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ABSTRACT There are certain contexts, where we would like to analyze the behavior of small interacting
systems, such as sports teams. While large interacting systems have drawn much attention in the past years,
let it be physical systems of interacting particles or social networks, small systems are short of appropriate
quantitative modeling and measurement tools. We propose a simple procedure for analyzing a small system
through the degree in which its behavior at different granularity levels (e.g., dyads) non-linearly diverges
from the simple additive behavior of its sub-units. For example, we may model the behavior of a soccer
team by measuring the extent to which the behavior changes when we move from individual players to
dyads, triads, and so on. In this paper, we address the challenge of modeling small systems in terms of
measuring divergence from additivity at different granularity levels of the system. We present and develop
a measure for quantifying divergence from additivity through what we term a Relative Entropy Lattice, and
illustrate its benefits in modeling the behavior of a specific small system, a soccer team, using data from the
English Premier League. Our method has practical implications too, such as allowing the coach to identify
‘‘hidden’’ weak spots in the team’s behavior.

INDEX TERMS Modeling, data analysis, small systems, measurement, non-additivity, relative entropy,
Kullback-Leibler divergence, sport analytics.

I. INTRODUCTION
The ‘‘emerging’’ [1] or ‘‘synergetic’’ [2] behavior of systems
has been intensively studied in various disciplines but there
is a lack of appropriate tools for quantitatively analyzing
small interactive systems. For instance, a common approach
for studying emergent behavior is to consider it in terms
of ‘‘phase transition’’. Haken [2] epitomizes this approach
by proposing to model ‘‘synergetic’’ behavior in terms of
phase transition. However, there are two difficulties with
this approach for studying what may be described as the
divergence from additivity of some small systems. First, small
systems, from sports teams to families cannot be studied
using the conceptual and mathematical tools of statistical
mechanics as by definition the scope of statistical mechanics
is large populations. Second, the idea of measuring phase
transition involves the study of an observed qualitative change
in the system. In other words, there are contexts in which

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhixiong Peter Li.

we focus our efforts on positively identifying a qualitative
change. There are some other contexts though, in which we
would simply like to measure the extent to which the system’s
behavior continuously scales, with no specific focus on a
qualitative change. For instance, it has been recently shown
that the entropy of a soccer team, as measured by its ball
passing behavior, is correlated with its rank at the end of the
season in a way that a more ordered pattern of ball passes is
positively correlated with a better rank [3]. In this context,
we may want to measure the extent to which the ordered
behavior of players scales up when moving from individual
players to interacting dyads, triads and so on. The short-
coming in methodological tools for measuring the behavior
of small systems, might have detrimental consequences for
our ability to understand and control them. For example,
in trying to form a winning basketball team, a coach must
be able to model the scaling behavior of different combina-
torial ‘‘blocks’’ of players that he may recruit to the team.
This process must go beyond the easily measured perfor-
mance of individual players and has heavy professional and
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financial consequences. To the best of our knowledge, such
a process is usually guided by intuition and rules of thumb,
without scientific and interpretable tools that may support a
rational process of decision making.

From the perspective of statistical entropy, the emerging
behavior, previously discussed, may be conceptualized in
term of divergence from additivity, where additivity means
that the entropy of a system, composed of two statisti-
cally independent subsystems, is the sum of the entropy of
the subsystems [4], [5]. The additivity of entropy is evi-
dent only in cases of non-interacting systems. Therefore
the emerging behavior of a system composed out of inter-
acting sub-systems may be better conceptualized in terms
of non-additivity (or divergence from additivity), that may
be generally defined as: ‘‘the nonlinear function associating
the system’s granularity level and its components’ degrees
of freedom’’ [6]. As entropy is the amount of information
encoded in the system, we may measure the extent to which
the information encoded in the system diverges from the
additivity of the information encoded in its sub-systems. For
example, we may model the behavior of a married couple
by measuring the entropy of their free time activities. This
behavior diverges from additivity in the sense that its entropy
is quite different from the one of its sub-units: the husband
and the wife. In contrast, the degree of divergence from
additivity is probably smaller when observing the free time
activities of the husband and his best friend. It is still an open
question how to measure the divergence from additivity of
small systems like families or sports teams.

A. OUR CONTRIBUTION
The aim of this paper is to address the above challenge by
proposing a simple and interpretable procedure for measuring
divergence from additivity at different granularity levels of
the system. The general idea is that we may approximate the
information encoded in each micro-state of the system, such
as two soccer players, by using the information provided by
its lower level micro-states (e.g. the individual players) in a
way that may range from trivial additivity of two independent
and non-interacting sub-systems/players to their maximum
divergence from additivity.

We develop an idea originally proposed by [6], and use it
to develop the concept of a Relative Entropy Lattice (abbrevi-
ated as ReL) as a tool for modeling divergence from additivity
in the behavior of small-scale systems. First, we introduce the
basic idea of measuring ‘‘divergence from additivity’’ (ibid)
through Relative Entropy. Next, we develop the idea of ReL
as a descriptive tool for modeling this process and illustrate it
using the data of soccer teams. It must be emphasized that
we have no specific interest in measuring the behavior of
sports teams and use the context of sports analytics only for
illustrating our general approach. Finally, we show how the
idea of ReL may be used both as a descriptive and predictive
tool for better understanding the behavior of small systems.
We illustrate this point by analyzing the behavior of soccer
teams from the English premier league and conclude by

discussing the benefits of the proposed measure and method-
ology for the modeling and data analysis of small systems.

II. METHODOLOGY
A. MEASURING DIVERGENCE FROM ADDITIVITY
A small system may be defined as comprised of a small num-
ber of interacting components that exhibit a change of behav-
ior as a function of the granularity level in which we examine
the system. Human language epitomizes this unique behavior
in the context of ‘‘semantic transparency’’ [7], that reflects
the extent to which the meaning of a linguistic compound
is a function of the meanings of its basic components [8].
For example, the meaning of the bi-gram ‘‘hotdog’’ cannot
be trivially reduced to the meaning of its components ‘‘hot’’
and ‘‘dog’’.

We analyze a system by partitioning the set of its inter-
acting components and by varying the granularity level of
the set partition. The components are represented through
their vector of interactions with each other. For example,
the behavior of a soccer player A may be represented as the
normalized vector of his ball-passes to the other players in his
team. Along the same line, the behavior of players A and B,
(A+ B), is represented as the vector of ball passes both have
made to the rest of the players. Such a procedure of adding
the vectors of the players’ behavior is analogous to the graph
operation of merging two vertices into a new node whose
neighbor set is the union of each vertex’s neighbor set.

Our motivation comes from the algebraic notion of
co-product [9], [10]. The co-product, or sum of objects,
is defined as follows: a co-product of objects A and B is a
new object A + B together with a pair of maps (iA : A →
A + B, iB : B → A + B) such that for any pair of maps of
the form f : A → C, g : B → C there is precisely one
arrow [f , g] : A+B→ C that makes the diagram in Figure 1
commute in such a way that [f , g]◦ iA = f and [f , g]◦ iB = g.
[f , g] is called the co-product arrow of f and g with respect
to the injections iA and iB [9] [p.54].

FIGURE 1. A schematic description of the co-product.

Informally, the co-product is a way of seeing the more
general object from the perspective of the particular objects as
a sum of its parts. In this sense, it is the ‘‘least specific’’ object
to which the objects admit morphisms. We may measure the
extent to which the ensemble is a co-product, or the simple
sum of its constituents, by measuring the extent to which the
co-product divergence from commuting in the above sense.
In [6] it was proposed to use the Kullback-Leibler Diver-
gence, also known as Relative Entropy to measure divergence
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from additivity,

DKL(P‖Q) =
∑
x∈�

P(x) log
P(x)
Q(x)

,

where P and Q are distributions.
For concreteness, let’s assume that we would like to mea-

sure the divergence from additivity of two soccer players
A and B who are members of a five players group. We repre-
sent the behaviour of each player as the vector of his ball-
passes to the other players. We represent the behaviour of
the dyad A + B as the sum of their ball-passing vectors. The
behaviour of A + B can be analyzed from the perspective of
its components, A and B, and the behaviour of some coarser
partition of the players’ set such as the triad of players:
A + B + C . See Figure 2 where the numbers in the square
brackets represent the values of the non-normalized vector of
ball-passes to the other players:

FIGURE 2. The ball-passes example.

In this context, the extent to which the partition (or micro-
state) A+B is the co-product of the individual players
A and B, can be measured by the extent to which the path
from A to A+ B+C is somehow equal to the path from A to
A+ B to A+ B+ C and the same holds for the right triangle
of the figure. For abbreviation we omit the ‘+’ sign and let
for example A + B + C be ABC . We can model each path
using the Kullback-Lebibler divergence and by averaging the
absolute degree of:

DKL(ABC‖AB)+ DKL(AB‖A)− DKL(ABC‖A)

and

DKL(ABC‖AB)+ DKL(AB‖B)− DKL(ABC‖B).

Note that ABC and AB are vectors of different lengths. There-
fore to computeDKL(ABC‖AB) we take their mutual support,
namely, we ignore that ball passes of A and B to C in the
vector AB.

In the next section we generalize this example and intro-
duce our main measure, the measure.

B. THE -MEASURE OF DIVERGENCE FROM
ADDITIVITY AND REL
The formalism presented by [6] is somehow embryonic and
therefore we chose to elaborate it for forming a more elegant
and parsimonious measure. Let S be a set of n elements,
where each element is represented as a vector of an interacting
behaviour (e.g. ball-passes). Each subset of S is called a
micro-state of the system. The macro-state of the system at

layer i is the set of all micro-states of size i. For example,
we may consider a system of all pairs of soccer players as a
macro-state of size 2, a set of all triads of players as a macro-
state of size 3 and so on.

We use the Hebrew letter (Shin) for symbolizing diver-
gence from additivity. stands for Shi-tu-fi-yut which means
in Hebrew collaboration/cooperation. Somewhat abusing
notation, we use the same letter, say V , to refer both to a
micro-sate (i.e. the specific set of players, e.g. V = A+B+C
in the example we gave) and to the restricted vector of balls-
passes from V to the rest of the team.

Before defining , we introduce the auxiliary function d
which is defined for every three micro-states U ,V ,W satis-
fying U ⊂ V ⊂ W ,

d (U ,V ,W ) = |DKL(W‖V )+ DKL(V‖U )− DKL(W‖U )|.

The function d measures the divergence from additivity of the
triangle U → V → W , similarly to the triangle A→ AB→
ABC in Figure 1.

The -measure ofmicro-stateV of size |V | = i, is given by:

(V ) = 1
i(N−i)

∑
U :U⊂V
|U |=i−1

∑
W :V⊂W
|W |=i+1

d(U ,V ,W ) (1)

The term i(N−i) is a normalization factor which equals the
total number of different pairs U ,W that satisfy U ⊂ V ⊂
W , and |U | = i− 1, |W | = i+ 1.
The measure quantifies the degree in which the parti-

tion V is the co-product of its U -components. Using it we
can analyze a small system of N interacting components by
computing the measure for each micro-state whose level is
higher than 1 and lower than the entire set, N .

For forming the Relative Entropy Lattice (ReL), we stack
the macro-states in layers, according to their size i, and com-
pute for each micro-state its value. Figure 3 presents the
ReL of the four players in Leicester who interact most with
the others, and the accompanied score colored in red.

FIGURE 3. Relative Entropy lattice (ReL) for the leading 4 players in
Leicester in terms of ball-passing statistics. Below each micro-state,
in red, is its value computed via Eq. (1).

For illustrating the benefits of the divergence from additiv-
itymeasure and ReL, wemay turn to the data analysis section.

III. EVALUATION
As we scale up in a small system composed out of interacting
units, constraints are accommodated to the extent that micro-
states may become less and less informative about the coarser
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macro-states in which they are included. If this hypothesis
is grounded then we should observe a clear pattern of decay
in the measure as we scale up in the granularity level of
the soccer team from dyads, to triads and so on. This trend
is portrayed in the Relative Entropy Lattice in Figure 3 for
values of micro-states induced by the top four players in

Leicester. In Analysis 1, Section III-B, we test this hypothesis
in depth and detail.

A. THE DATA
The English Premier League1 is the most watched sports
league in the world. It involves 20 soccer clubs competing
each season. During a season, each club/team plays against
the others twice for a total of 38 games in a season. We have
purchased from Perform group the data of the 2015/2016 sea-
son, describing ball passes between the players of each team.
The data was provided for each game at the team’s level of
analysis. We have chosen this season, as a clear underdog,
Leicester City, won the championship for the first time in
their 132-year history, a victory that has been described by
commentators as one of the greatest sports shocks in history.

B. ANALYSIS 1
Each team consists of about N = 15 players (including
substitutes). For each team, we measure its i-value, which is
the average value of macro-state i. In other words, it is the
average of (V ) over all micro-states V of size i. Formally,

i =
1(N
i

) ∑
V :|V |=i

(V ). (2)

Note that i is defined for 2 ≤ i ≤ N − 1.

FIGURE 4. Stretched-exponential decay rate of i as a function of
granularity level i . Red line – Leicester City (ranked 1), black - Crystal
Palace (ranked 15), green - the average i over all 20 teams, solid blue -
Tottenham Hotspur (ranked 3), dashed blue - Manchester United
(ranked 4).

We have plotted the divergence from additivity score by
granularity level and analyzed the extent to which the i mea-
sure decays as a function of the system’s granularity level i.
Figure 4 presents the overall results across all of the teams

1https://en.wikipedia.org/wiki/2015%E2%80%9316_Premier_League

used in the experiment plus illustrated results for four teams
selected for representing different ranks in the final table.

What we see is that as i grows, namely the coarser is the
level of analysis, the smaller the divergence from additivity is.
In other words, when ‘‘zooming out’’, we see less and less
divergence from additivity. Though eye goggling, we can
easily identify a pattern of exponential decay. The decay pat-
tern can be modeled using a stretched-exponential function.
Concretely, for every team we fitted the set of points {(i, i) :
i = 2, 3, . . . , 10} using an stretch-exponential function of the
following form:

fa,b,c,d (i) = a exp{bxc} + d (3)

and used least-squares minimization to find the parameters
a, b, c, d . The fitted values of the average curve are a =
0.9, b = −0.66, c = 1.06, d = 0.008. While a, b, c govern
the rate of decay, the parameter d is the limiting value of i
as i goes to ‘‘infinity’’.
This finding is interesting, as the stretched exponential

function, which has been identified several times in socio-
physics, e.g. [11], [12], has been traditionally used in physics
for describing the relaxation, or the returned to equilibrium,
of a perturbed system. The relaxation property of the system
will be discussed later.

Next we study the standard deviation between the i-values
computed across all teams, as a function of i, the granular-
ity level. We have found that the behavior of the standard
deviation as a function of i is also governed by a stretched-
exponential law of the from given by Eq. (3). Concretely,
we fitted a stretched-exponential function to the set of points
{(i, std( i)) : i = 2, 3, . . . , 10} using least-squares minimiza-
tion and obtained the following fitted values a = 0.03, b =
−0.14, c = 1.65, d = 0.001, see Figure 5.

FIGURE 5. Stretch-exponential decay of variance of i across all
20 teams as a function of granularity level i .

The results presented so far invite two additional major
analyses:

(a) First we ask whether the decay rate itself (the deriva-
tive of the team’s exponential-stretch function, given by
the parameters a, b, c in Eq.(3)) is a good predictor of the
team’s rank. From the immune system [13] to natural intel-
ligence [14] to various combinatorial constraint satisfaction
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problems [15], [16], real-world interactions are bounded in
space and time, and constraints are formed on a local to
a global base. The constraints coordinate the behavior of
the system from perturbed and maximal degrees of freedom
on the micro level to a more constrained and coordinated
behavior as we zoom out globally. In this context, relaxation
may be interpreted as the dynamics through which the system
moves from local to coarser level interactions characterized
bymore constraints and therefore by amore ordered behavior.
If this interpretation is reasonable then we should expect that
the decay rate of the divergence from additivity measure for
each group, should predict its rank at the end of the season.
This analysis is given in Section III-C.

(b) Figure 5 suggests that there is variance in the i-values
across different teams, which decays as i grows. We check
how well i predicts the team’s rank, for increasing values
of i. As i grows, there is a trade-off between the growing
number of micro-states V taking part in the computation
of i, Eq. (2) (there are

(N
i

)
states of size i, which increases

with i up to i = N/2), but each particular micro-state V is
perhaps less informative for the task of rank prediction (as
the variance of i decreases with i). This analysis is carried
out in Section III-D.

C. ANALYSIS 2
In this section we test the hypothesis that the decay rate of i,
the divergence from additivity at level i, is a good proxy to
the team’s ability to coordinate its behavior across its levels,
and as a result to its rank. The parameters that control the
rate in which i decays are b and c in the exponential stretch
function Eq. (3). Regressing the rank on b and c yielded R2 =
0.46 with p-value 0.007. This R2 value is higher than the one
gained by regressing on the team’s position at the end of the
previous season [3]. In line with our hypothesis, this finding
shows that the faster the divergence from additivity decays,
the better the team performs.

One can approximate the decay rate, encoded in the
parameters b and c, using a single parameter, δ, which
computes the decay in i value averaged over i =
2, 3, 4. Formally, for every team we computed the following
statistic

δ =
1
3

(
3

2
+

4

3
+

5

4

)
.

Note that we average only over the first three levels of i
as we have found that adding more levels harms the pre-
dictive power. This makes sense since, as Figure 5 suggests,
the derivative approaches 0 and becomes less informative as
i grows.

Figure 6 plots the rank of a team against its δ value, with
a linear regression line achieving R2 = 0.4219 with p-value
0.002. An even better fit was obtained using a cubic regres-
sion function, achieving R2 = 0.48 with the same p-value
of 0.002.

FIGURE 6. Linearly regressing the rank, y-axis, against decay rate δ,
x-axis. The slower the divergence from additivity decays the worse
the team is doing (further position in the table). R2 = 0.4219,
p-value 0.002.

TABLE 1. R2 values when linearly regressing the rank of the team against
i -values. All p-values are below 0.05. In all regressions, the outlier,

Leicester, was removed before regressing.

D. ANALYSIS 3
The previous sections point to the divergence from additivity
measure as an indicator of the team’s ability to move from
local to global interactions and to coordinate their activity
across different granularity levels. If this is the case, then the
i measure of the different macro-states should also have a

predictive value of the team’s rank.
Table 1 presents the predictive power of i for different

macros-states i. We use the linear regression’s R2 value as a
proxy for the predictive power of themacro-state. The follow-
ing trend is evident: the R2 value increases as i increases up to
i = 8, then decreases. This trend may be explained by a trade-
off between the number of states at level i and the quality of
information at that level. The predictive power of i peaks at
i = 8, which is roughlyN/2 for most teams (N ≈ 15 for most
teams), and this is when the binomial coefficient

(N
i

)
peaks.

For i ≥ 9 we see a rapid decline in R2 which is attributed
to both a decrease in the number of states and a decrease
in the variance of i (Figure 5), making it rather useless for
prediction.

Figure 7 plots the regression of the rank of a team against
its 2 value. Leicester, the outlier, follows exactly the opposite
trend, it has the highest 2 value and the lowest (meaning best)
rank, #1.

Training various regression models with different subsets
of the 12 macro level scores have gained the best model for
the combinations of levels 4, 6 and 8 (R2 = 0.54, p-value
of 0.007).

E. ANALYSIS 4
In this last analysis we ask whether a smaller subset of
the players may provide the same ability to predict the
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FIGURE 7. Linearly regressing the rank, y-axis against 2, x-axis. The
lower the 2 value the lower (better) the rank. R2 = 0.36,
p-value 0.007.

team’s rank using divergence from additivity. Similar ‘‘low-
dimensionality’’ or sparsity phenomena were observed in
other interactive systems such as online-social networks
e.g. [17]–[19].

An affirmative answer bares important practical implica-
tions, as it means that the coach can focus on a much smaller
set of states/players when trying to understand and manipu-
late his team.

A natural choice of a subset of players is the top r players in
terms of ball passes (we will count the number of balls that a
given player passed to others). Table 2 describes the R2 values
when computing i but this time restricted to the top r = 5
players. Note that the highest we can climb in the i-hierarchy
is i = r − 1.

TABLE 2. R2 values when linearly regressing the rank of the team against
i -values restricted to states contained in the top 5 players. All p-values

are below 0.05. In all regressions, the outlier, Leicester, was removed
before regressing.

The results show that we may gain the same prediction
we have previously gained while using only a subset of the
players. Specifically, the predictive power of triads ( 3) and
tetrads ( 4) of the top 5 players is the same (even slightly
larger) as taking all players into account.

Furthermore, smaller values of r gave weaker results. For
example, looking at dyads of the top 4 players gave no
significant prediction, and looking at triads gave R2 = 0.3
with significance 0.01.

IV. DISCUSSION
The Latin phrases ‘‘Pars pro toto’’ (i.e. parts confused for
the whole), and its complement ‘‘Totum pro parte’’ (i.e. the
whole confused for its parts), have been used in the context of
informal logic [20] to point to fallacious reasoning from the
whole to its parts and vice versa. For example, the behavior
of a whole soccer team cannot be trivially reduced the simple

aggregate of its players, and in statistics the ‘‘ecological
fallacy’’ is a logical fallacy in the interpretation of statistical
data where inferences about the nature of individuals are
deduced from inference for the group to which those indi-
viduals belong. In this paper, we have presented a simple and
interpretable way ofmeasuring the extent to whichwholes are
composed from their sub-units and have shown the benefits
of using these ideas in a context of analyzing the data of
soccer teams. The measure of and the ReL may be further
developed, for instance by including/developing a measure of
redundancy between the sub-units of the systems [21]. The
variety of applications for using the proposed methodology
is wide. It may be used in the field of scientometrics for
studying the real joint contribution of authors to academic
publications, to study the way better combinations of working
teams can be formed, and in the context of NLP for improv-
ing the automatic micro-reading of a text [22]. We there-
fore conclude by presenting a new tool for data analysis
that should be further developed and tested in various con-
texts of engineering data-analytic methodologies for small
systems.
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