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ABSTRACT In this paper, a new direction of arrival (DOA) and the number of signals of interest (SOIs)
estimation method is proposed for wideband sources in impulsive noise environments. By evaluating the
cyclic correntropy function (CCF) of the received signals at a certain cycle frequency, the impulsive noise
and all co-channel interferences with different cycle frequencies can be suppressed. In this approach,
a theorem of the CCF is proposed, and a linear prediction (LP) model of the CCF of the array data,
which is important for both DOA and number of SOIs estimations, is built by the theorem. Additionally,
we introduce multiple regularization parameters into the LP model and derive an analytical expression of the
maximum correntropy criterion (MCC) of the parameters for obtaining the optimal regularization parameters
expression. Furthermore, by the expression of regularization parameters and the estimation error of the CCF
in a limited number of snapshots, an iterative algorithm is proposed for joint estimation of the DOA and the
number of SOIs with only knowledge of the cycle frequency of the SOIs.

INDEX TERMS Wideband sources, direction of arrival (DOA), cyclic correntropy function (CCF),
maximum correntropy criterion (MCC).

I. INTRODUCTION
The estimation of the direction of arrival (DOA) is an impor-
tant aspect of array signal processing. The goal is to deter-
mine the geometric position information of signals in the
same spatial region. This estimation is widely used in radar,
sonar, communication, passive detection and other fields [1].
In general, the subspace-based methods to estimate the DOA
of narrowband signals, such asMUSIC [2], ESPRIT [3],Min-
Norm linear prediction (LP) [4], and the method of direction
estimation (MODE) [5], are well-known because of their low
computational complexity and high resolution capability.

These classical DOA algorithms are mainly based on the
Gaussian noise assumption. The performance of the algo-
rithms will degrade or even fail in the presence of a non-
Gaussian noise. However, in practice, the noise often exhibits
non-Gaussian properties. One important class of non-
Gaussian noises is the impulsive noise, which is characterized
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by sudden bursts or sharp spikes and is frequently encoun-
tered in many practical wireless radio systems [6]. A num-
ber of DOA estimation methods in impulsive noise have
been proposed. A class of subspace based DOA estimation
algorithms uses the fractional lower-order statistics (FLOS)
instead of the second-order sample covariance, such as the
robust covariation-based MUSIC (ROC-MUSIC) [7], frac-
tional lower-order moments in FLOM-MUSIC [8], Kendall’s
tau covariance matrix in TCM-MUSIC [9], etc. Furthermore,
for the DOA estimation of wideband signals with impulsive
noise, a new subspace-based method based on the geometri-
cal properties of the data model was presented in [10]. In [11],
based on the characteristics of impulsive noise, You et al.
presented a fast DOA estimation algorithm by the fractional
lower-order cyclic correlation function.

Universally, these DOA estimation methods require a pri-
ori knowledge of the number of the signals, which is one
of the more critical and difficult problems facing passive
sensor arrays systems. To solve this problem, the weight
subspace fitting (WSF) algorithm [12], [13] is used for sensor
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array processing, which can simultaneously solve the detec-
tion and estimation problems. Based on the adaptive rotation
of an initial subspace, the adaptive signals parameter estima-
tion and classification technique (ASPECT) algorithm [14]
was proposed for removing spurious peaks and obtaining
the actual DOAs. The Pisarenko algorithm in combination
with the ASPECT principle was used in [15] to develop
a new DOA estimation technique without estimating the
number of signals. For the case of fully correlated sources,
Park et al. [16] developed a new algorithm by combin-
ing the advantage of WSF for DOA estimation with the
ASPECT principle. For reducing the computational complex-
ity, Reddy et al. [17] proposed a novel technique that provides
a resolution capability comparable with that of the super-
resolution techniques. By using the LP model, a new mean-
square-error based regularization approach (LP-NMSE) [18]
is developed for estimating the DOAs of narrowband signals
by introducing multiple regularization parameters into the
corrected least squares (CLS) estimation. In the impulsive
noise environment, a robust DOA estimator in [19] is pro-
posed by adopting the correntropy as the robust statistics.

Meanwhile, in the conventional array parameter estima-
tion, most algorithms are all based on the array model of
narrowband signals, and cannot be applied toDOAestimation
for wideband signals. In practice, the assumption of narrow-
band signals is only approximate, especially when a signal
has a significant bandwidth. Based on the theoretical result
in [18], we investigate the problem of estimating the DOA of
wideband signals with an unknown number of sources in the
impulsive noise environment. To suppress the impulsive noise
and all other co-channel interferences with different cyclic
frequencies, we use a cyclic correntropy function (CCF),
which is a generalization of the cyclic autocorrelation func-
tion (CAF) for the DOA and the number of sources estima-
tion. First, we propose a theorem of the CCF about phase
shift characteristic, and build a linear prediction (LP) model
of the CCF from the array data base on the theorem. The
DOA of the signals of interest (SOIs) can be estimated by
solving the LP coefficients. To achieve a high accuracy of
the LP coefficients’ estimation, the error caused by the CCF
estimation in the limited snapshots regime and the unknown
number of SOIs needs to first be obtained. For estimating
the estimation error and the number of SOIs only with the
accessible data, we use multiple regularization parameters
in [18] to stabilize the CLS estimation. By maximizing the
maximum correntropy criterion (MCC) of the estimated LP
coefficients, we obtain the optimal regularization parameters.
Next, an iterative algorithm is proposed to estimate the reg-
ularization parameters, variance of the estimation error, and
LP coefficients with only a knowledge of the cycle frequency
of the SOIs. Finally, the DOA and the number of SOIs are
jointly estimated using the results of the iterative algorithm.

The rest of the paper is organized as follows: Section II
introduces the CCF and the data model. In Section III, the LP
model of the CCF from the array data is built, and the DOA
estimation algorithms under both infinite and finite snapshots

are given. In Section IV, the MCC-based iterative approach
to joint DOA and the number of SOIs estimation is derived,
and the main algorithm steps are described. The simulation
results and discussions are given in Section V, followed by a
concluding summary in Section VI.

II. CYCLIC CORRENTROPY FUNCTION AND DATA MODE
A. CYCLIC CORRENTROPY FUNCTION
The CCF is a generalization of the CAF with informa-
tion regarding the second and higher-order cyclostationary
moments. Compared with the CAF, the CCF has different
properties, which can be very useful in non-Gaussian signal
processing, especially in the impulsive noise environ-
ment [20].

Let vx (t, τ ) denote the correntropy for a non-stationary
process x (t) with time shift τ , which is

vx (t, τ ) = E [κ (x (t + τ/2)− x (t − τ/2))] (1)

where κ (·) corresponds to any positive-definite symmetric
function [21]. In this paper, we employ a Gaussian kernel
defined as

κ (·) =
1
√
2πρ

exp

{
−
(·)2

2ρ2

}
(2)

where ρ is the kernel size. The CCF is characterized by
the property that its correntropy vx (t, τ ) accepts a Fourier
transform with respect to time t as follows

vx (ε, τ ) = lim
T→∞

1
T

∫ T/2

−T/2
vx (t, τ ) e−j2πεtdt

=

〈
κ (x (t + τ/2)− x (t − τ/2)) e−j2πεt

〉
t

(3)

where ε is the cyclic frequency of x (t), and the operator 〈·〉t
defines the time averaging operation

〈·〉t = lim
T→∞

1
2T

∫ T

−T
(·)dt (4)

Considering a given number of snapshots N , the received
signal x (t) can be represented by the discrete-time forms
as x (n), and its cyclic correntropy [22] is given as follows

v̂(T )x (ε, τ )
1
=

1
N

N∑
n=1

vx (n, τ ) e−j2πεn

=
1
N

N∑
n=1

κ (x (n+τ/2)−x (n−τ/2)) e−j2πεn (5)

The cyclic correntropy estimator in (5) is asymptoti-
cally unbiased and consistent that can be derived follow-
ing the same lines that are used for the cycle correlation
function [20], [23].

B. GENERAL DATA MODEL AND PROBLEM STATEMENT
Consider K independent far-field cyclostationary wideband
sources xk (t), k ∈ {1, · · · ,K } impinging on a uniform lin-
ear array (ULA) composed of M identical omni-directional

VOLUME 7, 2019 42483



F. Jin et al.: Joint Estimation of the DOA and the Number of Sources for Wideband Signals

sensors with inter-element spacings D. We assume that K
sources are mutually cyclically uncorrelated and Kε ≤ K
sources corresponding to one cyclic frequency ε. As each
array element is isotropic and not affected by the channel
inconsistency, mutual coupling and other factors, the data
received by the array at the time instant t can be expressed as

y (t) = [y1 (t), y2 (t), · · · , yM (t)]T (6)

ym (t) =
K∑
k=1

xk (t + υmk)+ nm (t), m=1, 2, · · · ,M (7)

where υmk = (m− 1)D sin θk/c is the time delay with
respect to the reference antenna, c is the speed of light, θk is
the DOA of the kth signal, and nm (·) is the impulsive noise at
themth sensor, which is independent of all signals. Compared
with Gaussian noise, the probability density function (PDF)
of the impulse noise has a sharper peak and a thicker tail.
We propose to use an α-stable distribution [24] to model the
measurement noise. Its characteristic function expression is
as follows

ϕ(t) = exp(jµt − δ |t|α [1+ jζ sgn (t) ω (t, α)]) (8)

where

ω (t, α) =

tan
απ

2
α 6= 1

2
π
log |t| α = 1

and α (0 < α ≤ 2) is the characteristic exponent; δ (δ > 0)
is the dispersion parameter, similar to the concept of variance
in the Gaussian distribution;µ (−∞ < µ < +∞) is the loca-
tion parameter; and ζ (−1 ≤ ζ ≤ 1) is the index of symmetry.
The characteristic exponent α controls the thickness of the
density function’s tails. When α = 2, the α-stable distribu-
tion reduces to a Gaussian distribution, and when α = 1,
it becomes a Cauchy distribution.

For the purposes of this paper, we will address the class
of symmetric α-stable (SαS) distributions with µ = 0.
A univariate SαS probability density function (pdf) is given
by taking the inverse Fourier transform of its characteristic
function as follows

f (v;α, δ, µ) ϕ(t) =
1
2π

∫
∞

−∞

exp(jµt − δ |t|α)e−jtvdt (9)

For illustration purposes, we show in Fig. 1 plots of the
SαS pdfs for location parameterµ = 0, dispersion δ = 1, and
characteristic exponents α = 0.5, 1.0, 1.5, 2. From Fig. 1 we
can see that non-Gaussian SαS pdfs (α = 0.5, 1.0, 1.5) have
much sharper peaks and much heavier tails than the Gaussian
pdf (α = 2). And the smaller the value of α is, the thicker the
tails will be.

Meanwhile, to determine the relative strength of the signal
x (t) and impulse noise, the concept of a generalized-signal-
to-noise-ratio (GSNR) is defined as [25]

GSNR = 10 log(E
(
|x (t)|2

)
/δ) (10)

FIGURE 1. SαS pdfs of zero location parameter, unit dispersion, and
various characteristic exponents α.

C. NARROW-BAND DATA MODEL
If all of the signals xk (t) are of a narrow band type with the
same center frequency f0, the model in (7) can be approxi-
mated as follows

ym (t) ,
K∑
k=1

xk (t) exp (j2π f0υmk)+ nm (t) (11)

for m = 1, 2, · · · ,M .
Many algorithms, such as MUSIC [2], ESPRIT [26]

and sparse representation-based DOA estimation meth-
ods [27], [28] have been proposed to estimate the DOAs
by this narrow-band array mode. However, the model is
exact only when the signals are coherent sinusoidal wave-
forms [29].

III. CLS-BASED CYCLIC CORRENTROPY DOA ESTIMATION
A. LP MODEL OF THE CYCLIC CORRENTROPY
FUNCTION OF SENSOR OUTPUTS
First, we propose a simple but important property of the CCF.
Theorem 1: If x (·) is a cyclostationary process with the

CCF vx (ε, τ ), and y (t) = x (t + T0), then vy (ε, τ ) =
vx (ε, τ ) ej2πεT0 .

Proof:

vy (ε, τ ) =
〈
κ (y (t + τ/2)− y (t − τ/2)) e−j2πεt

〉
t

=

〈
κ (x (t+τ/2+T0)− x (t−τ/2+T0)) e−j2πεt

〉
t

(12)

If we consider t ′ = t+T0, then relation (12) can be expressed
as follows

vy (ε, τ ) =
〈
κ
(
x
(
t ′+τ/2

)
−x

(
t ′−τ/2

))
e−j2πεt

′

ej2πεT0
〉
t ′

= vx (ε, τ ) ej2πεT0 (13)

Remark: The point is that the time delay in the signal is
transformed into the phase shift of the CCF.

Then, we propose a newmethod to estimate the parameters
for either narrow-band or broad-band signals by using the
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LP model of the CCF of the signal outputs. The specific
algorithms are as follows:

From (7), we can see that the signals received at different
sensors are time delayed versions of one another. So, based
on the array model in [18], we first predict the M th received
signal from the other M − i (i = 1, · · · ,M − 1) sensors as
follows

yM (t) =
M−1∑
i=1

yM−i (t + βi)+ eM (t) (14)

where βi are the time delay coefficients that need to be solved,
and eM (t) is the prediction error. By substituting (14) into (3)
and using Theorem 1, the CCF of the received signal yM (t)
with a known cycle frequency ε can be predicted from a linear
combination of the CCF of the received data from the other
M − 1 sensors as follows

vεyM (τ ) =

〈
M−1∑
i=1

κ [yM−i (t + τ/2+ βi)

− yM−i (t − τ/2+ βi)] e−j2πεt
〉
t

=

M−1∑
i=1

vεyM−i (τ ) e
j2πεβi (15)

which can be seen as the LP model of the CCF of the sensor
outputs. In (15), the terms of the prediction error eM (t)
in (14) disappear because its cyclic correntropy function is
always zero when ε 6= 0 [28], [29], therefore by selecting an
appropriate cycle frequency ε, the influence of eM (t) can be
reduced. Further, we can rewrite (15) as

vεyM (τ ) =
(
ϕεyM−i (τ )

)T
q (16)

where

q=
[
ej2πεβ1 , ej2πεβ2 , · · · , ej2πεβM−1

]T
∈ C(M−1)×1,

ϕεyM−i (τ )=
[
vεyM−1(τ ), v

ε
yM−2(τ ), · · · , v

ε
y1(τ )

]T
∈ C(M−1)×1.

Suppose that we observe y (t) from the array data
{y1 (t), y2 (t), · · · , yM (t)}

N−1
t=0 . Then, setting the lag τ to be

τ = 0, 1, · · · ,N yields the compact vector-matrix form of
the LP model (16) as follows

v = 8q (17)

where

v =
[
vεyM (0), v

ε
yM (1), · · · , v

ε
yM (N − 1)

]T
∈ CN×1,

8=
[
ϕεyM−i (0),ϕ

ε
yM−i(1), · · · ,ϕ

ε
yM−i(N − 1)

]T
∈CN×(M−1).

B. DOA ESTIMATION UNDER INFINITE SNAPSHOT
We can see that the DOA of the SOIs can be estimated from
the LP model parameter q. The minimum LS estimate q can
be obtained from

q =
(
8H8

)−1
η (18)

where η = 8Hv of lengthM − 1. Another method to solve q
is to use the eigenvalue decomposition (EVD) of the matrix
6 = 8H8.

6 = 8H8 = U3UH (19)

where U = [u1,u2, · · · ,uM−1], UUH
= UHU = IM−1,

and 3 = diag (λ1, λ2, · · · , λM−1), where {ui}M−1i=1 and
{λi}

M−1
i=1 are the corresponding eigenvectors and eigenvalues,

respectively.
Lemma:When the number of snapshots converges to infin-

ity, the number of the signals of interest (SOIs) with cycle
frequency α is equal to the rank of the matrix 6.

Proof: See Appendix A
Accordingly, when N tends to infinity, we obtain λ1 ≥

λ2 ≥ · · · ≥ λKε ≥ λKε+1 = · · · = λM−1 = 0. Next, the
coefficient q in (17) is given by

q =
M−1∑
i=1

uiuHi
λi
η =

Kε∑
i=1

uiuHi
λi
η (20)

From the LP model parameters q =
{
ej2πεβi

}M−1
i=1 ,

the DOA of the SOIs can be estimated by searching for the
positions of the peaks of a prediction polynomial as follows

P (θ) =
1∣∣1− ej2πεβ1w−1 − · · · − ej2πεβM−1w−M−1∣∣2 (21)

where w = ej2πεD sin θ/c.

C. DOA ESTIMATION BY THE CORRECTED
LEAST-SQUARES METHOD
In practice, the CCF has to be estimated from a finite sample
of the received signal that caused estimation error as follows:

v̂εyi (τ ) = vεyi (τ )+1v
ε
yi (τ ), i = 1, · · · ,M − 1 (22)

where 1vεyi (τ ) is the estimation error. By substituting (22)
into (16), we obtain

v̂εyM (τ ) =
(
ϕ̂εyM−i (τ )−1ϕ

ε
yM−i (τ )

)T
q+1vεyM (τ )

= ϕ̂
ε
yM−i (τ )q+ e (τ ) (23)

where

ϕ̂
ε
yM−i (τ ) =

[
v̂εyM−1 (τ ), v̂

ε
yM−2 (τ ), · · · , v̂

ε
y1 (τ )

]T
∈ C(M−1)×1,

1ϕεyM−i (τ ) =
[
1ϕεyM−1 (τ ),1ϕ

ε
yM−2 (τ ), · · · ,1ϕ

ε
y1 (τ )

]T
∈ C(M−1)×1

e (τ ) = 1vεyM (τ )−
(
1ϕεyM−i (τ )

)T
q=1ψεyM−i (τ )w,

w = (1,−q)T ,

1ψεyM−i (τ ) =
(
v̂εyM (τ ), ϕ̂

ε
yM−i (τ )

)T
.

Next, we use the multiple lags τ = 0, 1, · · · ,N − 1 for a
new vector form as follows

v̂ = 8̂q+ e (24)
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where

v̂ =
[
v̂εyM (0), v̂

ε
yM (1), · · · , v̂

ε
yM (N − 1)

]T
∈ CN×1,

8̂ =
[
ϕ̂
ε
yM−i (0), ϕ̂

ε
yM−i (1), · · · , ϕ̂

ε
yM−i (N − 1)

]T
∈ CN×(M−1),

e = [e (0), e (1), · · · , e (N − 1)]T = 19w ∈ CN×1,

19 =
[
1ψεyM−i (1),1ψ

ε
yM−i (2) · · · ,1ψ

ε
yM−i (N − 1)

]T
∈ CN×(M−1).

Due to the estimation error e, the LS estimation of q in (24)
is not consistent and unbiased [30]. For simplicity, we assume
e is an asymptotic normal distribution with a zero mean and
a variance estimated as

σ 2
=

∥∥∥v̂− 8̂q∥∥∥2 (25)

From (24), the CLS estimation of the parameter q is
given by

q̂σ 2 =
(
8̂

H
8̂− σ 2IM−1

)−1
η̂ (26)

where η̂ = 8̂
H
v̂. As in (20), we can also implement the EVD

of 6̂ = 8̂
H
8̂ to derive

q̂σ 2 =
M−1∑
i=1

ûiûHi
λ̂i − σ 2

η̂ (27)

where
{
ûi
}
and

{
λ̂i

}
are the eigenvectors and eigenvalues of

the matrix 6 = 8̂
H
8̂, respectively.

IV. MCC-BASED ITERATIVE APPROACH TO JOINT DOA
AND NUMBER OF SIGNALS ESTIMATION
A. MAXIMUM CORRENTROPY CRITERION ESTIMATION
In this section, we estimate the number of the SOIs by intro-
ducing a regularization matrix P [18] that also stabilizes the
CLS estimation into (26) expressed by

q̂σ 2,p =
(
8̂

H
8̂− σ 2Im−1 + P

)−1
η̂ (28)

The EVD of the matrix P is shown as follows

P = VRVH

R = diag (γ1, γ2, · · · , γM−1) (29)

where {γi} are the regularization parameters. Next, we can
rewrite (28) as follows

q̂σ 2,p ({γi}) =
M−1∑
i=1

ûiûHi
λ̂i − σ 2 + γi

η̂ (30)

where η̂ = 8̂
H
v̂.

Judging from the above, it is easy to show that the rank

of 8̂
H
8̂ − σ 2Im−1 approximates to Kε, where Kε is the

number of the SOIs. Therefore, our objective for intro-
ducing the parameters {γi} is to retain Kε eigenvalues λ̂i,

i = 1, 2, · · · ,Kε, and further reduce the effect of the other
eigenvalues λ̂i, i = Kε+1, · · · ,M−1. To this end, the param-
eters {γi} should satisfy the following equation

γi =

{
0, fori = 1, · · · ,Kε
∞, fori = Kε + 1, · · · ,M − 1

(31)

Next, the problem becomes how to confirm the parame-
ters {γi} to meet the above conditions in (31). As the MCC
proposed in [31] and [32] is applicable in any noise envi-
ronment whose distribution has the maximum at the origin
and outperforms the mean square error (MSE) in the case of
impulsive noise, we consider the MCC of the estimate q̂σ 2,p
in (28) defined by

MCC = E
[
κ
(
q− q̂σ 2,p

)]
(32)

Theorem 2: The asymptotic MCC of the estimated
q̂σ 2,p ({γi}) in (30) is given as the following function of {γi},
provided that N is sufficiently large.

MCC ({γi}) =
1
√
2πρ

M−1∑
i=1

exp

− σ 2λ̂i
(
1+ ‖q‖2

)
2ρ2N

(
λ̂i − σ 2 + γi

)2
−
σ 4
∣∣ûHi q∣∣2 + Nγ 2

i

∣∣ûHi q∣∣2
2ρ2N

(
λ̂i − σ 2 + γi

)2
 (33)

Proof: See Appendix B.
Next, we can obtain an accurate estimate of q̂σ 2,p ({γi})

with a maximum MCC. The ith terms related to γi in (33)
are picked as follows

MCC (γi) =
1
√
2πρ

exp

− σ 2λ̂i
(
1+ ‖q‖2

)
2ρ2N

(
λ̂i − σ 2 + γi

)2
−
σ 4
∣∣ûHi q∣∣2 + Nγ 2

i

∣∣ûHi q∣∣2
2ρ2N

(
λ̂i − σ 2 + γi

)2
 (34)

For γi = 0 and γi = ∞, we obtain

MCC (γi = 0) =
1
√
2πρ

× exp

−σ
2λ̂i

(
1+ ‖q‖2

)
+ σ 4

∣∣ûHi q∣∣2
2ρ2N

(
λ̂i − σ 2

)2


MCC (γi = ∞) =
1
√
2πρ

exp

{
−

∣∣ûHi q∣∣2
2ρ2

} (35)

If γi = 0 is adopted, then

MCC (γi = 0) ≥ MCC (γi = ∞) (36)

By substituting (35) into (36), we obtain

σ 2λ̂i
(
1+ ‖q‖2

)
+ σ 4

∣∣ûHi q∣∣2
2ρ2N

(
λ̂i − σ 2

)2 ≤

∣∣ûHi q∣∣2
2ρ2

(37)
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Rewrite (37) as follows

λ̂i − σ
2
≥

σ 2λi
(
1+ ‖q‖2

)
N
∣∣ûHi q∣∣2 (λ̂i − σ 2

) + σ 4

N
(
λ̂i − σ 2

) (38)

So that γi in (31) can be obtained as

γi =

{
0 λ̂i − σ

2
≥ γ ∗i

∞ λ̂i − σ
2 < γ ∗i

(39)

where γ ∗i is the optimal regularization parameter defined as

γ ∗i =
σ 2λ̂i

(
1+ ‖q‖2

)
N
∣∣ûHi q∣∣2 (λ̂i − σ 2

) + σ 4

N
(
λ̂i − σ 2

) (40)

Comparing (39) with (31), we can see that the number
of SOIs can be estimated by determining γ ∗i and comparing
λ̂i − σ

2 to γ ∗i .

B. ITERATIVE ALGORITHM FOR THE ESTIMATION
OF THE DOA AND NUMBER OF THE SOIs
To jointly estimate the DOA and the number of SOIs,
we solve the unknown parameters

{
γ ∗i

}M−1
i=1 in (40) and

q̂σ 2,p ({γi}) in (30). In the case ofKε < M−1, {γi}
M−1
i=1 in (38)

satisfies the following relationship:
|γM−1|

|γ1|
> χ (41)

where χ is a specified large value (e.g., χ = 1050). Specifi-
cally, the steps of the iterative algorithm are shown as follows:

Step 1 Estimate the cyclic correntropy function for the
M − th sensor and the other M − 1 sensors by the finite-
sample N as

v̂aym (i)=

{
1
N

N−1−i∑
n=0

κ (ym (n+i)− ym (n)) e−j
2π
N an

}
e−j

π
N ai,

m = 1, 2, · · · ,M (42)

where a = (ε/fs)N ∈ [0, fs] is the digital cyclic fre-
quency, and the adjustment term e−jπ/Nai makes the sequence
symmetric with respect to a.
For i = 0, 1, · · · ,N − 1, we have the following cyclic

correntropy matrix

v̂ =
[
v̂ayM (0), v̂

a
yM (1), · · · , v̂

a
yM (L − 1)

]T
(43)

8̂ =


vayM−1 (0) vayM−1 (1) · · · vayM−1 (L − 1)

vayM−2 (0) vayM−2 (1) · · · vayM−2 (L − 1)
...

...
. . .

...

vay1 (0) vay1 (1) · · · vay1 (L − 1)


T

(44)

Step 2 Calculate the eigenvalues
{
λ̂i

}M−1
i=1

and the eigen-

vectors
{
ûi
}M−1
i=1 of the data matrix 8̂ by using the EVD as

follows

6̂ = E
[
8̂

H
8̂
]
= Û3̂Û

H
(45)

where Û =
[
û1, · · · , ûM−1

]
, and 3̂ = diag

(
λ̂1, · · · , λ̂M−1

)
.

Step 3 Set k = 0, with the initial values of the variance of
the estimation error σ 2(k) and the regularization parameters{
γ
(k)
i

}M−1
i=1

exceeding a specified value ξ , where ξ is chosen

to be a small positive number
(
e.g., ξ = 10−50

)
Step 4 Calculate the estimate q̂σ 2(k),p

({
γ
(k)
i

})
in (30) for

the given σ 2(k) and
{
γ
(k)
i

}M−1
i=1

as

q̂σ 2(k),p
({
γ
(k)
i

})
=

M−1∑
i=1

ûiûHi
λ̂i − σ 2(k) + γ

(k)
i

η̂ (46)

where η̂ = 8̂
H
v̂.

Step 5 Update the optimal regularization parame-

ters
{
γ
(k+1)
i

}M−1
i=1

based on (40) with the estimate

q̂σ 2(k),p
({
γ
(k)
i

})
in Step 4 as

γ
(k+1)
i =

σ 2λ̂i

(
1+

∥∥∥q̂σ 2(k),p (γ (k)i

)∥∥∥2)
N
∣∣∣ûHi q̂σ 2(k),p (γ (k)i

)∣∣∣2 (λ̂i − σ 2(k)
)

+
σ 4(k)

N
(
λ̂i − σ 2(k)

) (47)

for i = 1, · · · ,M − 1.
Step 6 Update the variance of the estimation error σ 2(k+1)

based on (25) for the estimate q̂σ 2,p
({
γ
(k)
i

})
in Step 4 as

σ 2(k+1)
=

∥∥∥v̂− 8̂q̂σ 2(k),p ({γ (k)i

})∥∥∥2 (48)

Step 7 Calculate the ratio ϑ of γ (k+1)M−1 to γ (k+1)1 , which is
obtained in Step 5 as

ϑ =

∣∣∣γ (k+1)M−1

∣∣∣∣∣∣γ (k+1)1

∣∣∣ (49)

Set k = k + 1, and then go back to Step 4 and
repeat the iteration. If θ increases over a specified large
value χ , the iteration is stopped. The number of the SOIs
can be estimated by referring to the relationship between the

eigenvalues
{
λ̂i − σ

2
}M−1
i=1

and the regularization parameters{
γ
(k+1)
i

}M−1
i=1

in (47).

From the results, the CLS estimation of the LP parameters
q̂σ 2,p ({γi}) can be obtained via (30), where the parameters

{γi}
M−1
i=1 and σ 2 are the iteration results of

{
γ
(k+1)
i

}M−1
i=1

and σ 2(k+1), respectively, or a close result can be derived from

the eigenvalues
{
λ̂i

}Kε
i=1

as

q̂σ 2 =
Kε∑
i=1

ûiûHi
λ̂i − σ 2

η̂ (50)

Finally, the DOA of the SOIs can be estimated from the
peak positions of the spectrum P (θ) in (21).
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TABLE 1. Computational complexity of each step.

According to the steps of the iterative algorithm, we ana-
lyze the computational complexity in terms of the floating
point operations for the proposed algorithm. The compu-
tational complexity of the each step in the iterative algo-
rithm are given in Table 1. Based on Table 1, the order of
overall computational complexity of the proposed algorithm
is O (MLN ).

V. SIMULATIONS
We consider a uniform linear array of M = 10 sensors
with a half-wavelength spacing. The SOIs are two far-field
BPSK signals with a raised cosine pulse shape with one
center frequency of 100MHz and 40% excess bandwidth
from two different directions. The interference signal is a far-
field wideband AM signal with the same center frequency
as the SOIs and a relative wideband of 30%. For assessing
the detection performance of the estimation of the number of
SOIs, the robust minimum description length (RMDL) [33],
Akaike information criterion (AIC) [12], and the modified
Gerschgorin disk estimator (MGDE) [34] are performed.
The measure of the detection of the number of SOIs is the
detection probability P, which is defined as the ratio of the
number of correct estimates to the number of Monte Carlo
experiments.

To examine the estimation performance for estimating
the DOA, the cyclic MUSIC [29], the wideband covariance
matrix sparse representation (W-CMSR) [35] and the robust
covariation-based MUSIC (ROC-MUSIC) [7] are conducted.
In the examples of DOA estimation, we assume that the num-
ber of SOIs is known. As the W-CMSR and ROC-MUSIC
algorithms cannot mitigate co-channel interferences with the
same center frequency, the number of sources is assumed
to be three, whereas for the cyclic MUSIC and the pro-
posed algorithm, only two SOIs are considered. We perform
200 Monte-Carlo runs in every experiment and compute
the resolution event probability and the root-mean-square
error (RMSE) of the DOA estimates. The resolution analy-
sis of these algorithms are studied by a resolution criterion
defined by the following threshold equation [36]

3
(
θ̂1, θ̂2

)
, P

(
θ̂m

)
−

1
2

[
P
(
θ̂1

)
+ P

(
θ̂2

)]
> 0 (51)

where θ̂1 and θ̂2 are the estimated angles of arrival of
the SOIs, and θ̂m =

(
θ̂1 + θ̂2

)
/2 is the mid-range. In the

case of angular resolution, we further analyze the RMSE of
the algorithms, that is,

RMSE =
1
Kε

Kε∑
k=1

√√√√ 1
L

L∑
l=1

[
θ̂k (l)− θk

]2 (52)

where θk and θ̂k (l) are the true and estimated values of the
angles of arrival in the l-th experiment, respectively, and L is
the total number of successful runs.

A. PERFORMANCE OF DOA AND NUMBER
OF SOIs ESTIMATION
In this experiment, we set the number of snapshotsN = 6000,
the generalized SNR GSNR = 8dB, and the characteristic
exponent of the noise α = 1.5, and the kernel size is
set at ρ = 1.5. The angles of arrival for the two SOIs are
25◦ and 50◦, respectively, and the AM interference arrives
from a direction of 20◦.

FIGURE 2. Comparison of the estimated eigenvalues
{
λ̂i − σ

2(k)
}

and the

regularization parameters
{
γ
(k)
i

}
with i = 1 to M − 1 in the last iteration.

First, we testify the effectiveness of the detection of the
number of SOIs. Fig. 2 shows the change of

{
γ
(k)
i

}
and

λ̂i− σ
2(k) with i = 1 toM − 1 in the last iteration. We found

that the number of SOIs is determined by the intersection of
these two curves K̂ε = i = 2. It becomes clear that the

{
γ
(k)
i

}
and σ 2(k) obtained from the proposed iterative algorithm in
the 2nd subsection of Sec IV are essential for estimating the
number of SOIs. Furthermore, in order to verify the esti-
mated accuracy of the parameters

{
γ
(k)
i

}
, we show the case

of divergence and convergence of
{
γ
(k)
i

}
with respect to k

iterations and the theoretically optimal regularization param-
eter

{
γ ∗i

}
for reference in Fig. 3. In addition, the theoretical

parameter
{
γ ∗i

}
is calculated using (40), where the theoretical

LP parameter q can be obtained in (20) with the simulation
condition Kε = 2, and the theoretical variance σ 2 can be
given in (25) with the theoretical parameter q and the true
matrix 8 in (17). As expected, the estimated parameters
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FIGURE 3. Profiles of the regularization parameters γ (k)1 (a), γ (k)2 (b), γ (k)3 (c), and γ (k)4 (d) calculated by the proposed algorithm.

FIGURE 4. DOA of SOIs, which are estimated by the coefficients q (a) and the coefficients q̂
µ2,p

({
γi
})

(b).

γ
(k)
1 and γ (k)2 converge close to zero (e.g., 1e−20) in a few

iterations, whereas γ (k)3 and γ (k)4 diverge to a very large value
(e.g., 1e150).
Next, we examine the performance of the DOA estimation

via the proposed algorithm. Fig. 4 shows the results of the
DOA of SOIs, which are estimated with the coefficients q
in (18) and the coefficients q̂σ 2,p ({γi}) in (30). Since the

solution to q in (18) is directly obtained from LS without
considering the influence of the estimation error caused by
the finite amount of data, the estimation result is poor. How-
ever, we make a more accurate estimate of the parameter
q̂σ 2,p ({γi}) in (30) by the estimation error σ 2 obtained by
the proposed iterative algorithm. From the results we see
that the variance of the estimation error σ 2 caused by the
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FIGURE 5. Probability of success (a) and RMSE (b) of the TDE estimation as a function of the kernel size.

FIGURE 6. Detection probability of the number of SOIs as a function of
the number of snapshots.

limited data is a very important parameter for an accurate
DOA estimation.

B. COMPARATIVE EXPERIMENTS UNDER
DIFFERENT CONDITIONS
Example A (Performance Versus Kernel Size): As the kernel
size is a crucial parameter in the MCC [37], this section
discusses the performance of the proposed method regarding
the kernel size. The simulation conditions are the same as
those described in the previous experiment, except that the
kernel size varies from 0.1 to 2.9. Fig. 5 shows the probability
of success and the RMSE of the DOA estimation versus the
kernel size. From Fig. 5, we can observe that ρ ∈ [1.2, 1.6]
would be the optimal domain for the proposed algorithm
to achieve the best performance. Therefore, in subsequent
simulation experiments, the kernel size is set at ρ = 1.5.
Example B (Performance Versus Number of Snapshots):

The number of snapshots is an important parameter that deter-
mines the performance of the DOA and the number of SOIs
estimation. The simulation conditions are the same as those
described in the previous experiment, except that the number
of snapshots N varies from 3000 to 9000. Fig. 6 shows
the detection probability of the number of SOIs versus the

FIGURE 7. Probability of resolution (a) and RMSE (b) of DOA estimation
as a function of the number of snapshots.

number of snapshots. As the proposed algorithm requires
a long data length in order to induce cyclostationarity and
reduce the estimation error, it is inferior to the AIC method
but is superior to other algorithms when N ≥ 4000. In addi-
tion, since the second-order statistics cannot suppress the
impulse noise, the RMDL and AIC methods cannot achieve
a high estimate accuracy. Fig. 7 evaluates the resolution
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FIGURE 8. Detection probability of the number of SOIs as a function of
the GSNR.

probability and the RMSE of the DOA estimation. As illus-
trated in Fig. 7, the performance of the proposed algo-
rithm is more sensitive to less snapshots (N < 4000) than
ROC-MUSIC but is superior to other algorithms when the
number of snapshots N ≥ 4000.
Example C (Performance Versus GSNR): In this experi-

ment, we analyze the influence of the GSNR on the perfor-
mance of the proposed algorithm. The simulation conditions
are the same as those in the first example, except that the
GSNRs vary from −3dB to 15dB in 2dB steps. Fig. 8
shows the detection probability of the number of SOIs versus
the GSNR. As shown, the proposed algorithm has better
estimation of the number of SOIs for relatively low GSNRs.
Fig. 9 evaluates the resolution probability and the RMSE
of the three algorithms for the DOA estimation versus
the GSNR. The figure indicates that the performance of the
proposed approach is superior to that of other algorithms,
even with a low SNR. From the example, we can see that
the proposed algorithm is relatively insensitive to the GSNR
because the variation of non-cyclic impulsive noise does not
appear in the cyclic frequency at ε 6= 0.
Example D (Performance Versus Characteristic Expo-

nent): In this experiment, we study the influence of the
characteristic exponent α to the detection and estimation
performances. The parameters for the experiment are the
same as the first example, except that the noise environ-
ments vary from serious impulsive (α is approximately 1)
to Gaussian environments (α=2). Fig. 10 shows detection
probability of the number of SOIs versus the characteristic
exponent α. Note that for α ≤ 1.1 the RMDL and AIC
methods cannot detect the number of SOIs in any of the
200 Monte Carlo runs. The results suggest that in impulsive
noise environments modeled under the stable law, the perfor-
mance of the traditional detection algorithm using second-
order statistics is poor. With an increase in α, the detection
probabilities of all algorithms are improved. Fig. 11 illustrates
the performance of the four algorithms for DOA estimation in
a wide range of noise environments.We note that for α < 1.2,
W-CMSR and cyclic MUSIC do not resolve the SOIs,

FIGURE 9. Probability of resolution (a) and RMSE (b) of DOA estimation
as a function of the GSNR.

FIGURE 10. Detection probability of the number of SOIs as a function of
the characteristic exponent α.

which suggests that the lower order moments or corren-
tropy is more beneficial than the covariance matrix in impul-
sive noise environments. The performance of the proposed
approach is improved over that of other three algorithms
both in terms of the resolution probability and the RMSE for
α ∈ [1, 2). Of course, for Gaussian additive noise (α = 2),
W-CMSR gives better results by use of the covariance matrix.
Example E (Performance Versus Angular Separation):

We assume the two sources are the SOIs (BPSK) mentioned

VOLUME 7, 2019 42491



F. Jin et al.: Joint Estimation of the DOA and the Number of Sources for Wideband Signals

FIGURE 11. Probability of resolution (a) and RMSE (b) of the DOA estimation as a function of the characteristic exponent α.

FIGURE 12. Probability of resolution (a) and RMSE (b) of the DOA estimation as a function of the angular separation.

above arriving from θ1 = 4◦ and θ2 = 4◦ + 1θ , where the
angular separation 1θ varies from 1◦ to 66◦ in 1◦ steps, and
the rest of the conditions are identical to those in the above
examples. Fig. 12 illustrates the resolution probability and
the RMSE of the DOA estimation versus 1θ . As expected,
the resolution capabilities of all algorithms are improved with
an increase in the angle separation between the two SOIs.
The figure shows that the estimation performance of the
proposed algorithm is better than other algorithms because
the information on the eigenvalues and eigenvectors is jointly
exploited in the paper.

VI. CONCLUSIONS
In this paper, we investigate the joint DOA and sources
number estimation for wideband signals in impulsive noise
environments. By building the LP model of the CCF of the
array signals, a CLS-based cyclic correntropy DOA estima-
tion approach is proposed in a limited number of snapshots.
To achieve a more accurate joint estimate of the DOA and
the number of SOIs, we further develop an MCC-based
iterative approach. The improved performance of the pro-
posed algorithm is demonstrated via sufficient experiments.

Simulations indicate the effectiveness of the proposedmethod
for the DOA and the number of SOI estimations under the
circumstances of co-channel interferences, limited snapshots,
low GSNR and wide range of impulsive noise environments.

APPENDIX
A. PROOF OF LEMMA
From the definition of CCF in (3) and the data model in (7),
the CCF of the (M − i) th received signal for i=1, · · · ,M−1
can be obtain as follows

vεyM−i (τ ) =
〈
κ (yM−i (t + τ/2)− yM−i (t − τ/2)) e−j2πεt

〉
t

=

〈 Kε∑
k=1

κ
[
xk
(
t + τ/2+ υ(M−i)k

)
−xk (t − τ/2

+υ(M−i)k
)
e−j2πεt

] 〉
t

=

Kε∑
k=1

vεxk (τ ) e
j2πευ(M−i)k (53)
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We can rewrite (53) as

vεyM−i (τ ) =
(
9εxk (τ )

)T pi (54)

where

pi =
[
ej2πευ(M−i)1 , ej2πευ(M−i)2 , · · · , ej2πευ(M−i)Kε

]T
,

9εxk (τ ) =
[
vεx1 (τ ), v

ε
x2 (τ ), · · · , v

ε
xK (τ )

]T
.

Setting i to be i = 1, · · · ,M − 1, yields the vector

ϕεyM−i (τ ) =
[
vεyM−1 (τ ), v

ε
yM−2 (τ ), · · · , v

ε
y1 (τ )

]T
as follows

ϕεyM−i (τ ) =
(
ψεxk (τ )

)T P (55)

where P = [p1,p2, . . . ,pM−1] ∈ CKε×(M−1).
As the matrix 8 =

[
ϕεyM−i (0),ϕ

ε
yM−i (1), · · · ,

ϕεyM−i (N − 1)
]T
, we further obtain the compact matrix-

matrix form as

8 = 9P (56)

where9=
[
9εxk (0), · · · ,9

ε
xk (N − 1)

]T, and rank (9)=Kε.
Since thematrixP is a Vandermondematrix andwe assume

M−1 > Kε, we can obtain rank (P)=min (M − 1, Kε) = Kε.
Hence, we have rank (8) = Kε, i.e., the rank of the matrix
6 = 8H8 is given by rank (6) = Kε.

B. PROOF OF THEOREM 2
From the defined MCC of the estimate q̂σ 2,p in (30),
we obtain

MCC = E
[
κ
(
q̂σ 2,p − q

)]
= E

[
1
√
2πρ

exp
{
−
1q2

2ρ2

}]
(57)

where 1q = q̂σ 2,p − q.
For calculating the MCC defined in (57), it is necessary to

calculate the correntropy matrix of the estimation error of the
estimate q̂σ 2,p. Based on (28), the error 1q in (57) can be
obtained by

1q = q̂σ 2,p − q

=

(
8̂

H
8̂− σ 2IM−1 + P

)−1
η̂ − q

=

(
8̂

H
8̂−σ 2IM−1 + P

)−1
8̂

H (
8̂q+19w

)
−q (58)

Let P0 = [OM×1,P] , 8̂0 =

[
OM×1, 8̂

]
, then (57) can be

rewritten as follows

1q =
(
8̂

H
8̂− σ 2IM−1 + P

)−1 [(
−8̂

H
8̂0 + 8̂

H
19

)
+

(
8̂

H
8̂− σ 2IM + P0

)]
w

=

(
8̂

H
8̂−σ 2IM−1+P

)−1 (
8̂

H
19 − σ 2IM−1+P0

)
w

(59)

Next, we obtain the error covariance matrix of the estimate
q̂σ 2,p as follows (details shown in [18])

Ja = lim
N→∞

[
1q (1q)H

]
= lim

N→∞

{(
q̂σ 2,p − q

) (
q̂σ 2,p − q

)H}
=

1
N

(
8̂

H
8̂− σ 2IM−1 + P

)−1 [
σ 2
(
1+ ‖q‖2

)
8̂

H
8̂

+ σ 4qqH + NPqqHP
] (
8̂

H
8̂− σ 2IM−1 + P

)−1
(60)

From the fact that

MCC = E
[

1
√
2πρ

exp
{
−
diag (Ja)
2ρ2

}]
(61)

where

diag (Ja)

=
σ 2

N

(
1+ ‖q‖2

)
× diag

[
8̂

H
8̂
(
8̂

H
8̂− σ 2IM−1 + P

)−2
+ σ 2q

(
8̂

H
8̂− σ 2IM−1 + P

)−2
qH

+NqHPH
(
8̂

H
8̂− σ 2IM−1 + P

)−2
Pq
]

=

σ 2λ̂1
(
1+ ‖q‖2

)
+ σ 4

∣∣ûH1 q∣∣2 + Nγ 2
1

∣∣ûH1 q∣∣2
N
(
λ̂1 − σ 2 + γ1

)2 , · · ·,

σ 2λ̂M−1
(
1+‖q‖2

)
+σ 4

∣∣ûHM−1q∣∣2+Nγ 2
M−1

∣∣ûHM−1q∣∣2
N
(
λ̂M−1−σ 2 + γM−1

)2


We finally obtain the asymptotic MCC in (33)

MCC ({γi}) =
1
√
2πρ

M−1∑
i=1

exp

− σ 2λ̂i
(
1+ ‖q‖2

)
2ρ2N

(
λ̂i − σ 2 + γi

)2
−
σ 4
∣∣ûHi q∣∣2 + Nγ 2

i

∣∣ûHi q∣∣2
2ρ2N

(
λ̂i − σ 2 + γi

)2
 (62)
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