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ABSTRACT One of the most promising use cases of 5G/IMT2020 is the unmanned aerial vehicle (UAV).
Due to their small size, the UAVs are resource constraint devices. To this end, this paper proposes an
offloading algorithm for UAVs to assist in the execution of computationally intensive tasks. The proposed
algorithm provides two UAV offloading methods. The first offloading method is the air-offloading, where a
UAV can offload its computing tasks to nearby UAVs that have available computing and energy resources.
The second offloading method is the ground-offloading, which enables the offloading of tasks to an edge
cloud server from the multi-level edge cloud units connected to ground stations. The proposed algorithm is
energy- and latency-aware, i.e., it selects the execution device and the offloadingmethod based on the latency
and energy constraints. The intensive algorithm simulation over reliable conditions for various scenarios with
different cases for each scenario is conducted and results are presented.

INDEX TERMS UAV, offloading, latency, energy, 5G, MEC.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs), e.g., drones, have gained
increasing interest in recent years [1], [2]. With the near
release of fifth generation cellular system (5G), UAVs are
expected to have many applications. These applications vary
from simple environmental monitoring to the complex high
security military applications [3]–[5]. There are many chal-
lenges associated with the development of UAV networks and
applications. These challenges include [6]–[8]: Trajectory or
path planning, collision avoidance, mobility control, cost,
security, data offloading, energy consumption, latency and
compatibility with existing systems and cellular networks.

Part of these challenges is associated with the limited
capabilities of UAVs, due to their small size, e.g., micro-
drones, required for many applications [3]. Applications with
computationally intensive tasks and applications, e.g., image-
or video-based, require high processing and energy resources,
which affect real-time operation and life-time of an UAV
system or even cause task blocking. In order to prolong the
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life time of the UAV and overcome battery constraints, energy
resources should be used carefully. One way to improve
applications timeliness and reduce energy consumption is
offloading computation to other devices in the UAV net-
work with available resources [9], [10]. These devices may
be in the air tire or on the ground [11]. For UAVs, there
are two possible methods for data offloading, air-offloading
and ground-offloading. An UAV can offload its computing
tasks to nearby UAVs with available computing and energy
resources [12] or offload the computing tasks to ground sta-
tions connected to cloud servers [13].

Recent technologies that will be deployed for 5G can assist
in the deployment of UAVs [14]. These technologies include
Mobile Edge Computing (MEC), Software Defined Net-
working (SDN) and Network Function Virtualization (NFV).
MEC enables the cloud computing capabilities at the edge
of the Radio Access Network (RAN), one communication
hop away from the end user; and thus, reduces the com-
putation latency [15], [16]. With the deployment of MEC,
UAVs can offload their computing tasks efficiently to edge
cloud servers. MEC servers handle the offloaded comput-
ing tasks and transfer results to the corresponding UAV via
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the appropriate link [17], [18]. Furthermore, MEC servers
achieve higher efficiency in terms of latency for the offloaded
tasks, as the servers are located close to the UAVs; approx-
imately one communication hop away [19], [20]. Whereas
SDN can be deployed to manage and control resources allo-
cation for UAVs. Additionally, SDN controller can be used
to optimize the utilization of MEC servers for handling UAV
applications [21].

In this work, an energy- and latency-aware offloading
algorithm is developed for UAVs to enable offloading of
computing tasks, either through an air-offloading or a ground-
offloading. UAVs employ a decision engine that decides
whether to handle the task locally at the device or offload it to
either air or ground devices. The ground offloading process
is based on our algorithm introduced in [22]. This offloading
algorithm has been developed for our multilevel MEC system
presented in [23]. The proposed algorithm comprises three
main sub routines to prolong the lifetime of UAV networks
by saving resources through task offloading. Furthermore,
the proposed algorithm reduces the probability of task block-
ing due to lack of resources and also reduces the end-to-
end latency of handling a computing task. This algorithm
is developed mainly for UAVs with image and video based
applications, especially, military applications that requires
UAVs with small sizes.

Section 2 introduces the related works to our proposed
offloading algorithm. In Section 3, the offloading algorithm
details are presented. Section 4 presents the simulation setup
and results analysis. Section 5 concludes the paper.

II. RELATEDWORKS
In this section, recent related studies to the proposed
offloading algorithms for UAV networks are reviewed. The
advantages and limitations of each work are described. Fur-
thermore, the novelty of our proposed algorithm is compared
to these studies..

Luo et al. [24] proposed a framework for UAVs deployed
for disaster related applications. The framework offloads the
sensed data, e.g., video data, to a remote cloud unit. The
system employs a client-server mechanism, where the client
is hosted on the UAV and the server is hosted in the remote
cloud unit. The client is responsible for video acquisition,
data scheduling through a context-aware video scheduler and
data offloading. The server receives the offloaded data and
provides the computing resources required for handling the
received data. The main limitation with this framework is
latency as the data is offloaded to remote cloud rather than
an edge cloud located closer to the UAV network.

Lynskey [25] developed a MEC based algorithm that max-
imizes the probability of offloading by optimizing the com-
puting resources used to handle a certain offloaded task. The
work has been developed mainly to process the offloaded
images from UAVs. The introduced algorithm has been
implemented at MEC servers to find the optimal combination
of offloaded tasks that can be processed based on the MEC
server capacity. This work does not consider the offloading

process; it considers the execution process and only ground-
offloading.

Zhou et al. [26] introduced four use cases of UAVs, which
are supported by cloud and edge computing. Theworkmainly
defines the methods of interaction between UAVs and ground
devices, including heterogeneous computing devices. The
authors considered a case study for UAVs with the MEC
structure, this scenario is the use of UAVs to assist traffic and
connectivity for road topologies. The work mainly considers
using UAVs to assist massive sensor networks and dense IoT
networks. It shares the similarity of deploying MEC tech-
nology with our proposed work; however, the MEC system
deployed for our proposed system is different in the sense
that it is deployed in multilevel structure. Furthermore, this
work considers a structure for a certain application only.

Valentino et al. [12] have developed an offloading algo-
rithm that offloads computation tasks to nearby UAVs. The
proposed system assumes that UAVs are deployed in clusters;
each cluster consists of a group of nearby UAVs that mostly
achieve common tasks. Each UAV cluster has a cluster head
that manages and controls other cluster UAVs members. The
proposed algorithm enables UAV to offload their tasks to
other clusters with available resources, if the current clus-
ter has no available computing resources. The cluster head
only decides whether to execute the task locally (i.e., in the
current cluster) or offload it to a nearby cluster with avail-
able resources. Furthermore, the offloading of computing
tasks between clusters distributes the computing tasks among
UAVs, which achieves higher energy efficiency and prolongs
the UAV’s lifetime. Each cluster head has the responsibility
to search nearby clusters for available computing and energy
resources. This algorithm can only be deployed for dense
UAV networks, with the consideration of clustering. This
work did not consider the ground offloading; it only consid-
ered the air-offloading and only for clusters of UAVs.

Jung et al. [27] developed an adaptive offloading algorithm
for UAVs that uses multipath TCP for the offloading process.
This work considers only the ground offloading, where the
adaptive offloading algorithm selects the best ground edge
server that can host the computing tasks. The system is
developed mainly for mission critical applications and to
prolong the UAV lifetime. The data is offloaded from the
UAV to the ground server via multiple TCP connections.
The main advantage with this work is the consideration of
UAV’s mobility while task offloading and handling. More-
over, the handoff between base stations while handling a task,
if the UAV moves between two coverage regions, has been
considered.

An SDN supported algorithm was proposed in [28]
to allocate computing and processing resources to UAVs
hovering over a certain geographical area and are con-
nected to one base station. The SDN controller deploys a
greedy algorithm that accepts the offloaded applications and
selects the optimal cloud server with available resources that
achieves the required QoS latency of the offloaded task.
The cloud servers deployed in the system are heterogeneous;
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FIGURE 1. The end-to-end system structure of multilevel MEC based UAVs system.

edge cloud servers, distributed cloud servers connected to
some buildings and remote cloud servers in the Internet. Each
base station hosts an SDN based application that employs
the greedy based algorithm to select the best cloud server
for the current UAV‘s task. This work has been developed
for heterogeneous UAVswith different computing and energy
capabilities. One main disadvantage of this algorithm is the
neglect of UAV‘s displacement, while handling a task. The
base station assumes that the UAV‘s are stationary while
receiving and processing a computing task. The main advan-
tage with this algorithm is that it is implemented by the
SDN controller, which makes use of the great benefits of the
SDN based networks. Our proposed work differs from this
work, as our ground system employs a multilevel based edge
computing system.

The novelty of our proposed algorithm, compared to the
above described works comes from the deployment of hybrid
offloading. The UAV can toggle between two local execution
and two offloading methods. It deploys a decision engine to
select the offloading method that best achieves energy and
latency efficiency. Moreover, both air- and ground-offloading
processes differ from the previously introduced methods in
the previous reviewed works. The ground-offloading is car-
ried out over a multilevel MEC system structure connected
to the ground stations. This multilevel structure has been
developed in [23] and [29] and the offloading algorithm for
such structure has been developed in [22].

III. HYBRID OFFLOADING ALGORITHM FOR UAVS
Recent applications and use cases of UAVs require the
deployment of lightweight and small size UAVs, especially,
for video-based surveillance applications [30]. Most of UAV
applications required computing and power capabilities to
collect and analyze application data. For video-based appli-
cations, the UAV has to process high resolution images,
which requires high computing and energy capabilities than
that available in commercial UAVs [31]. To overcome the
computing and power limitations of UAVs, computationally
expensive tasks should be offloaded to nearby units with

FIGURE 2. Main offloading levels.

available computing resources. In this section, we present a
latency- and energy-aware MEC based offloading algorithm
for UAVs to prolong the operation lifetime of UAVs and
achieve shorter latency for heterogeneous UAV applications.

A. SYSTEM STRUCTURE
The proposed system comprises the air tire and the ground
tire, as illustrated in Figure 1. The air tire consists of the UAVs
that work together or individually to provide certain services.
The ground tire contains the ground base stations and the
connectedMEC servers to provide the computing capabilities
at the edge of the RAN near to the end user.

The proposed offloading algorithm consists of several
offloading levels which are illustrated in Figure 2. Each level
represents an execution device with computing and energy
resources. If the available resources of an UAV can handle a
computing task within the required QoS latency, the task is
processed locally at the UAV with no offloading. This repre-
sents the zero offloading level, which is suitable for simple
tasks that require low computing and energy resources.
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The first offloading level is where there offloading is
directed to available nearby UAVs – referred to as air-
offloading. When the onboard computing resources and
energy of the UAV are not enough to handle a certain
task, the UAV can offload the workload to one or more of
the nearby UAVs that has available computing and energy
resources. UAV can discover the nearby UAVs and ask for
available resources for a certain task for an air-offloading
process.

The higher offloading level includes the heterogeneous
edge cloud units connected to ground base stations. This
offloading level is referred to as the ground-offloading.
In [22], we have introduced amultilevelMEC system to assist
latency sensitive applications, e.g., AR/VR and Tactile Inter-
net. We use this structure as the ground MEC system to assist
offloading. The third offloading level is represented by the
micro-cloud edge units, which provide computing resources
at the edge of the RAN; one communication hop away from
the target UAV. The fourth offloading level includes the mini-
cloud edge units, which control and manage micro-cloud
units. Mini-cloud units have higher computing and energy
resources.

Each UAV deploys a decision engine, where our pro-
posed offloading selecting algorithm is implemented. The
decision engine decides, whether the current task can be
executed locally or it need to be offloaded to an appropriate
level of offloading. Moreover, the edge computing units,
i.e., micro- and mini-clouds, employ local decision engine to
decide the execution location of a certain task, based on the
available computing and energy resources. Figure 3 illustrates
the structure of the UAVs and the edge computing units.

FIGURE 3. Main structure of the system stages.

The system is assumed to deploy heterogeneous types
of UAVs with heterogeneous capabilities, in terms of com-
puting capabilities and energy capabilities. These UAVs are
deployed over a certain geographical regions and controlled
through the nearest cellular base stations. UAVs are deployed
for heterogeneous applications and tasks (e.g. surveillance,
military application and cell coverage provide (drone- base
station). In order to distinguish theUAVwith the task required
to be executed, it is referred to as the source UAV (SUAV).

B. LATENCY-AWARE AND ENERGY-AWARE
OFFLOADING ALGORITHM
1) ASSUMPTIONS
In this paper, we make the following assumptions:

1. UAVs have heterogeneous power capabilities
2. UAVs have heterogeneous computing capabilities
3. UAVs run different applications with various computa-

tional and QoS needs
4. Full offloading is considered only, no partial offloading

is considered; and
5. Queuing delay is neglected.

2) ANNOTATION
In this part, we define all parameters that will be used
in the following sections, while introducing the offload-
ing algorithm and corresponding mathematical equations.
Table 1 introduces the notation of variables and parameters.
Various steps of the proposed algorithms are indicated in
algorithm1, 2 and 3. Algorithm 1 represents the steps for local
processing and offloading decisions. Algorithm 2 represents
the main steps for air-offloading process and algorithm 3
indicates the steps for ground-offloading process.

C. OFFLOADING MODEL
The offloading process is performed by the SUAV that
decides whether to process the task locally or offload it.
The SUAV first calculates the total size of task data, Z , and
the total number of CPU cycles, NCYC , required to process
the current task. SUAV extracts this data through the program
profiler and then forwards this data to the decision engine of
SUAV. The decision engine also receives information about
the maximum allowable latency for handling the current
task that supports the QoS, from the QoS manager.

The SUAV’s decision engine calculates the total time
required to execute the current task locally at the
SUAV (TSUAV), see Eq. (1), based on the current available
resources. The decision engine checks the binary time deci-
sion variable of offloading DT−off, see Eq. (3), by comparing
TSUAV with the latency QoS time .

TSUAV =
NCYC
RSUAV

, RSUAV ∈ fSUAV (1)

NCYC = Z .K (2)

DT−off = I (TSUAV , τ ) =

{
0 IF (TSUAV ≤ τ )
1 IF (TSUAV > τ )

(3)
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TABLE 1. Key annotation. TABLE 1. (Continued.) Key annotation.

If the time decision is negative, the SUAV then checks the
energy constraints by calculating the binary energy decision
variable of offloading DE−off. The binary energy decision
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variable is calculated by comparing the remaining energy of
the energy source on the UAV, ER−SUAV, after consuming
energy for handling the current task, with the threshold energy
level of SUAV Eth. The threshold energy level represents the
minimum level of energy of SUAV, after which the energy
level of UAV is mentioned to be critical and cannot support
handling computing tasks.

ESUAV = NCYCδSUAV (4)

ER−SUAV = EC−SAUV − ESUAV (5)

DE−off = I (ER−SUAV ,Eth)

=

{
1 IF(ER−SUAV ≤ Eth)
0 IF(ER−SUAV > Eth)

(6)

Algorithm 1 Latency- and Energy-Aware Offloading
Algorithm for SUAV

Input: , NCYC and Eth
Output: DT−off and DE−off
1: Initialize , Eth
2: Calculate Z, K
3: Calculate TSUAV
4: If (TSUAV ≤ )
5: DT−off = 0
6: Calculate ESUAV, ER−SUAV
7: If (ER−SUAV > Eth)
8: DE−off = 0
9: Handle task locally
10: else
11: DE−off = 1
12: Check air-offloading [Call algorithm 2]
13: end if
14: else
15: DT−off = 1
16: Check air-offloading [Call algorithm 2]
17: end if

If the remaining energy level of the SUAV, after consuming
energy for the task execution, is larger than the threshold
level of energy of the SUAV, the task is executed locally and
there is no need to offload the task to any other devices.
For this case, the energy decision binary variable is set to
zero to indicate that there is no need for offloading. While,
the energy decision variable is set to one if the remaining
energy after executing current task will be less than the
threshold energy level of SUAV. In this case, the offloading
decision should be considered, either by offload to an air-
device or to ground-device.

For a positive offloading decision, either time decision or
energy decision, the SUAV should offload the computing
task. The SUAV first, checks the possibility of air-offloading.
This can be done by discovering the availability of comput-
ing resources of the nearby UAVs. If the conditions for the
air-offloading are met, the SUAV takes the decision of air-
offloading to the corresponding nearby UAV. This should be

Algorithm 2 Air-Offloading Algorithm
Input: NCYC, RUAV and EC−UAV
Output: Dair−off
1: SUAV broadcasts request message
2: Nearby UAVs receives the request message
3: Nearby UAVs process the request:
4: Calculate Tex−UAV, EUAV, ER−UAV
5: If (ER−UAV > Eth)
6: DE−acc−off = 1
7: else
8: DE−acc−off = 0
9: end if
10: UAV transmits respond message
11: SUAV receives respond messages (N)
12: Count = 0
13: For (i = 1 : i ≤ N ) do
14: If (DE-UAV-acc-off == 1)
15: Calculate TUAV(i)
16: If (TUAV(i) ≤ )
17: Dair−off = 1
18: Count ++
19: end if
20: else
21: Dair−off = 0
22: end if
23: End for
24: If (Dair−off == 1)
25: If (Count > 1)
26: Select min(TUAV(i))
27: end if
28: Offload the task to the appropriate nearby UAV
29: else
30: Check ground-offloading [Call algorithm 3]
31: end if

happened, if there is a nearby UAV with sufficient energy
and computing capabilities to handle the current task within
the QoS latency time. However, if the air-offloading fails,
due to the nonexistence of sufficient energy and computing
resources among surrounding UAVs, the SUAV checks the
ground-offloading.

1) AIR-OFFLOADING PROCESS
The air offloading process consists of two main sub-
processes; the discovery process and the offloading process.
Once the SUAV takes the decision of offloading, it first
checks the availability of first level offloading. The SUAV
looks for nearby UAVs to check if one of them has available
resources to handle the task. For this purpose, the SUAV starts
a discovery process, with the objective of discovering the
surrounding field, whether it contains an UAV with available
resources for task handling. Figure 4 illustrates the discovery
process for the air-offloading process.

For the discovery process, the SUAV broadcasts a dis-
covery message to all surrounding UAVs via an appropriate
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Algorithm 3 Ground-Offloading Algorithm
Input: , NCYC, RMicro and RMini
Output: Dground−off
1: Send request message of type I
2: Receive request message of type I
3: Calculate TMicro, EMicro, ER−Micro
4: If (TMicro ≤ )
5: DT−acc−g−off = 1
6: If (ER−Micro > Eth−Micro)
7: DE−Micro−acc−g−off = 1
8: else
9: DE−Micro−acc−g−off = 0
10: end if
11: else
12: DT−Micro−acc−g−off = 0
13: end if
14: If (DT−Micro−acc−g−off &DE−Micro−acc−g−off == 1)
15: Dground−off = 1
16: Offload the task to Micro-cloud
17: else
18: Send request message of type II
19: Receive request message of type II
20: Calculate TMini, EMini, ER−Mini
21: if ( TMini ≤ )
22: DT−Mini−acc−g−off = 1
23: If (ER−Mini > Eth−Mini)
24: DE−Mini−acc−g−off = 1
25: else
26: DE−Mini−acc−g−off = 0
27: end if
28: else
29: DT−Mini−acc−g−off = 0
30: end if
31: If (DT−Mini−acc−g−off & DE−Mini−acc−g−off == 1)
32: Dground−off = 1
33: Offload the task to Mini-cloud
34: else
35: Dground−off = 0
36: Block the task
37: end if

communication interface, e.g., WiFi [32]. The broadcasted
message contains two main fields; the SUAV identification
field and the task information field. Figure 5 illustrates
the main fields and sub fields of the discovery message.
The identification field contains the identification number of
the SUAV (ID) and the longitude, latitude and the height of
the current location of the SUAV. The task information field
contains the information about the workload that required to
be offloaded. This information includes; the total size of the
computing data of the task to be offloaded, the number of
CPU cycles required to process these data and the latency
QoS constraints of the task to be offloaded.

All nearby UAVs receive the discovery message, broad-
casted by the SUAV, and extract the message information.

FIGURE 4. Discovery process.

Each UAV decides whether to execute the task and accept
the offloading request or to refuse the offloading request, if it
cannot handle the task. The decision engine of each nearby
UAV calculates the following:

1. Total time required for executing the task defined in
the request message Tex−UAV, based on the current
available resources,

2. Total energy consumption for processing the task
defined in the request message EUAV, based on the
current available resources, and

3. Remaining energy of the UAV after processing the
target task ER−UAV.

Tex−UAV =
NCYC
RUAV

, RUAV ∈ fUAV (7)

EUAV = NCYCδUAV (8)

ER−UAV = EC−UAV − EUAV (9)

The decision engine of each UAV calculates the energy
decision variable for accepting offloadingDE−acc−off by com-
paring remaining energy after task execution ER−UAV with
the threshold energy level of the UAV. If the remaining energy
is less than the threshold energy level, the decision engine
refuses the offloading request and the energy decision vari-
able of accepting offloading DE−acc−off is set to zero. Else,
the UAV accepts the offloading and sends a respond message
with the decision to the SUAV. The SUAV has to check TUAV
with the QoS latency for positive responses.

DE−acc−off = I (ER−UAV ,Eth)

=

{
0 IF (ER−UAV ≤ Eth)
1 IF (ER−UAV > Eth)

(10)

The response message contains three main fields, the iden-
tification field, the energy decision field and the execution
specifications field. Figure 5 illustrates the main fields and
sub-fields of the respond message. The energy decision field
is a one bit field, which refers to the agreement of offloading –
one for agree and zero for reject. The execution specification
field is set only if the binary decision field is set to one. This
field indicates themain features of the execution process if the
task is decided to be offloaded; these features include the total
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FIGURE 5. Discovery and response messages.

execution time of the task and the total energy consumption
for processing the task.

SUAV receives response messages and decides the air
offloading based on the decisions in the received mes-
sages and the task execution specifications. For all positive
responses, SUAV calculates the total latency for handling
a task at a nearby UAV (TUAV). This time delay is calcu-
lated by adding the execution time delay at the nearby UAV
with positive response Tex−UAV and the communication delay
(i.e., packet delivery time for uplink transmission of task
input data Ttx and the time delay for receiving the computed
results Trx).

TUAV = Tex−UAV + Ttx + Trx (11)

The communication latency for delivering data packets of
task Ttx is the sum of the transmission time of task input data
ttrans and the propagation delay tpro from the SUAV to the
targeted UAV.

Ttx = ttrans + Tpro (12)

tpro =
dSUAV ,UAV

C
(13)

ttrans =
Z
Rb

(14)

The achievable bit rate of the uplink transmission can be
calculated using Shannon-Hartley formula [33]:

Rb = ω log2

(
1+

hp
σ

)
(15)

The decision engine of the SUAV then calculates the deci-
sion variable for air-offloadingDair−off by comparing the total
time delay for handling the offloaded task at a nearby UAV
(TUAV) with the QoS latency . The air-offloading decision
is decided if the TUAV is less than the QoS latency .

Dair−off = I (TUAV , τ ) =

{
1 IF (TUAV ≤ τ )
0 IF (TUAV > τ )

(16)

If there is more than one nearby UAV with available
resources efficient for task execution and a positive decision
response for the air offloading, SUAV calculates the TUAV for
each nearby UAV with positive response. Then, the decision
engine of the SUAV calculates the air-offloading decision for
the nearby UAV with the smallest value of TUAV. For neg-
ative air-offloading decision, the SUAV decides the ground
offloading through the multilevel MEC system.

TABLE 2. Exchanged messages for ground-offloading.

2) GROUND-OFFLOADING PROCESS
SUAV checks the ground-offloading, when both local exe-
cution and air-offloading have failed. SUAV sends a request
message to the corresponding micro-cloud edge server con-
nected to the ground base station. The requested message is
of type I , with the information of the task specifications and
vehicle identifications as introduced in Table 2. The micro-
cloud edge server receives the offloading request and starts to
process the request. The decision engine of the micro-cloud
server calculates the total time required to execute the target
task based on the current available resources Tex−Micro.

Tex−Micro =
NCYC
RMicro

, RMicro ∈ fMicro (17)

The decision engine of the micro-cloud unit then, calcu-
lates the total time required to handle the task TMicro.

TMicro = Tex−Micro + Ttx + Trx (18)

Ttx = ttrans + Tpro (19)

tpro =
dSUAV ,Micro−cloud

C
(20)

The micro-cloud server calculates the time decision vari-
able for accepting ground-offloading, by comparing total
time for handling the task at the micro-cloud server TMicro
with the latency QoS time .

DT−Micro−acc−off = I (TMicro, τ )

=

{
1 IF (TMicro ≤ τ )
0 IF (TMicro > τ )

(21)

The positive time decision of accepting task offloading is
decided, if the handling time TMicro is less than or at worst
equal to the latency QoS time . In this case, the decision
engine of micro-cloud server checks the energy decision.
Otherwise, the micro-cloud server forwards the offloading
task to the mini-cloud edge server.

To check the availability of energy resources of micro-
cloud server, the decision engine first calculates the total
energy consumption to handle the task EMicro. Then, the
remaining energy of micro-cloud server ER−Micro, if the task
is offloaded and handled, is calculated.

EMicro = NCYCδMicro + TtransPηC (22)

ER−Micro = EC−Micro − EMicro (23)
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The decision engine calculates the energy decision variable
of accepting ground offloading of the task DE−Micro−acc−off
by comparing remaining energy of micro-cloud server
ER−Micro with the threshold of energy of micro-cloud server,
at which the energy of micro-cloud server is set to be at the
critical level.

DE−Micro−acc−off = I (ER−Micro,Eth−Micro)

=

{
0 IF (ER−Micro ≤ Eth−Micro)
1 IF (ER−Micro > Eth−Micro)

(24)

For a positive energy decision, the micro-cloud server
sends a response message to the SUAV with the agreement
of ground-offloading. If the energy decision of accepting
offloading is negative, the micro-cloud server sends a request
message of type II to the corresponding mini-cloud edge
server. The mini-cloud edge server receives the request mes-
sage and process it, by calculating the time and energy deci-
sion variables of accepting offloading (DT−Mini−acc−off and
DE−Mini−acc−off).

Tex−Mini =
NCYC
RMini

, RMini ∈ fMini (25)

TMini = Tex−Mini + Ttx + Trx (26)

DT−Mini−acc−off = I (TMini, τ )

=

{
1 IF (TMini ≤ τ )
0 IF (TMini > τ )

(27)

EMini = NCYCδMini + TtransPSηC (28)

ER−Mini = EC−Mini − EMini (29)

DE−Mini−acc−off = I (ER−Mini,Eth−Mini)

=

{
0 IF (ER−Mini≤Eth−Mini)
1 IF (ER−Mini>Eth−Mini)

(30)

For only positive time and energy decisions, the decision
engine of mini-cloud edge server accepts the offloading.
Otherwise, the mini-cloud edge server decides to reject the
offloading request. The decision engine of mini-cloud unit
sends a response message with the decision to the micro-
cloud unit. If both micro- and mini-cloud units cannot accept
the offloading request, the SUAV block the task.

IV. PERFORMANCE EVALUATION
In this part, the performance of the proposed latency- and
energy-aware offloading algorithm is evaluated for UAVs
network with heterogeneous capabilities. The ground stations
are connected to a multilevel MEC system that provides the
path for ground offloading.

A. SIMULATION SETUP
The proposed algorithm is simulated using Matlab, for a
system that consists of an air tire and ground tire. The air tire
has five drones with heterogeneous processing and energy
capabilities. The five drones are assumed to be randomly
distributed over the air field of radius Rair and altitude h

TABLE 3. Simulation parameters.

FIGURE 6. Network topology considered for simulation.

within the range indicated in Table 3. The flying trajectory
introduced in [34] is used for UAVs of air tire. The ground
tire consists of two cellular cells, with radius Rcell , each
cell has a base station located at the center of the cell. The
base station of the cell A is connected to a micro-cloud edge
server with the computing capabilities presented in Table 3.
The base station of the neighbor cell B is connected to a
mini-cloud edge server with the computing capabilities intro-
duced in Table 3, and both edge servers are connected. The
topology considered for the performance evaluation is illus-
trated in Figure 6. The simulation parameters are summarized
in Table 3.

Three main scenarios are considered for the simulation
purpose, with various considered cases for each scenario.

1) SCENARIO (A)
Ten heterogeneous tasks with different workloads are con-
sidered at the SUAV and these tasks come sequentially. The
SUAV, based on the proposed offloading algorithm, exe-
cutes these tasks; either locally or by offloading them to
an air- or ground-device based on the available resources.
Table 4 indicates the size of the considered tasks, which corre-
sponds to workloads of ten images with different resolutions.
The SUAV is assumed to be the UAV with the ID 3. For this
scenario, three cases are considered, in each case a certain
value of maximum allowable latency that meets the QoS is
assumed for each task. Table 5 indicates the values of the QoS
in terms of latency for each task in each case.
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TABLE 4. Task specifications.

TABLE 5. QoS latency for different cases.

TABLE 6. Allocated tasks for each drone.

FIGURE 7. Average latency of tasks handling for different cases of
scenario (A).

2) SCENARIO (B)
In this scenario, the previously considered tasks are randomly
distributed among the five drones. Table 6 indicates the allo-
cated tasks for each UAV. Tasks are executed simultaneously,
however UAV with more than one task are queued until the

FIGURE 8. Offloading levels of each task for different cases of
scenario (A).

current task is executed. The three considered cases in the
previous scenario are also considered in this scenario.

3) SCENARIO (C)
This scenario is proposed for evaluating the performance
and importance of each offloading level. In this scenario,
the system is simulated five times; each time represents a
simulation case. For the first case, the system is simulated
without offloading. In the second case, the system is simu-
lated with considering only air-offloading and it is assumed
that there is no possibility for ground-offloading. The third
case, assumes the existence of ground-offloading only and
there is no possibility for the air-offloading. The ground-
offloading in this case is assumed to be homogenous MEC
servers (i.e., micro-cloud units) and there is no existence of
mini-cloud units. In the fourth case, the ground offloading
is assumed only with no air-offloading, while the micro-
cloud and mini-cloud units are both deployed. In the last
case, the system is simulated with the deployment of both;
air- and ground-offloading with multilevel MEC. The con-
sidered tasks are the same as in the first scenario with the
SUAV with the ID 3. Thus, scenario (A) can be considered
to be the fifth case of scenario (c). Simulation scenario (c) is
considered for indicating the importance and impact of each
of the considered offloading level on the performance.

B. SIMULATION RESULTS AND ANALYSIS
Figure 7 illustrates the average latency for handling each task
at each case of the simulation scenario (A). Some consid-
ered tasks are handled locally at the SUAV with no need

37596 VOLUME 7, 2019



A. A. Ateya et al.: Energy- and Latency-Aware Hybrid Offloading Algorithm for UAVs

FIGURE 9. Average latency of tasks handling for different cases of
scenario (B).

for offloading, while other tasks are offloaded because of
the available resources are not sufficient for task handling
within the latency requirement. Figure 8 indicates the level
of offloading for each task in each case. A number of the
offloaded tasks are executed at nearby UAVs, while the rest
are offloaded to the ground multilevel MEC servers where
these tasks are executed.With no ground offloading a number
of SUAV tasks could not be handled and therefore some tasks
would be blocked.

Results for simulation scenario (B) are presented in
Figures 9 and 10. Figure 9 illustrates the average latency for
handling each task at each considered case of scenario (B),
while Figure 10 presents the offloading level for each task
at each case, which indicates where the each task is executed.
For this scenario, all UAVs are assigned tasks and this reduces
the probability that a nearby UAV has available resources to
support air-offloading. Tasks 1 – 5 and 10 are allocated for
the five drones at the same time, thus each UAV has a task
to execute. Therefore, these tasks are either executed locally
(i.e., zero offloading level) or ground-offloaded (i.e., second
offloading or third offloading levels).

For evaluating the importance and effectiveness of each
offloading level, the simulation scenario (C) is considered.
Figure 11 illustrates the comparison of the five considered
cases of simulation scenario (C) in terms of the percentage of
blocked tasks. The system is first deployedwith no offloading
and tasks are handled sequentially. Some tasks are handled

FIGURE 10. Offloading levels of each task for different cases of
scenario (B).

locally and other tasks are blocked due to the unavailability
of resources (e.g., the available resources handle the task in a
time greater than latencyQoS time ). The blocked taskswere
recorded and the percentage of blocked tasks is indicated
in Figure 11. This is repeated three times, each time corre-
sponds to a value of threshold latency indicated in Table 5.
For case (2), the system is run with the local execution and
the air-offloading, and the total number of blocked tasks was
recorded. As indicated in Figure 11, the number of blocked
tasks is reducedwith the deployment of air-offloading besides
the local processing. The third case, consider the ground
offloading besides the local offloading and assume no air-
offloading. In this case, the number of blocked tasks is
reduced compared to the previous two cases, but there is still
some blocked tasks. This implies that the ground offloading
besides the local processing is not sufficient and also there
is still blocking. Thus, the UAVs needs both offloading; air-
offloading and ground-offloading to achieve the best perfor-
mance. This represents the fifth case, which indicates zero
blocking as illustrated in Figure 11.

In order to present the value of each offloading level,
and the impact of adding these levels on the performance,
the percentage improvement of task blocking is calculated
for each of offloading level with respect to the local execu-
tion. Table 7 indicates the percentage improvement of task
blocking achieved by each offloading level with respect to
local processing for the previous considered scenario for
three considered values of the QoS latency. Furthermore,
the average value of the percentage improvement for the three
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FIGURE 11. Percentage of blocked tasks for each case of scenario (C).

TABLE 7. Percentage improvement of task blocking for each offloading
level.

considered cases of latency is presented. Results indicate
that employing both ground and air offloading achieves the
complete improvement of the system performance in terms
of blocked tasks.

V. CONCLUSION
This work presented an energy- and latency-aware offloading
algorithm for UAVs for time-critical applications. The algo-
rithm comprises three main routines; the first is responsible
for deciding the location of task execution or the offload-
ing method if required. The decision is made by a decision
engine, which decides based on the available resources and
the required QoS constraints. The second routine is respon-
sible for the air-offloading process, which enables SUAV to
offload their computing tasks to nearby UAVs with avail-
able computing and energy resources. The third routine is
responsible for ground offloading, which is deployed if the
air-offloading fails. The ground offloading is based on a mul-
tilevel MEC system that provides heterogeneous computing
capabilities at the edge of the RAN. The proposed algorithm

achieves higher efficiency in terms of latency and blocking
probability.

In future work, we intend to address the problem of
offloading to air and ground devices, e.g., Internet of Thing
(IoT)-enabled spaces [35] or city infrastructure [36]. Another
avenue of research is to investigate the security of the UAV
network especially in regards to authentication. Many light-
weight authentication techniques that are designed specifi-
cally for IoT, e.g., [37] can theoretically be applied to UAV
networks.
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