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ABSTRACT An adaptive global slidingmode fuzzy control using radial basis function (RBF) neural network
(NN) based on backstepping technique is presented for a micro electromechanical systems (MEMS) gyro-
scope. The proportion integral differential (PID) sliding surface has the capacity of restraining the steady-
state error. Meanwhile, we take advantage of the global sliding mode manifold to overcome shortcomings
of the conventional sliding mode controller, obtaining the fast response and overall robustness. Furthermore,
faced with the unknown dynamic characteristic of the MEMS system, an RBF neural approximator is
employed to estimate it. Besides, a fuzzy controller is put forward to suppress the chattering phenomenon
caused by the sliding mode controller. The globally asymptotic stability of the closed loop system is guaran-
teed by the selected adaptive laws and Lyapunov theory. The simulation results demonstrate satisfactory
effects of the proposed advanced controller. The comparison studies verify the better properties of the
suggested control approach.

INDEX TERMS Micro electromechanical systems gyroscope, PID global sliding mode control, RBF neural
network control, backstepping control, fuzzy control.

I. INTRODUCTION
A MEMS gyroscope has the merits of low price, small size,
low energy consumption and so on, it is commonly used
in many fields widely (e.g. automotive, aviation, consumer
electronics, navigation. . . ). However, owing to the capabil-
ities are influenced by external disturbances, time varying
parameters and manufacture errors, MEMS gyroscope also
has several shortcomings. Thus, many progressive strategies
have been proposed to solve these issues inMEMS gyroscope
and improve the robustness and performance. For instance,
a new active disturbance rejection scheme is designed for
a gyroscope to regulate the output amplitude of the axis
in [1]. Asad et al. [2] designed a new fuzzy sliding mode
strategy with nonlinear part in fuzzy rules for control of
MEMS gyroscope. Chu et al. [3] derived an adaptive pro-
portional integral derivative global sliding mode controller
using neural estimator for a MEMS gyroscope to obtain
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better robust performance. Sung and Lee [4] introduced
a mode-matched controller through phase-domain analysis
for a MEMS gyroscope. John and Vinay [5] designed a
novel concept for a triaxial angular velocity sensor device.
Chang et al. [6] presented a scheme to improve the accuracy
of MEMS gyroscopes with combining numerous gyroscopes.
Fei and Xin [7] developed a fuzzy adaptive sliding mode
method which combined the advantages of adaptive fuzzy
control and sliding mode control.

Global sliding mode control (GSMC) is a valid approach
which can overcome the shortcoming of the conventional
sliding mode control and ensure the global robustness all
the response process fast. An adaptive backstepping global
proportional, integral and differential sliding mode fuzzy
control method based on radial basis function neural network
estimation was realized by Chu and Fei [8]. Hu et al. [9]
introduced a novel global sliding mode control with IPF
compensation for matrix rectifiers using a hyperbolic tangent
function. A control approach was presented by combining
the neural network method with the global sliding mode
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control whichwas adaptively implemented byMen et al. [10].
Chu and Fei [11] learnt a global sliding mode control
approach on the basis of RBF NN, which eliminated the
arrival time of the sliding mode level and reduced chattering.

It is sensible to lead PID (Proportional Integral Deriva-
tive) sliding mode controller to the conventional one due
to the large steady-state error which is caused by external
disturbance and uncertainty, inhibiting the steady-state error
and enhancing the robustness. For example, to obtain the
stability of the robot motion, Jafarov et al. [12] proposed a
novel PID variable structure control for tracking. A discrete
Proportional Integral Derivative sliding mode scheme for a
MIMO system based on output tracking was investigated
by Singh et al. [13]. Aiming at the second order nonlinear
inverted pendulum system, a PID sliding mode model along
with robust control lawwas realized by utilizing the improved
particle swarm intelligence optimization method by Cao and
Chen [14]. Li et al. [15] adopted a neural adaptive backstep-
ping hybrid controller based on a dynamic PID sliding mode
manifold.

For the past few years, backstepping technique has drawn a
lot of attention by its recursive and systematic designing step
for feedback nonlinear system [16]. The backstepping tech-
nique has a most significant step to choose several recursively
state variable function which are utilized as the virtual control
input of the whole system’s low-dimensional subsystem [17].

Wai et al. [18] proposed a backstepping sliding mode
approach adaptively that combines the advantages of adaptive
backstepping methodology and sliding mode method for the
control of motor motion position driven by linear induction
motor. Chiang et al. [19] resolved the uncertainty of the mag-
netic ball suspension system by introducing the backstepping
sliding mode scheme. A neural backstepping global sliding
mode strategy using fuzzy approximator for an active power
filter was studied by Fei et al. [20].

Intelligent control methods include neural network control,
fuzzy control and so on, which could approximate nonlin-
ear function or reduce chattering. In addition, neural net-
work can also estimate the uncertainty of parameters and
the external interference, which greatly alleviates chattering
phenomenon. Li and Cheah [21] focused on an original adap-
tive neural control formula which was aimed at solving the
problem of fixed-point control, trajectory tracking control,
etc.

Wai et al. [22] realized an adaptive sensorless speed
controller on the basis of fuzzy neural network to acquire
position tracking with high accuracy for n-link robot manip-
ulator. Wu and Liu [23] derived a fuzzy control combined
with sliding mode method with inherent robustness. A stable
tracking method of fuzzy neural network was designed by
Wu and Tam [24] for a class of nonlinear unknown systems.
Chen et al. [25] studied the robust control scheme for non-
linear systems, which could be approximated or expressed in
non-affine form. Regardless of external disturbances, to real-
ize superior property ofH∞ tracking for servo drives, a direct
adaptive fuzzy technology was presented by Rubaai [26].

Chang and Wang [27] developed a proportional integral
fuzzy method for the sake of maintaining the signal power
of all users received by the base station meanwhile which
is almost equal so as to obtain better control performance.
Chu et al. [28] designed a dynamic neural global PID sliding
mode approach for an active power filter.

In this paper, a strategy of neural backstepping PID global
sliding mode fuzzy technology for a MEMS gyroscope was
studied which contains a backstepping PID global sliding
surface, a fuzzy estimator and a neural network approximator.
The proposed method possesses the following merits:

(1) The robustness and instantaneous characteristics of the
designed controlled system could be ameliorated by selecting
suitable sliding mode coefficient. Adaptive laws of the fuzzy
estimator and the neural network approximator ensure stabil-
ity of the whole closed loop system by Lyapunov theorem.

(2) Backstepping technology is a good way to realize the
schematized and structurized designing process of Lyapunov
function via reverse designing. The property of global sliding
maniflod is better than the conventional ones because of its
fast response and global robustness. In view of the problem
of large steady-state error of traditional sliding mode scheme
under external disturbances, it is advisable to introduce PID
sliding mode approach to suppress this phenomenon, enhanc-
ing global robustness.

(3) Regardless of the influence of various unknown factors,
the controller of RBFNN is usually used to approximate the
unknown dynamic features in the absence of accurate model
with strong robustness and good approximation effects. Fur-
ther, the adding of fuzzy system effectively eliminates the
chattering phenomenon where the PID global sliding con-
troller force is converted to continuous output.

The components of this paper is as follows. In section 2,
mathematical model of gyroscope is described. In section 3,
the backstepping PID global sliding mode controller, the neu-
ral backstepping PID global sliding mode controller, the neu-
ral backstepping PID global sliding mode fuzzy control are
discussed respectively and the globally asymptotic stabilities
of the focused controlling system are demonstrated by Lya-
punov stability theory. Section 4 shows the simulation results
of the developed controllers. Conclusions are given in the last
section.

II. MATHEMATICAL MODEL OF MEMS GYROSCOPE
The dynamic model of a MEMS gyroscope is constructed in
the following section. The schematic model of the gyroscope
is shown in Fig.1. The model could be simplified as a damped
oscillation system which composed of mass and spring. The
motion is divided into two directions by ignoring the linear
acceleration of the gyro frame. Thus the vibratory equation
could be received as:

mẍ + dxx ẋ + dxyẏ+ kxxx + kxyy = ux + dx + 2m�zẏ

mÿ+ dxyẋ + dyyẏ+ kxyx + kyyy = uy + dy − 2m�zẋ (1)

where m is the mass; dxx , dyy and kxx , kyy are the damp-
ing and spring constants respectively; kxy, dxy are damping
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coefficients and coupling elastic; ux , uy are the control inputs
of two axes; dx , dy are mechanical noise and environmental
interference. �z is the z direction angular velocity.

FIGURE 1. The block diagram of a z-axis gyroscope.

We replace q∗ by q∗ = q
q0

and t∗ by t∗ = ω0t . Eq. (1)
can be divided by ω0 (the square of the resonant frequency),
m and q0 (the reference length) on both sides. As a result,
the dimensionless kinetic equation of the gyroscope is:

q̈∗ + D∗q̇∗ + K∗q∗ = u∗ − 2�∗q̇∗ (2)

where

q =
[
x
y

]
, D∗ =

D
mω0

, D =
[
dxx dxy
dxy dyy

]
,

K∗ =
[
ω2
x ωxy

ωxy ω2
y

]
, u∗ =

u

mω2
0q0

, ωx =

√
kxx
mω2

0

,

ωy =

√
kyy
mω2

0

, ωxy =
kxy
mω2

0

, u =
[
ux
uy

]
,

�∗ =
�

ω0
, � =

[
0 −�z
�z 0

]
Then substitute t∗ with t , q∗ with q, K∗ with K ,D∗ withD,

�∗ with �, u∗ with u, and the eventual dimensionless model
could be depicted:

q̈+ Dq̇+ Kq = u− 2�q̇ (3)

Take the external disturbance into consideration, the above
equation will be changed into:

q̈+Mq̇+ Kq = u+ d (4)

where d is the external disturbance, M = D + 2�, and
E(which is a constant) is the upper bound of d (‖d‖ ≤ E).

III. PID GLOBAL SLIDING MODE FUZZY CONTROL USING
NEURAL NETWORK
Backstepping is a useful technique of designing stable con-
trollers for several special nonlinear dynamical systems in
control theory. A known stable system could be selected to
start the designing process, which can gradually stabilize each
external subsystem due to this recursive structure.

Compare with conventional sliding mode control, global
sliding surface could achieve whole robustness and faster
response. Owing to the steady-state error caused by exter-
nal disturbances, PID sliding controller is introduced to
restraining steady state error and enhancing system global
robustness.
Moreover, owing to the unknown dynamic characteristic,

a neural network is good at approaching it. On the other hand,
faced with chattering caused by variable structure control,
a fuzzy estimator is utilized to eliminate the chattering and to
obtain strong ability of adaptive tracking. As a consequence
an adaptive neural backstepping PID global sliding mode
fuzzy control (NBPIDGSMFC) is designed and investigated.

FIGURE 2. Block diagram of NBPIDGSMFC for a MEMS gyroscope.

The block diagram of the developed control is shown
in Fig.2, the tracking error of gyroscope enters into the neural
backstepping PID global sliding mode fuzzy controller. The
NBPIDGSMFC could not only guarantee the stability of the
closed loop system, but also make the whole system has
strong robustness.

A. BACKSTEPPING PID GLOBAL SLIDING MODE
CONTROLLER DESIGN (BPIDGSMC)
A backstepping method will be used to design a controller
for two-axis vibratory gyroscope in the following part. The
control target is to track an ideal trajectory qd quickly and
make all the signals which in closed-loop system be uni-
formly bounded.

Firstly, define the state variables as follows:

X1 = q, X2 = q̇ (5)

Then introduce a new variable named X .

X =
[
XT1 XT2

]T
(6)

The systemmodel Eq. (4) could be written in the following
form{

Ẋ1 = X2
Ẋ2 = −MX2 − KX1 + u+ d = 0(X )+ u+ d

(7)

where 0(z) represents the unknown dynamic characteristic of
the gyroscope.

0(X ) = −MX2 − KX1 (8)
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The process of designing backstepping PID global sliding
mode controller consists of two steps for this system. Con-
struct a virtual control force via a Lyapunov function V1 at
first step. Then an actual control law is made up at the second
step. In the following, we will give these two steps of the
design procedure.
Step 1:Design a virtual control force for the aim of position

tracking.
Define the position tracking error as:

e1 = X1 − qd (9)

Then

ė1 = Ẋ1 − q̇d = X2 − q̇d (10)

Consider X2 as the control input, then design a virtual
control law α1 so that lim

t→∞
q = qd (namely lim

t→∞
e1(t) = 0).

We select the virtual control force α1 for X2 gives

α1 = −c1e1 + q̇d (11)

where c1 is a positive constant.
Define an error e2 as

e2 = X2 − α1 (12)

The first Lyapunov candidate function is selected in the
following formula

V1 =
1
2
eT1 e1 (13)

and its derivative is

V̇1 = eT1 ė1 = eT1 (X2 − q̇d )

= eT1 (e2 + α1 − q̇d )

= eT1 (e2 − c1e1)

= −c1eT1 e1 + e
T
1 e2 (14)

If e2 = 0, S 6= 0, we have

V̇1 = −c1eT1 e1 < 0 (15)

Step 2: Differentiate Eq. (12) with respect to time, making
use of Eq. (7), then

ė2 = Ẋ2 − α̇1 = −MX2 − KX1 + u+ d − α̇1
= 0(X )+ u+ d − α̇1 (16)

In Eq. (16), the real control force u emerges at our dis-
posal. For the target of satisfactory tracking performance for
a MEMS gyroscope, we define the PID global sliding surface
as:

S = e2 + ė1 + λ1e1 + λ2

∫ t

0
e1(τ )dτ − f (t) (17)

where λ1, λ2 are positive constants, f (t) is a function which
is particularly introduced for arriving at the global sliding
manifold, satisfying the following three conditions:

(1) f (0) = ė0 + ce0, (2) If t →∞, f (t)→ 0, (3) f (t) has
a first derivative.
where e0 is a premier value of tracking error.

As a result, f (t) could be designed as: f (t) = f (0)e−kt ,
where k is a constant.
The time derivative of S is as follows:

Ṡ = ė2 + ë1 + λ1ė1 + λ2e1 − ḟ (t)

= 0(X )+ u+ d − α̇1 + ë1 + λ1ė1 + λ2e1 − ḟ (t) (18)

After determining the PID global sliding surface, it is
helpful to design a backstepping PID global sliding mode
controller to ensure the presence of the global sliding mode
stage.

Define the second Lyapunov function like

V2 = V1 +
1
2
ST S (19)

Meanwhile the derivative of V2 is

V̇2 = V̇1 + ST Ṡ

= −c1eT1 e1 + e
T
1 e2 + S

T [ė2 + ë1 + λ1ė1 + λ2e1 − ḟ (t)]

= −c1eT1 e1 + e
T
1 e2 + S

T [0(X )+ u

+ d − α̇1 + ë1 + λ1ė1 + λ2e1 − ḟ (t)] (20)

Based on Eq. (20), the control law of backstepping PID
global sliding mode controller is designed as

u = α̇1 − 0(X )− ë1 − λ1ė1 − λ2e1

+ ḟ (t)−
S

‖S‖2
eT1 e2 − ρ

S
‖S‖

(21)

where ρ ≥ E + ξ , ξ is a positive arbitrary small constant.
When S 6= 0, substituting Eq. (21) into Eq. (20) gives

V̇2 = −c1eT1 e1 + e
T
1 e2 + S

T (d −
S

‖S‖2
eT1 e2 − ρ

S
‖S‖

)

= −c1eT1 e1 + e
T
1 e2 + S

T d − eT1 e2 − ‖S‖ ρ

= −c1eT1 e1 + S
T d − ‖S‖ ρ

≤ −c1eT1 e1 − ‖S‖ ρ + ‖S‖E

= −c1eT1 e1 − ‖S‖ (ρ − E)

≤ −c1eT1 e1 − ξ ‖S‖

< 0 (22)

In summary, we have the following result. Referring to
the Lyapunov stability criterion, the developed global sliding
mode manifold S(t) in Eq. (17) converges to zero fast which
verifies that the designed backstepping PID global sliding
mode controller can ensure the global asymptotic stability of
the gyroscope system. The error e1 = q− qd also converges
to zero quickly owing to S in Eq. (17). If the control law u
(21) which is updated all the time, with the sliding surface S
(17) is well applied to the uncertain nonlinear system which
is defined in (4), the constructed PID global sliding mode
manifold (19) converges to zero in short time, together with
the tracking error of the system tending to zero.
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B. BACKSTEPPING PID GLOBAL SLIDING MODE
CONTROLLER BASED ON NEURAL NETWORK
(NBPIDGSMC)
Through the above analysis, a conclusion can be drawn that
the PID global sliding mode control scheme can ensure the
state to converge to the origin quickly with global robustness,
higher convergence speed and better trajectory tracking prop-
erty. Nevertheless, the control law in Eq. (21) could not be
carried out on account of the dynamic unknown characteristic
(0(X )) of the gyroscope. An improved solution is applied
to take advantage of the estimated value of neural network
output to replace 0(X ). So a neural approximator is presented
to estimate 0(X ).

Fig.3 shows the schematic diagram of the neural network.
The desired output of the used neural network is

8(z) = W Tφ(z) (23)

where z =
[
e ė

]
and 8(z) are the input and output of

the neural network, respectively. W = [W1,W2 . . .WL]T is
weight vector and φ(z) = [φ1(z), φ2(z) . . . φL(z)]T is Gaus-
sian function as

φi(z) = exp(−
∥∥∥z− ci‖2 /σ 2

i ), i = 1, 2, . . . ,L (24)

where L is number of the output node, ci is the ith center
vector, and σi is the ith standard deviation.

FIGURE 3. The structure of the RBF neural network.

The objective of the above neural network control is
approaching to the nonlinear unknown function
0(X ) = −MX2−KX1, which is dynamic characteristic of the
gyroscope system. 0(X ). The unknown function 0(X ) can be
represented as:

0(X ) = W Tφ(z)+ ε (25)

where W is the perfect weight vector and ε is the mapping
error which can reach the minimum value when the network
weights is optimal. Furthermore, ε is uniformly bounded as:
|ε| ≤ εb, where εb is an arbitrary small positive constant.

The actual output of the neural network which is utilized
for the estimation is:

8̂(z) = Ŵ Tφ(z) (26)

where Ŵ is the real weight vector updated online all through.
Based on the above design step, for the global stability,

the new control law can be designed as

u = α̇1 − 8̂(z)− ë1 − λ1ė1 − λ2e1

+ ḟ (t)−
S

‖S‖2
eT1 e2 − ρ

S
‖S‖

(27)

where ρ > E + εb.

Substitute Eq. (26) into Eq. (27) yields:

u = α̇1 − Ŵ Tφ(z)− ë1 − λ1ė1 − λ2e1

+ḟ (t)−
S

‖S‖2
eT1 e2 − ρ

S
‖S‖

(28)

Differentiating Eq. (17) and using u in Eq. (28) given

Ṡ = ė2 + ë1 + λ1ė1 + λ2e1 − ḟ (t)

= 0(X )+ u+ d − α̇1 + ë1 + λ1ė1 + λ2e1 − ḟ (t)

= W Tφ(z)+ ε+α̇1−Ŵ Tφ(z)−ë1−λ1ė1 − λ2e1 + ḟ (t)

−
S

‖S‖2
eT1 e2−ρ

S
‖S‖
+ d − α̇1+ë1+λ1ė1+λ2e1− ḟ (t)

(29)

Let’s consider the following function V3 which is positive
definite as a Lyapunov candidate function

V3 = V2 +
1
2
tr{W̃ TF−1W̃ } (30)

where F is a positive constant and W̃ is the estimated error of
weight vector described as

W̃ = W − Ŵ (31)

Obviously, if the gyroscope system converges, we keepW
a constant, as a result we obtain Ẇ = 0 and ˙̃W = − ˙̂W .

It is apparently that V3 is positive and the derivative is

V̇3 = −c1eT1 e1 + e
T
1 e2 + S

T [W Tφ(z)+ ε + u+ d

− α̇1 + ë1+λ1ė1+λ2e1 − ḟ (t)]+tr{W̃ TF−1 ˙̃W } (32)

By using Eq. (28) given:

V̇3 = −c1eT1 e1 + e
T
1 e2 + S

T [W Tφ(z)+ ε + α̇1 − Ŵ Tφ(z)

− ë1 − λ1ė1 − λ2e1 + ḟ (t)−
S

‖S‖2
eT1 e2 − ρ

S
‖S‖
+ d

− α̇1 + ë1 + λ1ė1 + λ2e1 − ḟ (t)]+ tr{W̃ TF−1 ˙̃W }

= −c1eT1 e1 + e
T
1 e2 + S

T [W̃ Tφ(z)+ ε

−
S

‖S‖2
eT1 e2 − ρ

S
‖S‖
+ d]+ tr{W̃ TF−1 ˙̃W }

= −c1eT1 e1 + e
T
1 e2 + S

T W̃ Tφ(z)+ ST ε − eT1 e2

− ‖S‖ ρ + ST d]+ tr{W̃ TF−1 ˙̃W } (33)

Select an adaptive law as:

˙̃W = − ˙̂W = −Fφ(z)ST (34)

When S 6= 0, using ˙̃W Eq. (34), it can be obtained that:

V̇3 = −c1eT1 e1 + e
T
1 e2 + S

T ε − eT1 e2 − ‖S‖ ρ + S
T d

= −c1eT1 e1 + S
T ε − ‖S‖ ρ + ST d

= −c1eT1 e1 + S
T (ε + d)− ‖S‖ ρ

≤ −c1eT1 e1 + ‖S‖ (‖ε‖ + ‖d‖)− ‖S‖ ρ

= −c1eT1 e1 − ‖S‖ (ρ − ‖d‖ − ‖ε‖)

≤ −c1eT1 e1 − ‖S‖ (ρ − E − εb)

≤ −‖S‖ (ρ − E − εb)

< 0 (35)
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The negative definite of V̇3 ensures that V3, S both are
bounded. Ṡ is also bounded from Eq. (29). The inequality
V̇3 ≤ −‖S‖ (ρ − E − εb) suggests that S is integrable as∫ t
0 ‖S‖dt ≤

1
(ρ−E−εb)

[V3(0) − V3(t)]. On account of V3(0)
is bounded and V3(t) is bounded and nonincreasing, then
lim
t→∞

∫ t
0 ‖S‖dt is bounded. According to Barbalat’s lemma

based on the boundedness of lim
t→∞

∫ t
0 ‖S‖dt and Ṡ, S(t)

will meet lim
t→∞

S(t) = 0. As a consequence, the developed
controller could ensure the globally asymptotic stability and
make the error of trajectory tracking converge to 0 fast.

C. NEURAL BACKSTEPPING PID GLOBAL SLIDING MODE
FUZZY CONTROLLER (NBPIDGSMFC)
Considering the unknown external interference in practical
applications, the switch gain ρ in Eq. (28) is too big to be put
into effect. What is more, the satisfactory switching control
is hard to achieve. As a consequence, a fuzzy controller is
designed.
ĥ(S) is an adaptive fuzzy control part which is utilized to

approximate to ρ S
‖S‖ . As a result, the output of switching

controller is usw = −ĥ(S).
Express the desired output of the fuzzy system as

h(S) = θTψ(S)+ σ (36)

where θ = [θ1, θ2, . . . , θm]T is the parameter which can be
adjusted, ψ(S) = [ψ1, ψ2 · · ·ψm]T is fuzzy vector, σ is the
approximated error, σ could get to the minimum value if the
adjustable parameter is optimal. Moreover, σ is uniformly
bounded as: ‖σ‖ ≤ σb, where σb is a positive arbitrary small
constant.

The actual output of the fuzzy system could be depicted as

ĥ(S) = θ̂Tψ(S) (37)

where ĥ(S) is the estimation of h(S), θ̂ represents real
adjustable parameter updated online all through.

ĥ(S) =
[
ĥ1(S) ĥ2(S)

]T
=
[
θ̂T1 ψ1(S) θ̂T2 ψ2(S)

]
(38)

where ĥi(S) = θ̂Ti ψi(S), θ̂i = [θi1, θi2 · · · θim]T ,
ψi = [ψi1, ψi2 · · ·ψim]T ,m is the number of membership
functions.

To ensure stability of the gyroscope system, design the
control force of NBPIDGSMFC as

u = α̇1 − Ŵ Tφ(z)− ë1 − λ1ė1 − λ2e1

+ ḟ (t)−
S

‖S‖2
eT1 e2 − ĥ(S) (39)

where ρ > E + εb+ σ b, both εb and σb are positive arbitrary
small constants.

Differentiating Eq. (17) and using u in Eq. (39), we obtain

Ṡ = ė2 + ë1 + λ1ė1 + λ2e1 − ḟ (t)

= 0(X )+ u+ d − α̇1 + ë1 + λ1ė1 + λ2e1 − ḟ (t)

= W Tφ(z)+ ε + α̇1 − Ŵ Tφ(z)− ë1

− λ1ė1 − λ2e1 + ḟ (t)−
S

‖S‖2
eT1 e2 − ĥ(S)

+ d − α̇1 + ë1 + λ1ė1 + λ2e1 − ḟ (t) (40)

Let us consider a new Lyapunov function

V4 = V3 +
1
2γ

2∑
i=1

θ̃Ti θ̃i (41)

where γ is a positive constant, θ̃i is the estimation error of θi
as

θ̃i = θi − θ̂i (42)

Distinctly, θi should be kept as a constant if the system
converges together with θ̇i = 0, ˙̃θ = − ˙̂θ .

The derivative of V4 is

V̇4 = −c1eT1 e1 + e
T
1 e2 + S

T [W Tφ(z)

+ ε + u+ d − α̇1 + ë1 + λ1ė1 + λ2e1

− ḟ (t)]+ tr{W̃ TF−1 ˙̃W } +
1
γ

2∑
i=1

θ̃Ti
˙̃
θi (43)

Substituting u in Eq. (39) into Eq. (43) gives

V̇4 = −c1eT1 e1 + e
T
1 e2 + S

T [W Tφ(z)+ ε + α̇1 − Ŵ Tφ(z)

− ë1 − λ1ė1 − λ2e1 + ḟ (t)−
S

‖S‖2
eT1 e2 − ĥ(S)+ d

− α̇1 + ë1 + λ1ė1 + λ2e1 − ḟ (t)]+ tr{W̃ TF−1 ˙̃W }

+
1
γ

2∑
i=1

θ̃Ti
˙̃
θi

= −c1eT1 e1 + e
T
1 e2 + S

T [W̃ Tφ(z)+ ε −
S

‖S‖2
eT1 e2

− ĥ(S)+ d]+ tr{W̃ TF−1 ˙̃W } +
1
γ

2∑
i=1

θ̃Ti
˙̃
θi

= −c1eT1 e1 + S
T W̃ Tφ(z)+ ST ε − ST ĥ(S)

+ ST d + tr{W̃ TF−1 ˙̃W } +
1
γ

2∑
i=1

θ̃Ti
˙̃
θi

= −c1eT1 e1 + S
T ε + ST [d − ρ

S
‖S‖

]+ ST θ̃Ti ψi(S)

+ STσ + ST W̃ Tφ(z)+ tr{W̃ TF−1 ˙̃W } +
1
γ

2∑
i=1

θ̃Ti
˙̃
θi

(44)

In order to achieve V̇4 ≤ 0, it is advisable to design
adaptive laws as:

˙̃W = − ˙̂W = −Fφ(z)ST (45)
˙̃
θi = −

˙̂
θi = −γψi(S)ST (46)

When S 6= 0, then it can be obtained that

V̇4 = −c1eT1 e1 + S
T ε + ST d − ‖S‖ ρ + STσ

≤ −c1eT1 e1 + ‖S‖ ‖ε‖ + ‖S‖ ‖d‖ − ‖S‖ ρ + ‖S‖ ‖σ‖
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≤ −c1eT1 e1 + ‖S‖ εb + ‖S‖ d − ‖S‖ ρ + ‖S‖ σb
≤ −c1eT1 e1 − ‖S‖ (ρ − E − εb − σb)

≤ −‖S‖ (ρ − E − εb − σb)

< 0 (47)

The negative definite of V̇4 guarantees that V4, S both are
bounded. It could draw a conclusion by Eq. (40) that Ṡ is
bounded, too. The inequality V̇4 ≤ −‖S‖ (ρ − E − εb − σb)
suggests that

∫ t
0 ‖S‖dt ≤

1
(ρ−E−εb−σb)

[V4(0) − V4(t)]. Due
to V4(0) is bounded and V4(t) is bounded and nonincreas-
ing, lim

t→∞

∫ t
0 ‖S‖dt is also bounded. According to Barbalat’s

lemma, S(t) will satisfy lim
t→∞

S(t) = 0 under the boundedness

of lim
t→∞

∫ t
0 ‖S‖dt and Ṡ. Therefore, the presented controller

ensures the globally asymptotic stability and makes the track-
ing error tend to 0 in quite short period of time.

IV. SIMULATION STUDY
To illustrate the effectiveness of the presented strategy of
NBPIDGSMFC, the simulation is implemented based on
Fig. 2. A set of gyroscope parameters are as follows:

m= 1.8× 10−7kg, kxx = 63.955N/m, kyy=95.92N/m,

kxy= 12.779N/m, dxx = 1.8× 10−6Ns/m, ,

dyy= 1.8× 10−6Ns/m, dxy = 3.6× 10−7Ns/m

We assume that input angular velocity of gyroscope system
is �Z = 100rad/s, ideal length is q0 = 1µm, resonance
frequency is ω0 = 1000Hz. After dimensionless treatment,
the parameters are listed as:

ω2
x = 355.3, ω2

y = 532.9, ωxy = 70.99,

dxx = 0.01, dyy = 0.01, dxy = 0.002, �Z = 0.1

The optimal trajectory of the gyroscope is: xd =

sin(w1t), yd = sin(w2t),w1 = 6.17rad/s,w2 = 5.11rad/s.
The zero initial states are: x(0) = [0, 0, 0, 0]T . Random
signal d(t) = [10 ∗ randn(1); 10 ∗ randn(1)] is regarded as
external disturbances.

We take the parameters of PID global sliding manifold as
c(0) = 10, f (t) = s(0)e−100t , λ1 = 100, λ2 = 10.Moreover,
the gains of adaptive laws are chosen as F = 50, γ = 10.
The fixed gain is ρ = 100. In addition, select the membership
functions of the fuzzy variable:

µNM (S)= exp[−((S + 10)/5)2], µZO(S)=exp(−(S/5)2),

µPM (S) = exp[−((S − 10)/5)2].

The membership functions are shown in Fig.4.
The results of the simulation are displayed

in Fig. 5∼ Fig.11. The trajectory tracking of this presented
neural backstepping PID global sliding mode fuzzy control
is of high accuracy, as what is shown in Fig.5. Meanwhile,
the designed intelligent controller shows that there is little
error between the ideal position tracking and the real one
observed from Fig.6, suggesting the superior performance
and globally stability of the control system.

FIGURE 4. The membership functions.

FIGURE 5. Position trackings of x-axis and y-axis.

FIGURE 6. Position tracking errors of x-axis and y-axis.

FIGURE 7. Control inputs utilizing backstepping PID global sliding mode.

Fig.7 draws the smooth control inputs which illustrates
that the proposed fuzzy controller plays the effective role in
eliminating the chattering phenomenon. Moreover, compared
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to the presented control, the method without fuzzy control
leads to serious chattering phenomenon in Fig.8.

FIGURE 8. Control inputs utilizing neural backstepping PID global sliding
mode control with the fixed gain ρ = 100.

FIGURE 9. Switch functions of x-axis and y-axis.

Through figure 9, we could also see that the PID global
sliding mode manifold arrives to zero in high speed accu-
rately, which suggests that the system reach to the surface
in such a short time with sliding along the switch sur-
face, once again demonstrating the derived scheme of great
effectiveness.

FIGURE 10. Approximations of unknown dynamic characteristics by RBF
neural network.

Fig.10 exhibits approximation results to unknown charac-
teristics of two-axis gyroscope system by RBF neural net-
work. Fromwhichwe can see that the output of the introduced
neural network approach to the unknown dynamic

feature quickly. Besides, as indicated in Fig.10, the neural
estimator has a wonderful approaching property by the almost
overlapped two curves.

FIGURE 11. Adaptive curves of the fuzzy parameters.

Fig.11 describes the adaptation of θ̂ . As we can see,
the adjustable parameters θ̂ converge to constant values,
implying the stability of the fuzzy control system.

All these simulation plots validate the superior property of
the developed NBPIDGSMFC scheme from various aspects.

V. CONCLUSION
A new scheme of this neural PID global sliding mode fuzzy
control utilizing backstepping technique for a MEMS gyro-
scope is developed in this paper. Firstly, the dynamicmodel of
MEMS gyroscopes which have two axis is introduced. Sec-
ondly, in order to achieve global robustness by precise track-
ing performance in high speed, the controller on the basis of
backstepping PID global sliding mode is presented. Then,
the neural backstepping global sliding mode control strat-
egy is employed for making the introduced neural network
approach to system unknown dynamic feature. Moreover,
a fuzzy controller is introduced to eliminate the chattering.
Eventually, the availability of the suggested scheme is illus-
trated by the simulation results.
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