
Received January 22, 2019, accepted March 9, 2019, date of publication March 25, 2019, date of current version May 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2904887

Efficient Multiple Kernel k-Means Clustering
With Late Fusion
SIWEI WANG 1, EN ZHU1, JINGTAO HU1, MIAOMIAO LI1, KAIKAI ZHAO2,
NING HU3 AND XINWANG LIU 1, (Member, IEEE)
1School of Computer, National University of Defense Technology, Changsha 410073, China
2Institute of Information Fusion, Naval Aviation University, Yantai 264001, China
3Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China

Corresponding authors: En Zhu (enzhu@nudt.edu.cn) and Ning Hu (huning@gzhu.edu.cn)

This work was supported in part by the National Key R&D Program of China under Grant 2018YFB1003203 and in part by the National
Natural Science Foundation of China under Grant 61672528 and Grant 61773392.

ABSTRACT The recently proposed multiple-kernel clustering algorithms have demonstrated promising
performance in various applications. However, most of the existing methods suffer from high computational
complexity and intensive time cost. To address this issue, we propose to fulfill multiple kernel k-means
clustering via a late fusion manner. In specific, we design two multiple kernel k-means algorithms with
late fusion, whose computational complexities linearly grow with the number of samples. The proposed
algorithms integrally optimize the various clustering matrices into the optimal consensus clustering results
iteratively. Furthermore, we analyze the computational complexities of the proposed algorithms and the-
oretically prove their convergence. As demonstrated by the experiments on six benchmark datasets, our
algorithms achieve comparable or better clustering performance to state-of-the-art ones with less time cost,
which demonstrates the advantages of the late fusion in multiple kernel k-means.

INDEX TERMS Multiple kernel clustering, multiple view clustering, late fusion.

I. INTRODUCTION
Clustering is one of the fundamental learning tasks in
machine learning and data mining communities. Among the
existing clustering algorithms, the k-means algorithm has
been widely applied to many academic researches and real
applications. The k-means algorithm follows a two-step iter-
ation prototype: i) setting k landmarks as cluster centers,
and assigning samples to k clusters based on the k land-
marks; ii) updating the assignment matrix by minimizing
the sum of within-cluster distances and computing the new
landmarks. The two steps are run iteratively until stopping
criterion is satisfied. To improve the representation ability,
the kernel k-means algorithms map the original data to a
high-dimensional space which is linearly separable and more
friendly to learning tasks [1]–[4]. This extension enhances
the k-means algorithm to handle the linearly non-separable
problem in original space through feature mapping.

Although the kernel k-means algorithms achieve great
success in various applications, most of them are proposed
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to handle the data with single view. However, the samples
are presented in various forms or views of data in many
real-world applications. For example, for web-page clas-
sification, the sample usually has two or more types of
data, e.g., text, hyper-links and images, each of which can
be seen as one view to the data. Many researchers have
proposed various methods to combine the comprehensive
information collected from each view, which is known as
multi-view learning in literature [5], [6]. For kernel method,
each view can be represented by a kernel matrix and the
weight of every single kernel matrix can be considered as its
contribution to the whole view. Along this direction, many
multiple-kernel clustering algorithms have been proposed
to solve multi-view clustering in recent literature [7]–[15].
In [8], a three-step alternate algorithm named Nonlinear
Adaptive Metric Learning (NAML) is proposed to jointly
optimize clustering, the kernel coefficients and dimension
reduction based on themetric ofMahalanobis distance. In [9],
a novel optimization kernel k-means algorithm is applied to
collect multiple data sources from various views for cluster-
ing performance. In [10] and [16] they design a localized ker-
nel k-means clustering algorithm to adapt to locally-similar
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samples by altering the kernels’ weights respectively. Fol-
lowing this strategy, a multiple kernel k-means clustering
algorithm with matrix-induced regularization has been pro-
posed to reduce the redundancy and enhance the diversity
of the pre-defined kernels [11]. Furthermore, the local ker-
nel alignment criterion has been applied to multiple kernel
learning obeying the principle that the closer sample pairs
shall stay together and the similarity evaluations for far-
ther sample pairs are unreliable [12]. Those aforementioned
multiple kernel k-means clustering algorithms have shown
promising clustering performance and are widely used to
practical applications. However, most of them suffer from
high computational complexity and long training time which
make them infeasible in medium or larger applications.

To address this issue, we propose a novel multiple-kernel
clustering framework via a late fusion manner. Late fusion
has been widely applied in computer vision and document
classification [17]–[21]. We avoid the massive computation
on eigenvalue decomposition of kernelmatrix during the clus-
tering process, which significantly reduces the time complex-
ity. More specially, our algorithms’ time complexities grow
linearly with the sample number comparing to the former
cubical growing rate. Collecting comprehensive information
from multiple views, the ideal consensus clustering matrix is
aligned with the different views’ clustering results. Although
NAML is also based on multiple kernel extension of kernel
k-means clustering, the mathematical objective and the solu-
tion are different from our methods. In NAML, the metric
of k-means is constructed based on the Mahalanobis distance
while our approach is constructed in euclidean space. More-
over, instead of calculating the new combined kernel matrix,
our algorithms only optimize the cluster assignments and
kernel coefficients in an alternate procedure.

In order to implement the framework mentioned above,
we propose two novel multiple kernel k-means algorithms
with fast convergence, which we name them average mul-
tiple kernel k-means with late fusion (Average-MKKM-
LF) and Adaptive multiple kernel k-means with late fusion
(Adaptive-MKKM-LF) respectively. The average multi-
ple kernel k-means with late fusion (Average-MKKM-LF)
equally considers each view’s contributions to the clustering
performance and integrates the various clustering assign-
ment matrices respectively instead of the optimal kernel for
clustering in former multiple kernel framework. Moreover,
the weight of each view should be allowed to adaptively
change with various data sources. Hence we propose the
Adaptive multiple kernel k-means with late fusion (Adaptive-
MKKM-LF) to adaptively weighted with different perspec-
tives of views. To solve the resultant optimization problem,
we develop two efficient algorithms with proved conver-
gences. Extensive experimental study has been conducted on
six MKL benchmark datasets to evaluate clustering perfor-
mance of the proposed algorithms. As indicated, our algo-
rithms have small time-cost and consistently demonstrate
comparable or better performance with the several state-of-
the-art ones. Moreover, the carefully designed optimization

goals have a very fast rate of convergence, i.e., usually less
than 10 times in benchmark datasets. This verifies the effec-
tiveness and superiority of late fusion in our algorithms.

Our contributions in this paper can be summarized as
follows:

(i) We propose a multiple kernel clustering framework via
a late fusion manner, which are supposed to integrate
the various clustering indicator matrices produced by
different views respectively instead of the optimal ker-
nel for clustering in former multiple kernel framework.
We join the clustering process and the optimization
assignment into one optimization problem. To the best
of our knowledge, it is the first time that late fusion
is adopted into kernel method in order to enhance the
diversity of the clustering results and reduce the time
complexity of multiple-kernel clustering algorithms.

(ii) In order to implement the proposed framework, two
novel average and adaptive approaches (average multi-
ple kernel k-means with late fusion (Average-MKKM-
LF)) and (adaptive multiple kernel k-means with late
fusion (Adaptive-MKKM-LF)) with carefully designed
deterministic fusion optimization goals are proposed
for solving our optimization problem in multiple kernel
k-means clustering with proved convergence. We the-
oretically demonstrate that the two algorithms’ time
complexities linearly grow on the size of sample
number.

(iii) Extensive empirical study has been conducted on six
MKL benchmark datasets. As indicated, our algo-
rithms consistently demonstrate comparable perfor-
mance with several the state-of-the-art ones or even
better which validate the advantage of the proposed
multiple kernel clustering framework with late fusion.

The rest of this paper is organized as follows. Section II
outlines the related work of multiple kernel clustering.
Section III presents the proposed optimization objective and
the three-step alternate algorithms. Section IV analyses the
convergence and the computational complexity of our two
proposed algorithms. Section V shows the experiment results
with evaluation. Section VI concludes the paper.

II. RELATED WORKS
A. KERNEL k-MEANS CLUSTERING(KKM)
Let {xi}ni=1 ⊆ X be a collection of n training samples. The
optimization goal of kernel k-means clustering algorithm is
to minimize the square loss of the within-cluster distance
in the transformed space. And the feature mapping function
φ(x) transfers the origin sample x into a reproducing kernel
Hilbert spaceH which is a k-means-friendly space and easier
to cluster. By supposing the cluster indicator matrix Z ∈
{0,1}n×k , the optimization objective of KKM could be written
as follows:

min
Z∈{0,1}n×k

Zic‖φ(Xi) − µc‖
2 s.t.

k∑
c=1

Zic = 1. (1)
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where nc =
∑n

i=1 Zic and µc = 1
nc

∑n
i=1 Zicφ(Xi) are the

number and centroid of the c − th(1 ≤ c ≤ k) cluster
respectively.

By equivalently rewritten in matrix-vector form, the func-
tion in Eq. (1) is transformed to the following problem,

min
Z∈{0,1}n×k

Tr(K)− Tr(L
1
2Z>KZL

1
2 ) s.t. Z1k = 1n. (2)

Here, we apply the kernel matrix to the Eq.(1), andK denotes
the kernel matrix and L = diag([n−11 , n−12 , ·, ·, ·, n−1k ]).
Directly solving the optimization problem in Eq. (2) is

difficult for the reason that the element in matrixL is discrete.
We relax L to take real values, by letting the new matrix
H follows that H = ZL

1
2 . Then we rewrite the problem in

Eq. (2),

min
H∈Rn×k

Tr(K(In −HH>)) s.t. H>H = Ik , (3)

From the formula setting proposed in Eq. (1), the kernel
k-means can correctly identify and extract a far more varied
collection of cluster structures than the linear k-means clus-
tering algorithm through the non-linear feature mapping. The
optimization problem in Eq. (3) could be solved by singular
value decomposition(SVD) of the kernel matrix K [11].

However, the clustering performance of kernel k-means
mostly depends on the pre-specified kernel matrix. For most
of the applications in real life, it is hard for researchers to
set a clustering-friendly kernel matrix for the lack of prior
knowledge. Hence the multiple-kernel k-means clustering
is proposed to enhance the representation ability of kernel
k-means in a weighted multiple-kernel setting.

B. MULTI-KERNEL k-MEANS (MKKM)
In the multiple kernel setting, we suppose that {xi}ni=1 ⊆ X
is a collection of n samples, and φp(·) : x ∈ X 7→ Hp be
the p-th feature mapping which transfers x into a reproducing
kernel Hilbert space Hp (1 ≤ p ≤ m). Hence each sample is
represented as φβ (x) = [β1φ1(x)>, · · · , βmφm(x)>]> fromm
views, where β = [β1, · · · , βm]> consists of the coefficients
of the m base kernels {κp(·, ·)}mp=1. These coefficients will be
optimized during learning. Based on the definition of φβ (x),
a kernel function can be expressed as

κβ (xi, xj) = φβ (xi)>φβ (xj) =
m∑
p=1

β2pκp(xi, xj). (4)

A kernel matrix Kβ is then calculated by applying the kernel
function κβ (·, ·) into {xi}ni=1. By using the notation that kernel
matrixKβ , the optimization goal of MKKM algorithm can be
expressed as

min
H,β

Tr(Kβ (In −HH>))

s.t. H ∈ Rn×k , H>H = Ik , β>1m = 1, βp ≥ 0, ∀p.

(5)

where Ik is an identity matrix with size k × k . The opti-
mization problem in Eq. (5) can be solved by alternately

updating H and β: i) Optimizing H by fixed β. With the
kernel coefficients β fixed, H can be obtained by solving
a kernel k-means clustering optimization problem shown in
Eq. (6);

max
H

Tr(H>KβH) s.t. H ∈ Rn×k , H>H = Ik , (6)

The optimal H for Eq. (6) can be obtained by taking the k
eigenvectors corresponding to the largest k eigenvalues of
K. ii) Optimizing β by fixed H. With H fixed, β can be
optimized via solving the following quadratic programming
with linear constraints,

min
β

m∑
p=1

β2pTr(Kp(In −HH>)) s.t. β>1m = 1, βp ≥ 0.

(7)

As noted in [9] and [10], using a convex combination of
kernels

∑m
p=1 βpKp to replace Kβ in Eq. (5) is not a valid

option, because this could get sparse solution and only one
single kernel is performed while all the others given with zero
weights. As indicated, the multiple-kernel k-means mainly
promote the diversity of a set of single kernel k-means and
the weight vector β can be regarded as the different weights
contributing to the clustering from each view respectively.
The weight vector β and the clustering indicator matrix H
are both optimized alternately during learning process.

C. MULTIPLE-KERNEL CLUSTERING WITH LOCAL KERNEL
ALIGNMENT MAXIMIZATION (MKC-LKA)
In [12], the local kernel alignment criterion has been applied
to multiple kernel learning following the motivation that the
similar sample pairs shall stay more closer and the similarity
evaluations for farther sample pairs are unreliable because
of improper metric settings. Considering locally aligning the
similarity of each sample to its k-nearest neighbors with
corresponding ideal kernel matrix, in specific, the local kernel
alignment for the i-th can be calculated as,

max
H∈Rn×k ,β∈Rm+

〈K(i)
β ,H

(i)H(i)>
〉√

〈K(i)
β ,K

(i)
β 〉

s.t. H>H = Ik , β>1m = 1. (8)

where 〈K(i)
β ,H

(i)H(i)>
〉 = Tr(K(i)

β

>

H(i)H(i)>),K(i)
β and H(i)

are the sub-matrix of Kβ and H whose indices are specified
by the τ -nearest neighbors of the i-th sample, and M(i) is a

matrix withM(i)
pq = Tr(K(i)

p
>

K(i)
q ).

The Eq. (8) can be conceptually expressed as,

min
H∈Rn×k ,β∈Rm+

Tr(K(i)
β (Iτ −H(i)H(i)>))+

λ

2
β>M(i)β

s.t. H>H = Ik , β>1m = 1. (9)

where K(i)
β = S(i)>KβS(i),H(i)

= S(i)>H,S(i) ∈ {0,1}n×τ is
a matrix indicating the τ -nearest neighbors of the i-th sample
and Iτ is an identity matrix with size τ × τ .
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Moreover, an alternate optimization algorithm is proposed
to solve the problem in Eq. (9) and achieves the superior per-
formance among several multiple-kernel clustering methods.
However, the computational cost for that method is high as it
suffers from long training time. To address this issue, in the
following section, we apply the late fusion to multiple kernel
k-means to have the optimal clustering results by integrat-
ing the multi-view results. It has comparable performances
with multiple-kernel clustering with local kernel alignment
maximization(MKC-LKA) and smaller time complexity with
less training time. Moreover it provides the multiple-kernel
learning with a new framework which could be easily applied
to other fields.

III. MULTIPLE-KERNEL k-MEANS WITH LATE
FUSION (MKKM-LF)
As mentioned in section II, our work is built on the multi-
ple kernel k-means and late fusion. Different from the for-
mer framework chasing for the optimal kernel to cluster,
we decide to align the best assignment matrix with a vari-
ety of assignment matrices obtaining by different kernels.
More specially, by taking every single kernel k-means with
kernel

{
Kp
}m
p=1, we could have a set of assignment matrices{

Hp
}m
p=1. For the multiple kernel settings, we have several

assignment matrices, each of which can be seen as a partition
to the samples. Due to clustering is unsupervised learning,
different assignment matrix Hp could be seen as the same
results if each can be aligned through column transformation.
Further, with a permutation matrix Wp, we have obtain that
the new assignment matrix HpWp has the same clustering
result with the original matrix Hp.

Following the above analysis, we consider the best assign-
ment matrix H as a linear combination of the permutation
transformed assignment matrix. This motivates us to derive
an optimization problem to best approximate the ideal con-
sensus clustering matrix.

A. MOTIVATION ILLUSTRATION
For every multi-view clustering algorithm, the basic assump-
tion is that all the views should share the consensus clustering
results. As for kernel k-means settings, that means we should
align the set of assignment matrices

{
Hm

p=1

}
with the con-

sensus clustering matrix H. However, is is noticed that clus-
tering is actually unsupervised learning for the lack of class
labels. Hence through column permutation, different assign-
ment matrices could reflect in the same clustering results. For
example, we assume that the data given has 5 samples and
3 clusters. During learning process, we have two assignment
matrices H1 and H2 in the following,

H1 =

∣∣∣∣∣∣∣∣∣∣
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

∣∣∣∣∣∣∣∣∣∣
, H2 =

∣∣∣∣∣∣∣∣∣∣
0 0 1
0 0 1
1 0 0
1 0 0
0 1 0

∣∣∣∣∣∣∣∣∣∣

AlthoughH1 andH2 are different inmath forms, they actually
performs the same clustering results. They both indicate that
sample 1 and sample 2 belong to the same cluster while
sample 3 and sample 4 belong to another cluster. And this
could do the column exchanges to solve the problem H1 =

H2W2, where the matrix W2 is permutation matrix.

W2 =

∣∣∣∣∣∣
0 1 0
0 0 1
1 0 0

∣∣∣∣∣∣
Therefore, our motivation is to align the assignment matrices{
Hm

p=1

}
with the same consensus clustering matrixH. More-

over we set our formulas in the next section.

B. PROPOSED FORMULATIONS
With discussion mentioned above, our motivation is to find
the consensus clustering matrixH by integrating a number of
the weighted original matrices

{
Hp
}m
p=1. In multiple kernel

settingwith a given set ofm kernels
{
Kp
}m
p=1, we apply kernel

k-means algorithm on each kernel and have a set of resultant
assignmentmatrices

{
Hp
}m
p=1. By right-manipulating column

permutation matrices, the assignment matrix could be written
into its equivalent clustering result. By considering the con-
tribution weight of different matrices to the optimal matrix,
we unify our optimization function as follows:

min
H,{Wp}

m
p=1

∥∥∥∥∥∥H− 1
m

m∑
p=1

HpWp

∥∥∥∥∥∥
2

F

,

s.t. H>H = Ik . (10)

where
{
Wp

}m
p=1 are a set of permutation matrices.

By considering the locality contribution weight of differ-
ent matrices to the optimal matrix, we set our optimization
function as follows:

min
H,{Wp}

m
p=1,γ

∥∥∥∥∥∥H−
m∑
p=1

γ pHpWp

∥∥∥∥∥∥
2

F

,

s.t. H>H = Ik , γ>1 = 1, γ ≥ 0. (11)

where
{
Wp

}m
p=1 are a set of permutation matrices.

By relaxing the constraints imposed on the column-
transformation matrix

{
Wp

}m
p=1 to the orthogonality restric-

tion, we get a relaxed version of Eq. 10,

min
H,{Wp}

m
p=1

∥∥∥∥∥∥H− 1
m

m∑
p=1

HpWp

∥∥∥∥∥∥
2

F

,

s.t. H>H = Ik ,W>W = Ik . (12)

where
{
Wp

}m
p=1 are a set of permutation matrices.

We also get the relaxed version of the adaptive formula
Eq.(11). By taking the contribution coefficient γ into the
Eq.(12), we are supposed to adaptively consider the various
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cluster assignment matrices,

min
H,{Wp}

m
p=1,γ

∥∥∥∥∥∥H−
m∑
p=1

γ pHpWp

∥∥∥∥∥∥
2

F

,

s.t. H>H = Ik , W>W = Ik , γ>1 = 1, γ ≥ 0. (13)

It is worth noting that we not only set an optimization goal
for the multiple-kernel k-means clustering with late fusion,
but also offer a new framework to fuse various clustering
methods, which implies that any kind of ensemble clustering
results can be applied to our framework. Moreover, as the
following optimization process shows, the proposed function
could be easily solved by an alternate algorithm and every
step could be easily solved with the existed optimization
packages.

C. OPTIMIZATION FOR AVERAGE-WEIGHTED ALGORITHM
In order to solve the problem in Eq. (12), we design a two-step
alternate optimization algorithm with a fast convergence rate,
where each step could be easily solved by the existing off-the-
shelf packages.

1) OPTIMIZATION H WITH FIXED
{
Wp

}m
p=1

With
{
Wp

}m
p=1 being fixed, the optimization Eq.(12) could be

rewritten as follows,

max
H

Tr(H>U)

s.t. H>H = Ik , (14)

where U = 1
m

∑m
p=1HpWp. And this problem in Eq.(14)

could be easily solved by taking the singular value decom-
position(SVD) of the given matrix U.

2) OPTIMIZATION
{
Wp

}m
p=1 WITH FIXED H

With H fixed, for each single Wp, the optimization problem
in Eq.(12) is equivalent to Eq.(15) as follows,

max
Wp

Tr(W>p V)

s.t.W>p Wp = Ik , (15)

where V = HT
p (H−

1
m

∑m
q=1,q6=pHqWq). And this problem

in Eq.(15) could be easily solved by taking the singular value
decomposition(SVD) of the given matrix V.
Our equally-weighted multiple kernel k-means algorithm

with late fusion is outlined in Algorithm 1, and in the fol-
lowing we have proposed an adaptive algorithm in III-D to
show respect to the different contribution of every single
assignment matrix.

D. OPTIMIZATION FOR ADAPTIVE ALGORITHM
The average-weighted multiple-kernel k-means algorithm
with late fusion proposed in section III-C naturally consider
that every view shares the same coefficient contributing to
the optimal clustering results. However it neglects the locality
of every single view and is impractical in real applications.

Algorithm 1 Proposed Average-Weighted MKKM-LF

1: Input:
{
Wp

}m
p=1 , τ and ε0.

2: Output: H.
3: Initialize

{
Wp

}m
p=1 = Ik, γ = 1

m and t = 1.
4: Repeat
5: UpdateH by solving Eq.(14) with fixed

{
Wp

}m
p=1 and γ .

6: Update
{
Wp

}m
p=1 with fixed H and γ by Eq.(15).

7: t = t + 1.
8: Until

(
obj(t−1) − obj(t)

)
/obj(t) ≤ ε0

In order to allow every single view’s coefficient to alter with
respect to different data applications, we have proposed an
adaptive algorithm and set the optimization goal as Eq.(13).
Although the problem in Eq.(13) is a relaxed version, it is
still troublesome to be solved with existed packages. In order
to solve it, we design a three-step alternate optimization
algorithm with a fast convergence rate, where each step could
be easily solved by the existing off-the-shelf packages.

1) OPTIMIZATION H WITH FIXED
{
Wp

}m
p=1 AND γ

With
{
Wp

}m
p=1 and γ being fixed, the optimization Eq.(13)

could be rewritten as follows,

max
H

Tr(H>U)

s.t. H>H = Ik , (16)

where U =
∑m

p=1 γ pHpWp. And this problem in Eq.(16)
could be easily solved by taking the singular value decom-
position(SVD) of the given matrix U. Here the following
theorem gives a simple closed-form solution for the problem
in Eq.16.
Theorem 1: Suppose that the matrix U in Eq.(16) has the

economic rank-k singular value decomposition form as U =
Sk6kV>k , where Sk ∈ Rn×k ,6k ∈ Rk×k ,Vk ∈ Rk×k . The
optimization in Eq.(16) has a closed-form solution as follows,

H = SkV>k (17)
Proof: By taking the the normal singular value decom-

position U = S6V>, the Eq.(16) could be changed into

Tr(H>S6V>) = Tr(V>H>S6). (18)

Considering that Q = V>H>S, then we have that
QQ> = V>H>SS>HV = Ik . Therefore we can take that
Tr(V>H>S6) = Tr(Q6) 6

∑k
i=1 σi. Hence to maximize

the value of Eq.(16), the solution should be given as Eq.(17).
�

2) OPTIMIZATION
{
Wp

}m
p=1 WITH FIXED H AND γ

With H and γ being fixed, for each singleWp, the optimiza-
tion problem in Eq.(11) is equivalent to Eq.(19) as follows,

max
Wp

Tr(W>p V)

s.t.W>p Wp = Ik , (19)
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where V = HT
p (H−

∑m
q=1,q 6=p γ qHqWq). And this problem

in Eq.(19) could be easily solved by taking the singular
value decomposition (SVD) of the given matrix V. Like the
closed-form expressed in Theorem 1, if the matrixV has the
singular value decomposition form as V = S6X>, the opti-
mization in Eq.(19) has a closed-form solution as Wp =

SX>. Hence we optimize one Wp with other Wi 6=p fixed
at each iteration. Finally, we can obtain a set of optimized{
Wp

}m
p=1.

3) OPTIMIZATION γ WITH FIXED H AND
{
Wp

}m
p=1

With H and
{
Wp

}m
p=1 being fixed, the optimization problem

in Eq.(11) is equivalent to the optimization problem as fol-
lows. Suppose that Q =

∑m
p=1 γ pHpWp, then we have that

‖H−Q‖2F = Tr((H−Q)>(H−Q))

= Tr(H>H)− 2Tr(H>Q)+ Tr(Q>Q)

= k − 2Tr(H>Q)+ Tr(Q>Q) (20)

Noting that Q =
∑m

p=1 γ pHpWp, we have that
Q> =

∑m
p=1 γ pW

>
p H
>
p and Q>Q = (

∑m
p=1 γ pW

>
p H
>
p )

(
∑m

p=1 γ pHpWp). And taking them into Eq.(20), the opti-
mization can be written as follows,

min
γ

1
2
γ>Aγ − f>γ ,

s.t. γ>1 = 1, γ ≥ 0, (21)

where f = [f1, f2, . . . , fm] with fp = Tr(H>HpWp), Apq =

Tr(W>p H
>
p HqWq).

It seems difficult to solve the Eq.(21). However the
following proof illustrates the matrix A is a positive semidef-
inite (PSD) matrix. Hence, with the simplified problem pro-
posed in Eq.(21), we have observed that this problem is a
quadratic programming optimization and could be efficiently
solved via the existing convex optimization package.
Lemma 1: for every x ∈ Rm, we have that

x>Ax =
m∑
p=1

m∑
q=1

xpxqTr(W>p H
>
p HqWq),

= Tr(
m∑
p=1

m∑
q=1

xpxqW>p H
>
p HqWq),

= Tr(
m∑
p=1

xpW>p H
>
p

m∑
q=1

xqHqWq),

=

∥∥∥∥∥∥
m∑
p=1

xpw>p H
>
p

∥∥∥∥∥∥
2

F

≥ 0. (22)

Therefore, the matrix A is a positive semidefinite matrix and
the optimization in Eq.(21) could be solved by quadratic
programming.

Our adaptive algorithm is outlined in Algorithm 2, where
obj(t) denotes the objective value at the t-th iterations. The
objective of Algorithm 1 and Algorithm 2 is monotonically

Algorithm 2 Proposed Adaptive MKKM-LF

1: Input:
{
Hp
}m
p=1 , τ and ε0.

2: Output: H, γ .
3: Initialize

{
Wp

}m
p=1 = Ik, γ = 1

m and t = 1.
4: Repeat
5: UpdateH by solving Eq.(16) with fixed

{
Wp

}m
p=1 and γ .

6: Update
{
Wp

}m
p=1 with fixed H and γ by Eq.(19).

7: Update γ by solving Eq.(21) with fixedH and
{
Wp

}m
p=1.

8: t = t + 1.
9: Until

(
obj(t−1) − obj(t)

)
/obj(t) ≤ ε0

decreased when optimizing one variable with the other fixed
at each iteration. At the same time, the whole optimiza-
tion problem is lower-bounded. As a result, the proposed
algorithm can be verified to be convergent. We also record
the objective at each iteration and the results validate the
convergence. In addition, the algorithm usually converges in
less than ten iterations in all of our experiments.

IV. ALGORITHM ANALYSIS
In this section, we present the theoretical analysis on the opti-
mization algorithm’s convergence and computational com-
plexity to verify the efficiency of proposed algorithms.

A. CONVERGENCE ANALYSIS
As mentioned, our optimization value is monotonically
decreased and the algorithm usually converges less than ten
iterations. Our two algorithms both adopt the alternate opti-
mization strategy which ensures every step of optimization
goal could get decreased under conditions. The objective of
Algorithm 1 and Algorithm 2 is monotonically decreased
when optimizing one variable with the other fixed at each
iteration. At the same time, the whole optimization problem
is lower-bounded. As a result, the proposed algorithm can
be verified to be convergent. In addition, our algorithm is
theoretically guaranteed to converge to a local minimum
according to [22].

B. COMPUTATIONAL COMPLEXITY
As shown in the former sections, our proposed algorithm
achieves the comparable or even better performances than
other multiple-kernel k-means clustering ones. Moreover,
as our motivation mentioned in the introduction part, compar-
ing to the best algorithmmultiple-kernel clustering with local
kernel alignment(MKC-LKA), our algorithm has less time
complexity with learning time. And in this section, we the-
oretically analyze the time of the several former-mentioned
algorithms.

Theoretically, we assume that the number of samples in
given dataset is n, the number of clusters k and the number
of kernels is m. Going back to the our optimization algorithm
in 1, the total time complexity consists of three parts referring
to the three alternate steps. The first step of algorithm 1,
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TABLE 1. The comparison on the time complexity of comparing algorithms at each iteration.

mentioned in Eq.16, actually needs an singular value decom-
position(SVD) of a matrix with the size of n× k and building
the matrix Q =

∑m
p=1 γ pHpWp needs O(mnk2). Hence the

time complexity of first step is O(nk2 + mnk2).
The second step follows the same optimization strategy

in the first step while the matrix size reduces to k × k
and building the matrix V = HT

p (H −
∑m

q=1,q 6=p γ qHqWq)
needs O(mnk2).Hence the time complexity of second step is
O(m(k3 + mnk2)). As for the third step, the time complexity
of quadratic programming isO(m3) and building thematrixA
and f needsO(2mnk2+(m(m+1)2 )nk2). Hence time complexity
of the third step is O(m3

+ mnk2 + m2nk2). The whole time
complexity of each iteration in our proposed algorithm is
O(nk2 + mnk2 + mk3 + m3

+ nm2k2).
The comparison on the time complexity of ours and

the Multiple Kernel Clustering with Local Kernel Align-
ment Maximization (MKC-LKA) at each iteration is listed
in Table 1. Comparing to MKC-LKA and MKKM-MR, our
proposed algorithm has less time cost which linearly grows
on the sample number n, where n � k and n � m. And our
algorithm always converge in less than 10 times on real-world
datasets. The experiment results listed in Table 4 also verify
our analysis.

V. EXPERIMENTS
In this section, we conduct a set of experiments to demon-
strate the effectiveness of the proposed multiple-kernel
k-means with late fusion (MKKM-LF). We compare our pro-
posed average-weighted algorithm, adaptive algorithm with
the several state-of-art algorithms on clustering performance
and timecost listed in tables. Moreover, we also conduct
several experiments to verify our analysis of time complexity.

A. EXPERIMENTAL SETTINGS
We evaluate our multiple kernel k-means with late
fusion(MKKM-LF) algorithm on multiple kernel clustering
benchmarks. They are Oxford Flower17 and Flower1021 and
Protein Fold prediction2 and CCV3 and UCI-Digital4 and
Caltech 1015. The detailed information of the several datasets
are listed in Table 2.

1http://www.robots.ox.ac.uk/˜vgg/data/flowers/
2http://mkl.ucsd.edu/dataset/protein-fold-

prediction
3http://www.ee.columbia.edu/ln/dvmm/CCV/
4http://archive.ics.uci.edu/ ml/datasets

/optical+recognition+of+handwritten+digits
5http://www.vision.caltech.edu/Image_Datasets

/Caltech101

TABLE 2. Datasets used in our experiments.

For the ProteinFold Dataset, we use the kernel generat-
ing method proposed by [23]. For other benchmark multiple
kernel datasets, we use the pre-defined kernel matrices and
download them from the official website.

In all our experiments, all base kernels are first cen-
tered and then scaled so that for all sample xi and p,
we have Kp(xi, xi) = 1 by following [24]. For all data
sets, it is assumed that the true number of clusters is known
and set as the true number of classes. For the proposed
algorithm, its neighborhood parameter τ is chosen from
[0.1, 0.2, · · ·, 0.9, 1]×n by grid search, where n is the number
of samples.

The widely used clustering accuracy (ACC), normalized
mutual information (NMI) and purity are applied to evaluate
the clustering performance. For all algorithms, we repeat
each experiment for 50 times with random initialization
to reduce the effectiveness of randomness caused by k-
means, and report the best result. All the experiments are
performed on a desktop with Intel core i7-5820k CPU
and 16G RAM.

B. COMPARED ALGORITHM
In this section, we list the compared algorithms as follows,
• Average multiple kernel k-means (A-MKKM): All ker-
nels are averagely weighted to conduct the optimal
kernel, which is used as the input of kernel k-means
algorithm.

• Single best kernel k-means (SB-KKM): Kernel k-means
is performed on each single kernel and the best result is
outputted.

• Multiple kernel k-means (MKKM) ([25]): The algo-
rithm alternatively performs kernel k-means and updates
the kernel coefficients, as introduced in the related work.

• Optimized data fusion for kernel k-means clustering
(OKKC) ([9]): The algorithm propose to jointly opti-
mize clustering, the kernel coefficients and dimension
reduction based on the metric of Mahalanobis distance,
as introduced in the related work.
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TABLE 3. ACC, NMI and purity comparison of different clustering algorithms on all data sets.

TABLE 4. The time cost of different clustering algorithms on all data sets (sec.).

• Co-regularized spectral clustering (CRSC) ([26]):
CRSC provides a co-regularization way to perform
spectral clustering on multiple views.

• Multiple kernel k-means with Matrix-induced Regu-
larization (MKKM-MR) ([11]): The algorithm applies
the multiple kernel k-means clustering with a matrix-
induced regularization to reduce the redundancy and
enhance the diversity of the kernels.

• Multiple Kernel Clustering with Local Kernel Align-
ment Maximization (MKC-LKA)([12]): The algorithm
maximizes the local kernel alignment with multiple ker-
nel clustering and focuses on closer sample pairs that
they shall stay together.

The Matlab codes of A-MKKM, SB-KKM and MKKM
are publicly available at http://github.com/
mehmetgonen/lmkkmeans. For the rest of algorithms,
we use their matlab implementations from authors’ websites
in our experiments.

C. EXPERIMENTAL RESULTS
The ACC, NMI and Purity of the compared algorithms on
the six benchmark datasets are displayed in Table 3. The
best and second best results are presented in red and blue

respectively. We also plot the running time of the mentioned
algorithms on each datasets in Table 4. Due to the results,
we have the following conclusions:

• Our proposed algorithm always achieves the best
and second best on the four datasets while it is much
closer between ours and the best one on the rest datasets.
Taking the largest dataset Flower102 as an example,
our average algorithm arrives 43.99% and the adaptive
algorithm is 43.78% while significantly outperforms the
other ones. And among the six benchmark datasets, our
algorithms achieves the best results in four datasets and
the second best in the rest of datasets.

• As mentioned before, different from framework of the
MKKM, MKC-LKA and MKKM-MR algorithms, our
frameworkwith late fusion ismore robust in the datasets,
which is essential for practical use.

• OKKC has comparable performances with SB-KKM
and MKKM. Because of the `1 norm constraint on
the kernel coefficients, this leads a sparse solution
and normally only one of the selected kernels is per-
formed while others are given very small weight. Hence
the performance of OKKC could not exceed the SB-
MKKM(single-best) and MKKM too much.
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FIGURE 1. The objective value of our average algorithm at each iteration in Proteinfold (a), Flower102 (b), Flower17 (c), Caltech (d), Digits (e) and CCV (f).

• As a strong baseline, MKC-LKA usually demonstrates
comparable or even better performance than most
of algorithms in comparison. However, the time-cost
of our proposed algorithm is significantly less than
MKC-LKA while ours achieves the equal performance
with MKC-LKA.

Table 3 also reports the comparison of NMI and purity.
Again, we observe that the proposed algorithm has promising
performance among datasets. In all, these results have well
verified the effectiveness of late fusion in multiple kernel
k-means setting.

From the above experiments, we can conclude that our
proposed algorithm has the following advantages:
• effectively make the use of the multiple assignment
matrices and alternately form an optimal clustering
result;

• well jointly utilizes the contribution of each kernel in the
process of clustering and reduce the high computational
complexity in former methods. As the sample number
increases, ours significantly outperforms MKC-LKA
in time cost which we theoretically demonstrate in
section IV-B.

The two proposed algorithms actually take various per-
formance among datasets. While equally considering each
view’s contribution, the average-weighted algorithm aims
to enhance the diversity of choices of selected assignment
matrices. Moreover, the adaptive algorithm allows the weight
to alternately change and join the coefficient optimization
step into the whole optimization process. So it leads to

sparse combination of the pre-selected assignment matri-
ces, and hence automatically performs the matrix selec-
tion. Our framework with late fusion is flexible and allows
the pre-specified kernels clustering results to be weighted
for better clustering, bringing improvements on clustering
performance. Hence it could be easily extended to other
multiple-view clustering methods.

D. PARAMETER SELECTION
Our proposed algorithm has one hyperparameter τ which
represents the neighborhood ratio respectively. The param-
eter τ is considered to reveal the locality of samples and
the underlying inner structure of clusters. In our algorithm
setting, we experimentally investigate the influence of the
hyperparameter on our clustering performance. The selection
neighborhood ratio of τ is from [0.1, 0.2, · · ·, 0.9, 1]. The
Figure 3 shows the influences on the clustering accuracy
by selection of τ among different datasets. From the figure,
we have the following conclusions:
• The hyperparameter selection of τ should be various
for different datasets. And the best performance of clus-
tering accuracy is always achieved by appropriately
selecting the range of neighbors.

• Our proposed algorithm shows comparable clustering
performance across a wide range of τ values. The fluc-
tuation of various τ on clustering accuracy is no more
than 5%.

• As our figures 3 shows, our two proposed algorithms
are more robust across a wide range of parameter τ .
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FIGURE 2. The objective value of our adaptive algorithm at each iteration in Proteinfold (a), Flower102 (b), Flower17 (c), Caltech (d), Digits (e) and CCV (f).

Hence ours are more practical in real applications.
While the two algorithms usually achieve equal perfor-
mances, the adaptive algorithm is trained with less time
consuming.

E. FURTHER EXPERIMENTS
To further reveal the time complexity of our proposed
algorithm comparing to the multiple kernel clustering with
Local kernel alignment maximization(MKC-LKA), we are
supposed to do experiments on the Caltech1026 dataset.
To investigate the clustering performance with respect to the
number of samples, we select 5, 10, 15, 20, 25 and 30 samples
randomly selected from each class. By this way, we generate
five datasets on Caltech102, which has 102 classes and
48 base kernels. We refer to the six generated datasets as
caltech102-5, caltech102-10, caltech102-15, caltech102-20,
caltech102-20, caltech102-25 and caltech102-30 respectively.

The ACC of the compared algorithms on the five bench-
mark datasets are displayed in Table 6. The best and second
best results are presented in red and blue respectively.We also
plot the running time of the mentioned algorithms on each
datasets in Table 7 and Figure 4a.

As the result shows, our two algorithms achieve the best
and second best performances in cluster accuracy among
the six datasets. Moreover as the sample of each class

6http://mkl.ucsd.edu/dataset/ucsd-mit-caltech-
101-mkl-dataset

TABLE 5. Details about datasets used in further experiments.

FIGURE 3. The effect of the neighbourhood ratio τ on ACC in adaptive
algorithm among Proteinfold (a) and Flower102 (d).

grows, the timecost of the our two algorithms grows linearly
on sample number while the compared algorithm MKC-
LKA, MKKM-MR significantly need more training time.
While achieving comparable performance among the six
datasets, the time cost also verifies the analysis mentioned
before.
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TABLE 6. The clustering accuracy (ACC) results in further experiments.

TABLE 7. The time cost of different clustering algorithms on further experiment (sec).

FIGURE 4. The time comparison in six Caltch102 datasets.

VI. CONCLUSION
This work has proposed a multiple kernel clustering frame-
work with late fusion to jointly utilize the various views of
clustering results. A weighted combination of the cluster-
ing matrices which reflect the different views’ relevance to
the clustering task is automatically updated. The two new
algorithm, MKKM-LF, show promising performance with
smaller time complexities, underlying the strength of late
fusion and boosting the quality of clustering partition.

In the future, we try to apply the late fusion framework to
other kernel-based learning tasks. Moreover, it is interesting
to explore more possible fusion methods extended to our
framework. The idea of view-weighted late fusion could be
adapted to kernel-based unsupervised attribute weighting.
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