANs
for image transformation. A paired image transformation
program called pix2pix [12] has already been developed for
applications such as those shown in Fig. 1. This makes it
possible to create various applications without specialized
knowledge of the application what we want to make. Using
this cGAN we can also make generative models that are
affected by the output of previous frames.

Pix2pix requires a paired input-target data set. There-
fore, it is difficult to use in applications that lack paired
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FIGURE 1. Image-to-image transformation tasks. Many tasks in computer
vision and image processing can be regarded as image-to-image
transformations, such as Sobel filters, sharpness, and denoising. If we use
such image-to-image transformation to transform image sequences,
the quality of the output sequence is reduced by flicker because the
image-to-image transformation does not account for the relationship
between frames. Therefore, we proposed a model that can reduce flicker
in image sequence transformation between paired image sequences.

input-target data sets. For example, if we want to use pix2pix
to convert horses into zebras, we need pictures of horses and
zebras in the same pose, same size, and same background.
Preparing such a data set would be very difficult. To overcome
that drawback, Cycle GAN [14] and Disco GAN [17] were
developed. Star GAN [18] was then developed to reduce the
number of generative networks and discriminative networks
in CycleGAN. CycleGAN is for cases in which the shape of
the input image and the target image are similar, such as a
horse-to-zebra conversion. DiscoGAN is for different types
of input and target images, such as a chair-to-bag conversion.
A super-resolution GAN (SRGAN [13]) was developed to
transform a low-quality image into a high-quality image. Var-
ious other image-to-image transformation applications using
GANs and cGANs have also been developed.

Any of those image transformation models could be
extended to the transformation of a sequence of images, that
is, video. However, using them in that way causes severe
flicker because a network of GANs treats each image in a
sequence as new data. Because GANs do not use that data
when learning, they generate noise during transformation.

The problem is that this noise appears arbitrarily around
each output image even if the input changes only slightly.
As a result, applying a GAN-based image-to-image trans-
formation to image sequences produces flicker, even when
generating video directly using a GAN [20].

The flicker is not greatly reduced by allowing the previous
input frame to affect the current output frame, not even by
using the previous input frame as the conditional parameter,
because the previous input frame is irrelevant to the noise
generated in the current frame. However, we can effectively
use the output of the previous frame to reduce the noise when
generating the current frame.

In this paper, we present a novel model to drastically
reduce flicker by using the output of the previous frame. This

model can be applied to both image sequence transformation
and image-to-image transformation. The contributions of this
paper are as follows.

1) We propose a method to add and modify layers in a
generative network to reduce flicker.

2) We propose a loss function and a learning method for
training the modified generative network.

3) When there is a reference image that is flicker-
free, we propose and use metrics to measure flicker.
We show that the proposed model has little effect on
the image quality and greatly reduces the flicker in an
image sequence transformation.

The rest of the paper is organized as follows. First, we briefly
introduce related work in Section II. Section III explains the
proposed model, and Section IV describes the data set used to
train the proposed model. We experiment with the proposed
model in Section V and discuss the results of experiment in
Section VI. We present the overall results of this paper in
Section VII.

II. RELATED WORK
This section briefly introduces generative adversarial net-
works (GANs), conditional GANs (cGANs), and pix2pix,
an image-to-image transformation application using cGANs.
We also introduce the flicker phenomenon and propose met-
rics to measure flicker.

A. GENERATIVE ADVERSARIAL NETWORKS
GANs are a technology that has been attracting attention
for the past four years and has been applied to many areas.
In GANs, a generative network learns the distribution of
data, and a discriminative network determines whether a
corresponding sample bas been generated from a generative
network or a target sample. The two networks have opposing
goals for one value function, and they are learned simultane-
ously for their own purposes.

The goal of the generative network is to learn the distri-
bution of data. First, we define input noise variables Pz(z).
Let Pdata be the distribution of the data to be learned, and
let x be the data variable. Let Pg be the generated distribution
that is learned by the generative network. Next, letG(z) be the
mapping from noise z to the data space. LetG be a function of
a generative network and D be a function of a discriminative
network with a scalar output value. D(x) is the probability
that x comes from the data rather than the generative network.
We train these two networks simultaneously to satisfy Eq. (1).

min
G

max
D

V (G,D) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pz(z)[log 1− D(G(z))]. (1)

Eq. (1) maximizes the value functionV forD, and causesG
to minimize [log 1− D(G(z))], the second term of V . In the
discriminative network, the parameter is updated to ensure
that D(G(z)) is 0 and D(x) is 1. That is, D is learned to
distinguish whether a sample is from x or Pg, andG is learned
so that D cannot distinguish whether the sample comes from
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x or Pg. This model is thus called generative adversarial
networks because D and G learn in ways hostile to the same
loss function and thereby determine the distribution of data.

A cGANs adds a condition y to a conventional GAN, and
its objective is Eq. (2).

min
G

max
D

V (G,D) = Ex∼Pdata(x)[logD(x|y)]

+Ez∼Pz(z)[log 1− D(G(z|y))]. (2)

In other words, the GANs update the parameters of the
generative network so that Pg is approximately equal to the
probability density of the data, and cGANs update the param-
eters of the generative network so that the conditional prob-
ability density and Pg become approximately equal. Here,
both GANs and cGANs learn a distribution by deceiving the
discriminative network. This means that GANs approximate
Pg to Pdata by maximizing the likelihood of Pg and Pdata.
However, not all the samples can be included in the data
space. Therefore, the system maximizes the likelihood of Pg
and Pdata using only some samples(i.e., KL(Pg|Pdata) cannot
be 0. Any time an input datum is included in the data space but
not used for learning, random noise is generated in the output,
which causes flicker in the image sequence. Of course, long-
term learning can reduce the value of KL(Pg|Pdata), but that
runs the risk of overfitting to the samples used in learning.

B. PAIRED IMAGE TRANSFORMATION WITH cGANs
Pix2pix [12], which offers image-to-image transformation
with cGANs, uses an encoder-decoder network and the
U-Net architecture for the generative network. U-Net is an
encoder-decoder network with skip connections added from
the encoder stack to the decoder stack. Pix2pix uses a patch-
GAN, also called a Markovian discriminative network, as the
discriminative network to increase the influence of the input
features missed by the encoder. In other words, patchGAN
can distinguishwhether a sample image is fake or not by using
patch-sized parts of the sample image. Maximizing the patch
size will cause the discriminative network to use the entire
sample image and is called imageGAN.Minimizing the patch
size allows the discriminative network to use only the pixels
included in the sample image and is called pixelGAN. The
larger the patch size, the better the quality of the result, but
only to a certain patch size. Because the optimal patch size
depends on parameters such as the size of the input image and
the object size in the input image, imageGAN can be used
for its convenient implementation. For an image-to-image
transformation from X to Y , let Pdata(x) be the distribution
of x, Pdata(y) be the distribution of y, and Pz(z) be the prior
probability distribution of noise. The loss function of the
cGAN is shown in Eq. (3).

LcGAN (G,D) = Ex∼Pdata(x),y∼Pdata(y)[logD(x, y)]
+Ex∼Pdata(x),z∼Pz(z)[log 1− D(x,G(x, z))].

(3)

Unlike in GANs, x is additionally input to D and
G. Thus, cGANs give x as a condition to generate and

FIGURE 2. (a) An image sequence with global flicker. (b) Corresponding
luminance histograms. (c) The sequence after global flicker correction
using midway equalization [28]. (d) Luminance histograms of the result of
midway equalization.

discriminate y. That is,G learns themapping fromX to Y with
a conditional discriminative network. Moreover, a previous
study [29] showed that it is more beneficial to use traditional
losses, such as L1 and L2 distances, together with the cGAN
loss and that L1 distances are less blurring than L2 distances.
Thus, the L1 distance loss (as in Eq. (4)) is used with the
cGAN loss function.

LL1(G) = Ex∼Pdata(x),y∼Pdata(y),z∼Pz(z)[‖y− G(x, z)‖1]. (4)

Therefore, the final objective function of transformation
applications from X to Y using cGANs is shown in Eq. (5)

G∗ = argmin
G

max
D

LcGAN (G,D)+ λLL1(G) (5)

λ is the weight value of L1 loss.

C. FLICKER
Generally, flicker occurs when the light exposure is not con-
stant during image recording. That is, it occurs when there
is a flicker in the lighting where the picture is taken, and
a flicker occurs when the picture capture period does not
match the period of the lighting flicker cycle. In this case,
flicker usually happens globally, so it can be solved using
a simple postprocessing method such as histogram equaliza-
tion. For example, as shown in Fig. 2, the flicker caused by a
global intensity change can be greatly reduced through simple
histogram equalization and histogram transformation. Fig. 2
(a) and (b) show an image sequence with global flicker and
the luminance histogram of each frame of the corresponding
image sequence, respectively. Fig. 2 (c) is an image sequence
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FIGURE 3. Local flicker generated by image-to-image transformation with
cGANs. (a) Global luminance histogram of each frames. (b) Location of
region of interest (ROI). (c) Magnified images of ROI. (d) Luminance
histogram of ROI. (e) RGB histograms of ROI.

with the global flicker removed by means of midway image
equalization [28]. Fig. 2 (d) shows the luminance histogram
of Fig. 2 (c).

However, it is difficult to reduce local flicker using those
methods. That is, it is difficult to reduce the flicker using
conventional methods when the illuminant is scattered around
the image when the image is taken, or when local flicker
occurs due to the changes in the position of the sun or clouds
in a time-lapse. Therefore, the flicker should be reduced by
considering the motion of the object. The flicker in a GAN
occurs locally, as shown in Fig. 3 (b), (c), and (d), and it has
little relation to the motion of an object. Also, the shape and
position of the flicker are random, and global luminance is
almost the same, as shown in Fig. 3 (a) and (b). In addition,
the flicker that occurs in GANs differs from typical local
flicker. As shown in Fig. 3 (e), the flicker of GANs differs not
only from luminance; the color itself is completely different,
making it is difficult to reduce using the conventional flicker
reduction method.

D. METRICS FOR FLICKER
In general, local flickers are difficult to measure in image
sequences because it is difficult to tell whether the change
in luminance is caused by object movement or local flicker,
as shown in Fig. 4. In the case of Fig. 4 (a), the change

FIGURE 4. Because local flicker is difficult to distinguish from object
movement, it is difficult to measure without a flicker-free sequence.
(a) The luminance change in the dashed-line box is caused by the motion
of the object. (b) The luminance change in the dashed-line box is caused
by the local flicker.

FIGURE 5. Method to measure local flicker. (a) Flicker-free sequence
(reference sequence). (b) Target sequence that has local flicker.
(c) Sequence subtracted from flicker-free sequence and target sequence
to illuminate object movement. (d) Grid-partitioning as patch size.
(e) Measure of flicker patch-wise over one cycle time. (f) Evaluation of
final flicker as the mean of all grids (all patches).

in luminance in the dashed-line rectangle is caused by
the movement of the object, and in the case of Fig. 4
(b), it is caused by local flicker. But conventional flicker
metrics [19], [27] cannot tell the difference between the two.
Because of this, some studies [21], [27] use luminance or
mean intensity over time to show flicker reduction. However,
most papers [22], [23], [27] indicate that flicker reduction is
achieved by showing the resulting image sequence without
quantifying the metric.

However, if we can eliminate the luminance change caused
by motion, we can show flicker reduction numerically.
We propose a metric that measures local flicker, though
it requires a reference image sequence that is flicker free.
As shown in Fig. 5, one cycle, which in this paper is 6 frames,
is the duration for measuring the flicker. First, we consider
a reference image sequence that is flicker free, as shown
in Fig. 5 (a), and a target image sequence that has flicker,
as shown in Fig. 5 (b). To remove the motion of the object
from the target image sequence, we created a new image
sequence (Fig. 5 (c)) by subtracting the target image sequence
from the reference image sequence. In the image sequence
with the object motion removed, we divide each frame into
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FIGURE 6. Flicker metrics: (a) percent flicker, (b) flicker index.

spatial patches as shown in Fig. 5 (d) and take the mean value
for each patch. Then, wemeasure flicker using a conventional
flicker measurement metric (such as percent flicker) patch-
wise in the sequence as shown in Fig. 5 (e). As the patch
size increases, the absolute value of the measured flicker
decreases. Therefore, we must compare the measured values
using the same patch sizes. If the patch size is 1 × 1, it is
calculated pixel-wise, and has the largest value of the mea-
sured flicker. We take the mean of each flicker measurement
calculated patch-wise as the final flicker value (Fig. 5 (f)).
The flicker metrics used are as follows.

1) PERCENT FLICKER [19], [27]
Percent flicker is a metric that computes the flicker using
the maximum and minimum values of luminance for a given
cycle, as shown in Fig. 6 (a).We divide the difference between
the maximum and minimum values by the sum of the maxi-
mum and minimum values, then multiply by 100. Less flicker
is reflected as a lower percent flicker.

2) FLICKER INDEX [19], [27]
The flicker index uses area to measure flicker. First, we mea-
sure the average luminance for a given cycle. Then, we mea-
sure area 2, which is smaller than the average, and area 1,
which is larger than the average, as shown in Fig. 6(b).
Finally, we divide area 1 by the sum of area 1 and area
2. That is, the area with a value larger than the average is
divided by the total area. Smaller values indicate less flicker.
Unlike the percent flicker, the flicker index is not sensitive
to the luminance that changes dramatically over a very short
duration because it uses an area to measure flicker. Thus,
the flicker index reduces the effect of temporary and dramatic
brightness changes, which are difficult for human beings to
perceive, on measured values.

E. METRICS FOR OUTPUT QUALITY
Even if an image-transformation method shrinks flicker,
it does not represent an improvement if the output qual-
ity decreases. In general, images generated using GANs
do not have reference images. Therefore, mean opinion
scores (MOS) and inception scores are typically used to

FIGURE 7. (a) Paired image set. (b) Paired image sequence set.

measure quality. In the case of MOS, most people use Ama-
zon Mechanical Turk (AMT) to measure the quality of a
generated image by selecting an arbitrary number of evalu-
ation groups. However, those results are very subjective and
difficult to compare in absolute numbers.

The inception score [24], [25] evaluates the image quality
from GANs using Google’s inception image classification
model. For example, two images created from two different
models trained to produce the image of a horse are inserted
into a pre-trained inception model. The inception model
estimates how close the image is to a horse as a value of
probability, with a higher probability held to indicate higher
GAN performance.

The inception score method is used quite often because
it has the advantage of consistency and a certain degree
of objectivity. However, there is no reason to use Google’s
inception model for evaluation, and models could be opti-
mized to produce a high score from a pre-trained inception
model regardless of the actual quality of the image. Also,
classes that are not in the famous data set, such as CIFAR10 or
the IMAGE-NET dataset, need to be added to (trained in) the
classification model directly by gathering datasets from those
classes, destoying objectivity.

If a reference image exists, full reference (FR)metrics such
as VIF and SSIM are most objective way to measure quality.
Fortunately, we can measure the quality using the FR metrics
because the dataset we used in our experiments has reference
images.

III. PROPOSED RECURSIVE CONDITIONAL GAN
In this section, we propose a cGANmodel to reduce flicker in
an image sequence. We use paired sequence sets as training
datasets. As shown in Fig. 7, a paired image set consists
of one input-target image pair per sample. A paired image
sequence set, on the other hand, consists of a paired sequence,
which consists of several input-target image pairs per sample.
Each sample sequence has an order for its image pairs. There-
fore, when learning a model using a paired image sequence
set, the model should be trained in the correct sequence
order.

VOLUME 7, 2019 37811



S. Kim, D. Y. Suh: Recursive cGANs for Video Transformation

FIGURE 8. Training step for generator in one sample sequence.

In paired-image transformation, cGANs provide a gener-
ative model to learn the mapping from an observed image x
and random noise z to produce an output y. In image-sequence
transformation, the output of the previous frame is added
to the generative model as the conditional parameter. Thus,
in image-sequence transformation, cGANs form a generative
model that learns the mapping from G(xi−1), xi and random
noise z to produce the output yi. G(xi−1) is the output of the
previous frame, xi is the current input frame, and yi is the
current target frame.

A. OBJECTIVE
We must set the loss so that the output of the previous frame
affects the output of the current frame (Fig. 8). Let us assume
that we want to make a transformation from X (input data)
to Y (target data). Let Pdata(x) be the data distribution of
x, and Pdata(y) be the data distribution of y. The objective
of the cGANs for the image sequence transformation is
Eq. (6). We omit random noise z, which is input into the
generator, in Eq. (6), (7), (8), and (9) for simplicity of the
expression. Therefore, the true expression of G(xi,G(xi−1))
is G(xi,G(xi−1), z).

LcGAN (G,D)

=


Exi,yi [logD(xi, yi)]
+Exi [log 1− D(xi,G(xi))] if i = 0.

Exi,yi [logD(xi, yi)]
+Exi [log 1− D(xi,G(xi,G(xi−1)))] o/w.

(6)

In xi and yi, the subscript i means the index of the frame
in one sample sequence, and the index starts from zero.
Compared with Eq. (3), which is a conditional GANs loss in
Pix2pix, G(xi−1), which is the cGANs output of the previous
frame, is added to the generative network as an input. The role
of the discriminative network does not change. The output of
the previous frame is not entered as a conditional parameter in
the discriminative network because the output of the previous
frame does not help to determine whether the output of the
current frame is a real image or a fake image. In the first
frame of the sample sequence, i = 0, there is no previous
frame, so the output of the previous frame is not input to

the generative network. Otherwise, the output of the previous
frame is input into the generative network.

Previous studies have found that it is beneficial to use GAN
loss and L1 loss together, so L1 loss is also used as expressed
in Eq. (7). As in Eq. (6), when the frame index is 0, the output
of the previous frame is not input into the generative network.
The output of the previous frame is input into the generative
network in the remaining cases.

LL1(G) =
{
Exi,yi [‖yi − G(xi)‖1] if i = 0.
Exi,xi−1,yi [‖yi − G(xi,G(xi−1))‖1] o/w.

(7)

Finally, we add a new loss (Eq. (8)) to make the output of
the previous frame affect the output of the current frame. This
loss is the L1 distance between the output of the current frame
and the output of the previous frame. If the frame index is 0,
there is no previous frame, so this loss becomes 0.

Lbwt (G)

=

{
0 if i = 0.
Exi,xi−1[‖G(xi,G(xi−1))− G(xi−1)‖1] o/w.

(8)

Therefore, our final objective is Eq. (9).

G∗ = argmin
G

max
D

LcGAN (G,D)+ λ1LL1(G)+ λ2Lbwt (G).

(9)

The generative network learns the mapping from X to Y
using Eq. (6), and it learns the low-frequency domain of the
data space using Eq. (7). The generative network learns the
relation between the output of the previous frame and the
output of the current frame. In Eq. (9), λ1 and λ2 are the
weight of each loss.

Gbwt (G, j) =
{
0 if i− j < 0.
Exi,xi−j [‖G(xi,G(xi−j))− G(xi−j)‖1] o/w.

(10)

Lbwt (G) =
1
N

N∑
j=1

Gbwt (G, j) (11)

The objective function described so far uses only one
previous output frame to reduce flicker. However, we can
use multiple previous output frames. When multiple output
frames are used as input to the network, onlyLbwt is changed.
Let the index of the current frame be i.Gbwt (G, j), the L1 norm
between the current output frame and the jth previous output
frame, is Eq. (10). Because the index of the frame starts
from 0, if i − j is smaller than 0, the value of Gbwt (G, j)
becomes 0. If N previous output frames are used as condi-
tional parameters, Lbwt (G) becomes Eq. (11).

B. NETWORK ARCHITECTURES
1) GENERATIVE NETWORK G
Because the generative network of the existing GAN focuses
on the image, information about the output of the previous
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FIGURE 9. Architecture for a generative network. (a) U-Net.
(b) Architecture for the generative network of the proposed model.

frame is not input into the generative network. Therefore,
we need to modify the generative network to be able to
generate the current output that is influenced by the output
of the previous frame. This modification policy is to creates a
shallow network that can enter information from the previous
frame and connect to the output side of the existing network,
as shown in Fig. 9 (b).
For example, if the generative network is U-Net [34],

as shown in Fig. 9 (a), we create the previous output network,
which uses the output of the previous frame as input (as in the
upper part of Fig. 9 (b)). Then, we concatenate that network
to the decoder part of the current input network, which is the
lower part of Fig. 9(b). In Fig. 9, a dashed line indicates a
skipped connection. As a result, the previous output network
is the network in which G(xi) is influenced by G(xi−1), and
the current input network is the existing cGAN-based image-
to-image transformation structure.

In this paper, we used a generative network with a previous
output network added to U-Net [34], as shown in Fig. 9 (b).
We used leaky ReLU, ReLU, convolution, transpose convolu-
tion, and batch normalization in a generative network. Table 1
shows the structure of the generative network used in this
paper when only one frame is used as a conditional parameter.
In Table 1, DeConv indicates a transpose convolution.
When multiple previous frames are used as a conditional

parameter, we increase the number of previous output net-
works, as shown in Fig. 10. Then, we concatenate the previ-
ous output networks to the decoder part of the current input
network. Fig. 10 (a) shows a network architecture when 2 pre-
vious frames are used as input for the generative network, and
Fig. 10 (b) shows a network architecture when 3 previous
frames are used. In Table 1, if 2 previous frames are used
as input for the generative network, the generative network
has 2 previous output networks. The generative network has
3 previous output networks if 3 previous output frames are
used as input for the network. Layer 1 of each previous
output network concatenates to Layer 15, and Layer 2 of each
previous output network concatenates to Layer 16 in Table 1.

2) DISCRIMINATIVE NETWORK D
The discriminative network we use does not differ from the
discriminative network in pix2pix. In other words, it is a

FIGURE 10. Network architecture for the generative network when the
multiple previous frames are input to the network. (a) A generative
network structure in which two previous frames are used as conditional
parameters. (b) A generative network structure in which three previous
frames are used as conditional parameters.

TABLE 1. Network architectures of the generative network.

discriminative network that uses the CNN structure, which is
mainly used in classification applications. Convolution, leaky
ReLU, and batch normalization are used for the discrimina-
tive network. The channel size of the output layer is 1 because
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TABLE 2. Network architectures of the discriminative network.

it determines whether the input is real or fake. Also, because
the output value is binary(real or fake), we use a sigmoid
instead of softmax for the loss calculation. Table 2 shows the
structure of the discriminative network used in this paper.

C. TRAINING
The training method is as follows. When learning the first
frame of a sample sequence, there is no output from a pre-
vious frame. That is, in the case of the first frame of the
sequence shown in Fig. 8, only the current input image is
input into the generative network. Therefore, in the first
frame, the input is a zero tensor inG(xi−1) of Fig. 9 (b). After
the first frame, there is an output of a previous frame, so the
output from the previous frame is input together with the
current input image. When multiple previous output frames
are used as conditional parameters and some previous output
frames do not exist, enter 0 tensor instead of the previous
output frames. Because the loss function and structure of the
discriminative network are not changed, the discriminative
network is trained in the sameway as in existing cGAN-based
image-to-image transformation applications.

IV. DATA SET
In this paper, we will use a paired image sequence set to train
the proposed model.

A. PAIRED IMAGE SEQUENCE SET FROM VIDEO CLIPS
We extracted the consecutive frames from many videos and
made target sequences. A large number of video clips is
required for generalized learning of the desired application.
Therefore, for this paper, we obtained many horse video clips
from the Pexels video site [35] and made many sequences.
This method is useful for applications (such as coloriza-
tion and super-resolution) for which it is relatively easy to
obtain video clips for training. The edge sequences (input
sequences) were obtained by using the Sobel filter on the
target sequences. We made the paired image sequence set
shown in Fig. 7 by combining the input and output sequences,
and we used it to train the proposed model.

B. PAIRED IMAGE SEQUENCE SET FROM AN IMAGE
It would be nice to be able to get a lot of video clips as
explained in Section IV-A, but actually obtaining video clips

FIGURE 11. Method for making a sequence from a single image.

much harder than collecting images. For example, if we want
to transform a real video into a Monet-like style, we need to
get a Monet video clip, which is almost impossible. We tried
to do a paired image sequence transformation, but collecting
paired video clips is much more difficult than collecting
paired images.

Therefore, we made a new frame by performing image
transformations such as warping and affine transforms,
as shown in Fig. 11. We repeatedly applied the above method
to create the desired number of frames. Unlike the actual
image sequences, we cannot obtain new information from this
sequence, but we can obtain the relationship between adjacent
frames in the sequence. Therefore, we can train cGANs to
reduce flicker using a paired image sequence set made using
this method. We also used the cityscapes dataset [32] and
CMP facades [33] in this way to great paired image sequence
sets for our experiments.

V. EXPERIMENTS
A. EXPERIMENTAL SET UP
To ensure fair comparisons, we applied the same settings to
pix2pix. The length of the image sequence was unified to 5,
and all experiments were done using Nvidia GTX 1080 GPUs
and Tensorflow [36]. We used Adam Optimizer [37] as a
solver and taught it with a learning rate of 0.0002 and a first
momentum of 0.5. The batch size was set to 25.

We used a dataset created from a video clip that we col-
lected directly from Pexels videos [35]. The collected data
were extracted with a Sobel filter to create a paired image
sequence set. In addition, we used an existing image dataset
by transforming it into a sequence using themethod described
in Section IV. The image sequence transformation tasks and
datasets used in the experiments are as follows.

• Semantic labels⇒ photos from the cityscapes [32] and
facades datasets [33].

• Edge⇒ photo from the horse dataset created by us; the
original video clip was from Pexels videos [35], and a
Sobel filter was used to extract the edges.

Because the size of each dataset was very different,
the number of training iterations for each dataset also
differed. However, the training epochs for different tasks
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FIGURE 12. Flicker measurement was performed by changing the patch
size and using the flicker measurement method proposed in Section II-D:
(a) percent flicker and (b) flicker index.

and datasets were all 80. Therefore, the number of training
iterations was larger than 80K.

B. EVALUATION METRICS
We evaluated metrics for de-flicker and image quality.
Fig. 12 shows the flicker of pix2pix and the proposed
model. We measured the flicker using the method proposed
in Section II-D. The percent flicker (PF) and the flicker
index (FI) were used as the flicker metrics and measured
using different patch size. The absolute value of flicker
decreased as the patch size increased, but the relative ten-
dency was almost unchanged. Therefore, we evaluated the
flicker using the proposed flicker method with a one cycle
duration of 250 ms (6 frames in 24 fps) and a patch size
of 1x1. We also presented changes in luminance in certain
areas and changes in mean luminance to promote an intuitive
understanding of flicker.

We used Visual Information Fidelity (VIF [31]) and the
Structural Similarity Metric (SSIM [30]) as quality metrics.

VI. DISCUSSION
In this section, we will evaluate the proposed model against
the existing paired image transformation application pix2pix.
We evaluated the output sequence of both models. We also
compared two popular de-flicker algorithms against the
proposed model by applying them to the output sequence

FIGURE 13. Evaluated flicker of Sobel edge-to-photo task with horse
dataset: (a) percent flicker, (b) flicker index.

from pix2pix. The output sequence from the proposed model
had less flicker than the output sequence of pix2pix, which
was not significantly reduced by the existing flicker reduction
algorithms.

A. SEQUENCE SET
As explained in Section IV-B, there is a large difference
between the amount of information that can be obtained
from a video clip and the amount of information that can
be obtained from a sequence created from a single image.
Therefore, we analyzed these two cases separately. First,
we analyzed the results from the horse dataset in which each
method performed the edge-to-photo conversion task using
video clips. We set the λ1 in Eq. (9) to 50 and λ2 to 30 when
training the proposed model. The λ in Eq. (5) was 80 when
training pix2pix. The test sequence used for evaluation was
500 frames, 24 fps. The test sequence consisted of a paired
input-target sequence.

Figure 13 shows that the proposed model produced fewer
flickers than pix2pix by both the PF and FI metrics. We also
measured the flicker of the output sequence using nonlinear
flicker compensation [26] andmidway equalization [28]. The
algorithm in [26] is presented as ‘nonlinear’, and it estimates
motion and reduces flicker. The midway algorithm is another
de-flicker algorithm. We applied these two algorithms to the
output sequence from pix2pix and measured the flicker. With
the midway equalization, the flicker was reduced compared
to pix2pix alone, and the nonlinear algorithm showed less
flicker than the midway equalization. However, both those
flicker reduction effects were less effective than the proposed
method.

To gain a better understanding of the effect of flicker
reduction, we spatially divided the image sequence into 4×4
patches, as shown in Fig. 14 (a), and then we looked at
the luminance changes in the upper left area of the output
sequence. Pix2pix, midway equalization, and the nonlinear
flicker compensation show that the change in luminance is
very rapid. On the other hand, the luminance change in the
proposedmethod is relatively gentle. This tendency is observ-
able in all regions of the image sequence divided into 4 × 4
patches. Figure 14 (b) shows the mean value of the luminance
change. Because the motion of the object in the test sequence
is not large and the fps of the image is 24, it can be seen that
the change in luminance is greatly influenced by the flicker.
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FIGURE 14. (a) Change in luminance in the top left corner of the 4 × 4
grid. (b) Mean change in luminance.

Table 3 shows the average VIF and SSIM for 500 frames.
The proposed model has a lower SSIM but higher VIF than
pix2pix. A higher VIF indicates that the quality of the image
is better from a person’s perspective. The SSIM decreased
slightly for several reasons, one of which is that the edge is
slightly blurred by Eq. (8). However, the difference in SSIM
is almost zero. In other words, the image quality from the
proposed model showed a small improvement compared to
pix2pix.

Using midway equalization on pix2pix produced little dif-
ference in the quality of the image or flicker. Because the
midway equalization is more effective in reducing global
flicker than local flicker, applying it to this pix2pix output
sequence (which has lots of local flickers) produces little
effect on either flicker reduction or image quality. The nonlin-
ear flicker compensation algorithm showed a slight numerical
improvement in VIF and SSIM performance compared to
pix2pix, but the improvement was too small to be visible to
users.

TABLE 3. Image quality of each model and method.

Figure 15 shows the luminance difference in each out-
put sequence. In the target sequence, almost no change in
luminance is visible between adjacent frames. In contrast,
the pix2pix output sequence has a partial change in luminance
between frames, and its shape and position also differ. The
output sequences from the nonlinear flicker compensation
algorithm and midway equalization do not differ much from
the pix2pix output sequence. That is, the postprocessing did
not substantially reduce the flicker caused by GAN noise.
On the other hand, the output sequence of the proposedmodel
shows relatively little change in luminance.

In addition, we confirmed that the body of the horse is
saturated to white in the pix2pix output sequence. The pro-
posed method reduced that saturation through its correlation
with the output of the previous frame. However, the output
sequence from the proposed model has some blurring caused
by using the output of the proposed model does not differ
significantly from the existing model when training using a
video clip, but the flicker is greatly reduced.

B. IMAGE SET
We tested the semantic label-to-photo task using the facades
and cityscapes datasets. In the proposed model, the weight
parameters λ1 = 50, λ2 = 30 were used for the facades
dataset, and λ1 = 50, λ2 = 50 were used for the cityscapes
dataset. In the pix2pix model, the weight parameter λ in
Eq. (5) was fixed at 80 for both tasks. The facades dataset was
tested using 4 test sequences with 40 frames. Test sequences
1 and 2 are extracted from real video clips, and test sequences
3 and 4 were made using the method described in Section IV-
B with images not used for learning. The cityscapes dataset
was tested using a test sequence with 7,000 frames. The
average luminance changes in each output sequence from the
proposed model and pix2pix are shown in Fig. 16. The flicker
of the proposed model is smaller than that in pix2pix in both
experiments.

Table 4 shows that the proposed model produced a smaller
value than pix2pix for both PF and FI, regardless of the patch
size for all the test sequences from both datasets. The mean
luminance change values for both the cityscapes and facades
datasets in Fig. 16 show that the proposed model has less
fluctuation than pix2pix. From Table 4 and Fig. 16, it is
reasonable to conclude that the proposed model shows less
flicker than pix2pix.

Table 5 shows that the pix2pix results have higher
VIF and SSIM values than the results from the proposed
model, but the difference is so small that it is almost
meaningless.
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FIGURE 15. Luminance difference between the adjacent frames in each model and method. The luminance difference with the proposed model
is much smaller than with pix2pix, nonlinear flicker compensation, and midway equalization.

C. IMAGE QUALITY AND FLICKER ACCORDING TO THE
RATIO OF λ1 AND λ2
Training using a sequence that is made from an image is
very different from using a video clip. For example, if we
create an image sequence by zooming and then cropping,

the model learns only how to expand the image. Therefore,
if the zoom rate of the test sequence differs from the zoom
rate of the image sequence set used for training, an after-
image effect could be generated. The same is true for using
warping and affine transformations to create a sequence
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TABLE 4. Measured flicker of semantic labels-to-photo task with the
cityscapes and facades datasets.

from an image. Therefore, it is necessary to make training
sequences that use various transformations to reduce such
after-image effects. However, no matter how many transfor-
mations we use, the model cannot obtain new information
from such a sequence.

In contrast, the actual video presents new information
between frames. For example, when a person turns his head
from left to right, the right face is new information. When a
model is trained with a video clip, the model learns that the
effect on the previous output is reduced for any part of the
image in which new information appears in the input. When
a model learns from using a sequence created from an image,
the influence of the previous frame is maintained because the
model cannot obtain new information from the input.

Therefore, it is important to select an appropriate λ2 in
Eq. (9). If λ2 is set too high, the flickermight increase. To con-
firm the effect of the ratio of λ2 and λ1 on the output sequence,
we fixed λ1 in the facades dataset to 50 and measured the
flicker and quality as we changed λ2. We used the 4 test
sequences described in section VI-B.

Due to the nature of the edge-to-photo task, the absolute
difference from the original image is not the most important

FIGURE 16. Change in mean luminance of the output sequence in
semantic labels-to-photos task: (a) cityscapes dataset and (b – e) facades
dataset (test sequences 1 – 4).

TABLE 5. Quality of Pix2pix and proposed model.

quality parameter. So, the proposed model is also helpful in
improving the quality of the image. Image quality tended to
decrease as λ2 increased. However, the decreasing tendency
was greater in test sequences 1 and 2 than in test sequences
3 and 4. That is, for a test sequence of patterns different from
the learned sequence, the image quality deteriorated faster
as λ2 became larger. On the other hand, flicker decreased as
λ2 increased in both the PF and FI metrics. Fig. 17 shows
that the luminance difference between frames decreased as
λ2 increased. That is, as the value of λ2 increases, the flicker
decreases, but the image quality deteriorates. Therefore, if we
use a sequence created from an image for training, selecting
an appropriate λ2 is important for good results.

Table 7 shows the number of float operations and the num-
ber of parameters for each model. After training the model,
we used only the generator; therefore, we compared the num-
ber of parameters and float operations in the generator only.
For the number of parameters, the proposed model increased
about 0.5% compared to pix2pix and it increased about 19%
in the number of float operations.
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TABLE 6. Flicker and quality of proposed model and Pix2pix with
different λ2 for the proposed model.

D. INFLUENCE OF THE NUMBER OF PREVIOUS
OUTPUT FRAMES
Fig. 18 presents the results from evaluating the 4 test
sequences in the facades dataset described in Section VI-B.
As the number of previous output frames input to the genera-
tive network increased, flicker was greatly reduced regardless
of the test sequence. In test sequence 2, the VIF quality metric
tended to deteriorate as the number of previous output frames
input to the generative network increased. The remaining
test sequences were degraded when the number of inputs to
the generative network increased from 1 to 2, but when the
number of inputs increased from 2 to 3, the quality improved
again. Particularly in the case of test sequence 4, using three
previous output frames as a conditional parameter produced
higher VIF than using a single previous output. In most
cases, using one various output frame as the input showed
the highest quality value.

FIGURE 17. Images resulting from ratio changes in λ1 and λ2. The
proposed model reduced flicker compared with pix2pix, and the image
became clearer as the ratio of λ2 became higher.

TABLE 7. Number of parameters and float operations.

For SSIM, test sequence 1 showed the highest value when
three previous output frames were used as conditional param-
eters. With test sequence 4, using three frames as conditional
parameters produced better results than using 1 or 2 frames,
but none of those results was higher than the results from
pix2pix. For the remaining test sequences, the results from
using three frames were worse than those from using frame,
but the difference was not significant.

Overall, the flicker decreased significantly as the number
of frames used as conditional parameters increased. Using
three frames as conditional parameters showed a tendency
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FIGURE 18. The flicker and quality measurement results according to the
number of frames used as a condition parameter. (a) Flicker. (b) VIF.
(c) SSIM.

to deteriorate the quality compared with using one frame,
but those differences were tiny. Using two frames as con-
ditional parameters showed the lowest quality values in all
test sequences. Because the two previous output frames are
almost the same, the generative network cannot learn the con-
text between them. However, when three frames were used
as conditional parameters, the generative network learned
the context between the output frames, and the performance
improved again.

Thus, as the number of previous frames used as conditional
parameters increased, flicker decreased and quality deterio-
rated and then increased again. Therefore, when using several
previous frames as conditional parameters, using more than
three frames as conditional parameters can minimize quality
deterioration. However, as the number of frames used as
conditional parameters increases, the sequence length used
for training must also increase, and collecting data in long
sequences is more difficult than collecting short sequences.
However, if a collection of long-sequence datasets is avail-
able, using three or more previous output frames as condi-
tional parameters produces good overall performance.

VII. CONCLUSION
In this paper, we proposed a method to reduce flicker while
maintaining image quality in image sequence transformation
using a cGAN. The proposed method dramatically reduced
flicker and maintained an image quality almost the same as
existing image-to-image transformation with cGANs. How-
ever, the edge of the output sequence from the proposed
model is blurred compared to pix2pix. Therefore, we could
apply postprocessing to improve the sharpness. When the
model was trained using a video clip, flicker was greatly
reduced without reducing image quality. However, when a
sequence made from an image was used to train the proposed
model, an after-image effect was generated when the input
sequence had a new pattern not used in training. To solve that
problem, it is possible (for some parts of an image) to add

a synthesizer that combines the current input frame with the
previous output frame selectively according to whether a part
of the image contains new information. Also, our model can
be applied to image transformation with a more complicated
structure such as that used in Cycle GAN, Star GAN, and
Disco GAN.
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