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ABSTRACT To ensure a long-time stable operation of the rolling bearing, it is important to accurately assess
their working performance, especially the incipient degradation based on the massive service process data.
As a new and effective tool, deep learning model is applied widely in the field of fault diagnosis but limited
to rare labeled data. In this paper, a bearing performance assessment method based on signal component
tracking is proposed to realize the bearing degradation detection. More general features are obtained by local
convolution operation to represent the local characteristics in the spectrum or time–frequency distribution of
vibration signal, which follows the forward features mapping process of the convolutional neural network
(CNN). Then, a novel quantification criterion based on the comparison of those local features is used to
provide the selection strategy of optimal fault components. The proposed method takes into account the
abnormal information in degradation monitoring and utilizes it to achieve bearing incipient fault diagnosis.
The experimental results prove that the features extracted by the proposed method possess high recognition
efficiency when being used in incipient failure detection and diagnosis.

INDEX TERMS Local feature, incipient fault diagnosis, performance assessment.

I. INTRODUCTION
As one of the most commonly used components in rotating
machines, rolling bearings usually work with severe environ-
ment, such as heavy loading and high temperature, which can
easily lead to defect. If there are no detection and warnings,
the bearing defect can gradually develop into failure and
finally cause unexpected loss for maintenance costs. The
defect of bearings generates and aggravates gradually with
time, and the detection of it demands higher requirements of
features from vibration signal for both sensitivity and stability
compared with features used in diagnosis [1]. The bearing
condition monitoring is commonly separated from diagnosis,
which means diagnosis of fault types are conducted indepen-
dently based on the occurrence of abnormal state [2]. Con-
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sidering the big data generated in service process of bearings,
information of damage severity and fault types are buried in
the time records, and more detailed information is expected
to be obtained from process data monitoring and further for
diagnosis recognition.

Estimating bearing condition at various stages of degrada-
tion is important for its maintenance decision. The propo-
sition of degradation indexes is the main focus to reflect
bearing degradation process [3]. Health indicators are com-
monly extracted from time, frequency and time-frequency
domains of vibration signal and tracked to represent bear-
ings performance [2], [4], [5]. Then identification of failure
state is drawn based on the predefined threshold with prior
knowledge [6] or intelligent models [7]. It is actually not
ideal to describe degradation process using single metric
now that it partially presents the suitability and is commonly
biased. Meanwhile multiple indicators used to represent the

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

45983

https://orcid.org/0000-0002-9803-8562


S. Dong et al.: Rolling Bearing Incipient Degradation Monitoring and Performance Assessment

degradation process may be redundant or conflicting with
each other, especially when referring to the consistency of
degradation trend. Moreover, the decision of condition moni-
toring is commonly binary. And when fault happens, manual
inspections or further processes are conducted on vibration
signal for diagnosis [2].

Aimed to avoid accident and provide timely maintenance,
it is critical to select the most effective components from
original signals for bearings incipient failure identification
and performance assessment before final failure [4], espe-
cially those with characteristic frequency are worth notic-
ing. Characteristic frequency of bearing incipient fault can
be easily interrupted by noise or other masking sources in
low-frequency band and meanwhile is found in a widely
high-frequency band due to the modulation phenomenon [8].
Envelope analysis based on selection of optimal demod-
ulation band has become an effective approach to rec-
ognize weak fault characteristic frequency, and thus dif-
ferent decomposition methods combined with component
selection strategies were proposed, such as kurtogram and
Protrugram [9], [10], minimum entropy de-convolution [11],
singular value decomposition [12], ensemble empirical
mode decomposition [13], [14], wavelet decomposition [15],
intrinsic characteristic-scale decomposition [16] and local
mean decomposition [17]. Moreover, multi-scale morphol-
ogy filter [18] was also used lately for signal component
extraction. Those optimal demodulation band selection meth-
ods mentioned were both established for faulty signal, and
components selection strategies were conducted according
to fault expertise. However, as we know, vibration signal
components show diverse responses to the types and degrees
of failure during bearing degradation process. And bearing
incipient fault diagnosis is expected to be combined with its
monitoring process, which is expected to provide more faulty
information when the fault happens.

Considering the noisy and non-linear components in prac-
tical vibration signal as well as the powerful expression abil-
ity of deep learning, deep model instead of shallow model
should be applied to investigate the rich information hid-
den in data. Convolution neural network (CNN) is one of
the most commonly used deep learning models due to its
shared weights and ability of local field representation [19].
Several variants of CNN are proposed and applied for fault
diagnosis [20] and further employed to estimate the remain-
ing useful life of critical components [21]. Since no prior
information is available regarding the defect severity at vari-
ous stages of bearing service process, learning-based models
do not work for degradation assessment. Some researches
have shown that neural networks with local random weights
can obtain surprisingly good performance in classification.
Extreme learning machine is combined with deep models to
promote the ability of neural networks such as the learning
speed and generalization performance [22]–[24]. In extreme
learning machine, weights and bias in input and hidden units
are chosen randomly according to specific probability dis-
tribution and remain unchanged during the training phase.

Some researches [25]–[27] also pointed out that CNN
with random filters can obtain good classification results,
which seems to create spontaneous orientation selectivity.
Research [28] employed CNN with random filters to extract
features based on the STFT and proved that those features can
be used for fault diagnosis.

In modern industry, signals for detection are usually
obtained from complex operation processes, in which multi-
ple unknown conditions exist and occur alternately, or several
faults with the same component may lead to information
coupling [29]. There is no enough prior knowledge to identify
forthcoming fault in bearing degradation process. Another
challenge is that it is difficult to adapt the model trained by
one degradation process to another one, as there is similarity
possibly but no repeatability between different processes.
Moreover, features obtained from models trained with the
fault data are actually the global or local optimal solution for
classification, which is adaptive for fault diagnosis rather than
monitoring. This is to say, there is no standard degradation
process as reference to others, and general rather than opti-
mized features are more suitable for monitoring.

Considering the problems mentioned above and the attrac-
tive advantages of CNN such as representation of local field
and weight sharing, this paper proposed a bearing monitoring
and fault diagnosis method using local features extracted by
forward features mapping process of convolutional neural
network. In the paper, local features are defined as the rep-
resentation of local range corresponding to the specific area
in spectrum and time-frequency distribution. It is obvious
that various local features show different reflections to the
specific degree of failure, and the aim of this paper is to track
and detect the fault sensitive components of signal in bear-
ing degradation process. Then comparison was conducted
between local features to discover the most representative
features and describe the current bearing states. Differences
between internal structures in vibration signal are reflected
from those local features to detect and diagnose the bearings
incipient fault. The contributions of this paper can be summa-
rized as follows.

1. To obtain more information of bearing degradation pro-
cess, local features of vibration signal are extracted combined
with spectrum or time-frequency distribution to represent
and track the change of signal structure. It is found that
high-dimensional local features actually reflect more detailed
information of vibration signal.

2. Different from the original method, an incipient fault
diagnosis method taking into account the information of
degradation monitoring is introduced, which accomplishes
early fault and condition partition according to fault sensi-
tivity of local features.

3. According to the proposed method, CNN using kernels
under a specific distribution without training can extract gen-
eral rather optimal features and avoids the confliction of high-
dimensional local features to some extent.

The paper is organized as follow. The basic theory of
signal processing and convolution neural network is briefly
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introduced in Section 2. Section 3 depicts details about the
proposed method. The method is verified on experimental
vibration signal in Section 4, including the analysis of feature
extraction process, application in condition monitoring and
fault diagnosis, and then comparison is conducted in the same
part. At last, section 5 gives the conclusion.

II. PRELIMINARY
A. STATISTICAL DISTRIBUTION OF VIBRATION SIGNAL
Frequency and time frequency distributions of vibration sig-
nal are obtained with fast Fourier transformation (FFT) and
Short time Fourier transformation (STFT). For STFT, the sig-
nal is split into sections through window and processed using
FFT in each section. The window function ϕ(t) is positioned
at τ on time axis of signal and then Fourier transform is
utilized to calculate the spectrum of windowed signal.

F (ω, τ) =
∫
+∞

−∞

f(t)ϕ∗(t− τ )e−jωtdt (1)

whereω and τ are respectively the modulation and translation
parameter.

STFT is suitable for non-stationary signal due to its com-
ponent of window, and a complex matrix S called time fre-
quency distribution matrix is obtained after STFT and then
transformed to a real matrix. In many researches, time fre-
quency distribution matrix has been commonly regarded as
time frequency image and processed with image processing
techniques [30], [31]. More complete information is included
in time-frequency image compared with spectrum analysis
of vibration signal. Compared with common sequence and
image, there is location and structure information in spec-
trum and time-frequency image whose coordinates bear clear
meaning. Thus it becomes a key problem whether and where
fault features will appear and how they vary from time for
bearing degradation detection and performance assessment.
In [2] and [32], spectral structure and sub-bands are tracked
to monitor and determine the fault characteristic frequency
based on the spectrum and time frequency image.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
Compared with other deep models like deep belief network
and stacked auto-encoder, CNN owns the ability of local
field representation, and we can obtain features characteriz-
ing local information of spectrum and time frequency distri-
bution. Weight sharing reduces the number and complexity
of parameters. As a result, each kernel actually determines
its feature map. Considering those mentioned properties and
following its forward features mapping process, we extracted
multiple local features from spectrum or time frequency rep-
resentation to monitor bearing running process in this paper.

Common convolutional neural network mainly includes
feature mapping and training phase. The architecture consists
of convolutional layer and pooling layer, with the style (alter-
nating selective feature extraction and invariance-creating
pooling) being the basis of convolutional networks [28].
In convolutional layer, several convolutional kernels are set

up for feature mapping, and then a bias is added to the
output of convolution operator. This process is formulated as
follows:

ylj =
∑

i
xl−1i ∗k

l
ij + blj (2)

where xl−1i is the input of l convolutional layer, klij and blj
are respectively j kernel and bias corresponding to j kernel.
ylj is the output of convolution operator denoted by ∗. It is
then computed through the activation function. It is noted that
the weights are shared in the same feature map and distinct
among different maps.

xlj= sigm(ylj) (3)

where xlj is the output of l convolutional layer, sigm() denotes
the sigmoid function, which is commonly used in neural
network.

In the pooling layer, the number of feature maps stays
unchanged but the resolution is reduced. The pooling oper-
ation is actually a down-sampling process, which generally
includes maximum and average pooling. It guarantees some
degree of invariance to input translations. The invariance to
local translation can be a useful property when we care about
whether some feature is present and where it is [27]. The
feature maps in pooling layer is computed as follows:

xlj= down(xl−1j ) (4)

where xl−1i and xlj are respectively the input and output of l
pooling layer.

In the training stage, when an iteration of forward prop-
agation has finished, back propagation algorithm is used
according to squared error loss function. Common stochas-
tic gradient descent based optimization method is utilized
in network for parameters estimation to minimize the loss
function [25]. The best mapping relations between data and
target are established as a process of global optimization.

III. PROPOSED METHOD
Proposed method mainly consists of four steps. 1) Extrac-
tion and estimation of local characteristics in spectrum or
time-frequency distribution. 2) The tracking of local fea-
tures through whole degradation process signals and bearing
performance assessment. 3) Selection of fault sensitive fea-
ture and bearing incipient fault recognition. 4) The features
extracted can be applied for fault diagnosis.

A. BEARING DEGRADATION DESCRIPTION USING
SPECTRUM OR TIME-FREQUENCY IMAGE
Statistical properties of bearing vibration signal can vary from
time in whole degradation process, and short time Fourier
transform is thus used to process vibration signals acquired
at different timestamps. Meanwhile vibration signal can be
stationary at specific time interval in bearing degradation
process, and fast Fourier transform can be also used. When
spectrum or time frequency image is applied to represent the
bearing state at corresponding time, the degradation process
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can be described as a sequence of those signal representation
with time, and the detection of it is actually the visual tracking
application.Moreover, comparedwith common sequence and
image, there is location and structure information in spec-
trum and time-frequency image whose coordinates bear clear
meaning. Thus it becomes a key problem whether and where
fault features will appear and how they vary from time for
bearing degradation detection and performance assessment.
In [2] and [32], spectral structure and sub-bands are tracked
to monitor and determine the fault characteristic frequency
based on the spectrum and time frequency image.

B. IMPROVED CONVOLUTION NEURAL NETWORK
Considering the ability of CNN representing the local field,
we can obtain features of the local information of spec-
trum or time frequency distribution. Thus one-dimensional
and two-dimensional improved convolution neural networks
are established based on the spectrum analysis and time-
frequency analysis. The key work in conventional CNN is the
calculation of weights between layers, which are trained by
standard back-propagation procedures and gradient descent
algorithm according to the loss function commonly using
mean squared-error [12]. In this paper, two-layer architecture
of CNN is established, whose forward mapping process is
reserved and training phase is omitted. Weights of the model
are generated according to specific statistic distribution, and
once the parameters are generated, they remain unchanged to
deal with all samples.

As shown in Fig.4, take one dimensional CNN as an exam-
ple. Suppose xl−1i is the input of l convolutional layer, and
ylj is the output of convolution operator. Kl represents the
kernel of L convolutional layer and Kl

= [k1, k2 . . . km]T ,
where ki = [ki1, ki2 . . . kin] represents i kernel, m and n are
respectively the number of kernels and the length of single
kernel. There is no bias since training phase is omitted. For
each kernel in convolutional layer, the element of which is
selected randomly from {0, 1}, as follows:

yli =
∑

j
x l−1j ∗ k lij k lijε{0, 1}; (5)

For activation function, we adopt Leaky ReLu instead of
sigmoid function in order to avoid saturation.

x lj =

{
0.01yli yli < 0,
yli yli ≥ 0,

(6)

After convolutional layer, a maximum pooling without
overlapping is used in pooling layer.

x lj = max_pool(x lj ) (7)

In the last layer of proposed network, the full connection
layer is replaced and feature maps of different random kernels
combined with average operation contribute to the extraction
of local characteristic. Compared with original CNN, final
feature corresponds to the local region of original spectrum
and can be explained as energy of local frequency band.

yli = (
∑m

i

∑n

j
x l−1j ∗ k lij)/m k lijε{0, 1}; (8)

FIGURE 1. Convolutional layer and pooling layer in CNN.

FIGURE 2. Proposed flow chart for bearing degradation monitoring and
fault diagnosis.

Similarly, a two-dimensional CNN can be established
based on the signal time-frequency analysis. No matter it is
one or two dimensional CNN, the kernel in CNN is usually
much smaller than the input, and each kernel is exert on every
position of the input. Actually elements of kernel everywhere
are zero except in this small, spatially contiguous receptive
field [27]. Thus each convolution kernel can be regarded as a
kind of band-pass filter acting on original input, and feature
map as the response corresponds to each kernel.

C. SELECTION OF OPTIMAL DEMODULATION BAND
Feature vector is obtained using improved CNN to represent
each record. It is obvious that each feature corresponds to
the local field in spectrum and time-frequency distribution,
and those local features obtained can be applied for bearing
degradation detection and fault diagnosis. Considering the
ability of local field representation and feature mapping rules
in improved CNN, it is necessary to choose and track the
fault sensitive features in bearing degradation process. And
we further focus on the location relationship between the
features extracted and original frequency band. For bearing
vibration signal, those frequency sub-bands corresponding to
fault sensitive features in degradation process contribute to
the optimal demodulation band.

The range of original input covered by feature in the second
pooling layer is related to the size of kernel, the size of
pooling region and the length of stride. Take one dimensional
CNN as an example and suppose the sizes of kernel and
pooling region are 3 and 2, and the length of stride is 2.
Fig.6 shows the mapping rule of one-dimension CNN, from
which we can see that there is an overlap region between the
ranges covered by adjacent features in the second pooling
layer. In the last layer of proposed network, feature maps of
another convolutional layer combined with average operation
is given after the second pooling layer. As a result, the length
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FIGURE 3. Description of bearing performance using spectrum (up) and
time-frequency images (down).

FIGURE 4. Structure of improved 1-D CNN.

FIGURE 5. Structure of improved 2-dimentional CNN.

of the overlap region can be omitted compared with the
range covered by a final feature and the corresponding range
of original input is determined eventually according to the
sequence of final feature.

IV. DATA EVALUATED AND RESULT ANALYSIS
Case 1 (Application in Bearing Degradation Monitoring):
The data used for method verification is supported by

FIGURE 6. Mapping rule of improved 1-D.

FIGURE 7. Structure of the experimental platform (left) and the position
of the sensors (right).

FIGURE 8. Representations of degradation using RMS (left) and kurtosis
(right).

Intelligent Maintenance System, University of Cincin-
nati [27], and the bearing experimental system is shown as
Fig.7. Four bearings were installed on the shaft. The rotation
speed was kept constant at 2000 RPM by an AC motor
coupled to the shaft via rub belts. A radial load of 6000 lbs
is applied onto the shaft and bearing by a spring mechanism.
All bearings are force lubricated.

Vibration data are collected with a recording interval of ten
minutes. The sampling frequency is set at 20000 Hz and the
length of each group of data is 20480 points. Since the RMS
index is stable, it is generally used to represent the degrada-
tion process of bearings. Another commonly used index is
kurtosis, which is more sensitive than RMS in detecting fault.
Results using RMS and kurtosis index to represent bearing
degradation process are shown in Fig.8, from which we can
see that the record of early fault generating is difficult to be
determined, especially when there is no prior knowledge for
threshold setting.

The proposed method maps the local field in spectrum
or time-frequency distribution into the specific feature, and
represents the signal using feature vector. In the proposed

VOLUME 7, 2019 45987



S. Dong et al.: Rolling Bearing Incipient Degradation Monitoring and Performance Assessment

FIGURE 9. Visualization of feature mapping process in improved 1-D
CNN. (a) Result of original spectrum. (b) Feature of first convolution layer.
(c) Feature of first pooling layer. (d) Feature of second convolution layer.
(e) Feature of second pooling layer. (f) Feature vector.

architecture, a two-layer one-dimensional convolutional neu-
ral network is established based on the spectrum. In convo-
lutional layer, the number and length of the one-dimensional
kernel are set as 5 and 8, and the stride we use is 1. Then
a maximum pooling operation without overlapping is used in
pooling layer and the length of pooling region is 5. The length
of kernel in the last layer is set as 5. Those parameters of the
model will leave an impact on dimension of the final feature
vector, which determines the range in frequency spectrum
that single feature corresponds to. The elements of each
kernel are generated randomly, and remain unchanged to deal
with all samples. Fig. 9 shows the visualization of mapping
process for single signal where the convolutional network is
actually known as a dimensionality reduction process, and
local frequency information is preserved. Eventually, a vector
consisting of 82 features is obtained for each record and
arranged in time sequence to represent bearing degradation
process.

Those features representing local frequency spectrum
show different responses to various degrees of failure, and
thus they are classified into different categories according
to the fault sensitivity as shown in Fig.11. Bearing incipient
degradation monitoring and performance assessment can be
conducted based on the tracking for different types of fea-
tures. A novel performance quantification criterion is then
provided according to the variation of those local features,

FIGURE 10. Description of bearing degradation process using feature
vectors.

FIGURE 11. Local features extracted from spectrum.

and the analysis is conducted about which features contribute
the most to the detection of current degradation. In this paper,
high dimensional features are divided into three categories as
shown in Fig.11, and they are fault sensitive features, normal
features and dull features.

Compared with common time domain or other features,
bearing incipient degradation time can be easily detected
according to fault sensitive features, and so as the time when
the fault aggravates. When fault sensitive features change at
532th record, others still keep the original state. However,
after 702th record, it is difficult to further assess the bearing
failure state in term of sensitive features because they change
dramatically. And we can detect the failure time at 913th

record according to normal features, which is more stable
than fault sensitive features in the whole degradation, and this
type of feature is important for prediction of the remaining
useful life. Once the bearing incipient degradation is detected
at 532th record, fuzzy clustering is applied to classify those
local features from the first record to 532th record, as shown
in the left of Fig.12.

Considering the continuity of the same features, normal
features are defined as those from first to 25th and dull
features are defined as those from 40th to 82th. Those fault
sensitive features are chosen to map into original frequency
band, and they are features from 26th to 39th. Thus optimal
demodulation band in this experiment is obtained according
the sequence of fault sensitive features, which is from 3170Hz
to 4756Hz. Fig.12 gives the correspondence between final
feature and original frequency band. Then band-pass filtering
and envelope analysis are conducted on fault sensitive band
for incipient failure diagnosis.

A two-dimensional CNN can also be established based
on the time frequency distribution. There are 5 kernels in
each convolutional layer. Each kernel contains 5 rows and
5 columns, the elements of which are generated randomly
from {0, 1}. The stride is 1. After convolutional layer,
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FIGURE 12. Clustering result of local features (up) and correspondence
between original spectrum band and features (down).

a maximum pooling without overlapping is used in the pool-
ing layer. Each pooling region contains 3 rows and 3 columns.
The whole process finishes at one time without iterations,
so the speed is significantly faster than common CNN.
Fig.13 shows the visualization of non-linear mapping process
in the architecture, from which the proposed convolutional
network can be also known as a dimensionality reduction
process, and useful information in time frequency image is
preserved. At last, the vector consisting of 47 features is
obtained for each record and arranged in time sequence to
represent bearing degradation process.

High dimensional features obtained from two-dimensional
CNN are also divided into three categories. They are sensitive
features, ordinary features and dull features, which are rep-
resented by green, blue and red lines separately. According
to Fig.16 (a), the values of sensitive features vary gradually
after 532th record while the other two types still keep the
original state, and 532th record is recognized as the timewhen
early fault generates. After the generation of incipient fault,
as shown in Fig.16 (b), ordinary features and dull features
are still invariant until 702th record. At 702th record, there is
a severe change in all features, which can be defined as the
aggravation of fault. And after 702th record, it is difficult to
assess the bearing state in term of sensitive features because
they change dramatically. However, from Fig.16 (c), we con-
clude that ordinary features change slightly from 702th record
until 912th record and dull features are stable relatively in
this period. After 912th record, ordinary features started to
rise rapidly and become unstable comparedwith dull features.
Thismoment is recognized as the failure timewhen indication

FIGURE 13. Visualization of mapping process in improved CNN. (a) Result
of STFT. (b) Feature map of first convolution and pooling layer, second
convolution and pooling layer.

FIGURE 14. Feature vector extracted from one record (up) and
description of whole life cycle using feature vectors (down).

of downtime should be given. According to the analysis,
some of those local features are sensitive while some are
robust, which can provide assistance for each other to assess
performance effectively.
Comparison: With the proposed method, we managed to

identify early fault and assess the bearing condition by a
new perspective based on the characteristic of CNN. Here we
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FIGURE 15. Classification of local features extracted from time frequency
image.

FIGURE 16. Representation of local features in the time of state change.
(a) Occurrence of incipient fault. (b) Aggravation of fault. (c) Occurrence
of failure.

give a similar approach combining wavelet and energy com-
putation to represent bearing operation process and assess
performance using high dimensional features. This method
actually monitors the energy of each frequency band as the
result of wavelet decomposition.

Original vibration signals are performed with 4-level
wavelet packet decomposition, and the energy of each sub-
component is calculated and tracked. Fig.17 gives the repre-
sentation of the whole life cycle of bearings. According to the
result, features extracted by the proposed method show better

FIGURE 17. Description of bearing performance using the results
of 4-level wavelet packet decomposition.

FIGURE 18. Bearing experiment platform for fault diagnosis.

FIGURE 19. Feature vectors of different types of bearings.

consistency and those local features present more obvious
difference in fault sensitivity, some of which are sensitive to
the development of fault while others are more stable in the
whole life cycle of bearings.
Case 2 (Application in Bearing Fault Diagnosis): In this

section, the proposed method is also evaluated on rolling
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FIGURE 20. Fault classification results using proposed method (left) and
common DBN (right) based on spectrum.

bearing dataset collected by accelerometers installed in bear-
ing seat. The dataset consists of normal (NM) and faulty
data whose single point faults exist in rolling element, inner
race and outer race. The rotation speed was kept constant at
1200 RPM by the motor directly connected to bearing seat.

There are totally 600 groups of samples and 150 groups
were collected for each type of bearings. The sampling
frequency is 10000 Hz and the length of each record is
10000 points. One dimensional improved CNN is used and
the result of FFT for all samples is as input into themodel. The
parameters of improved CNN are generated randomly and
remain unchanged to deal with all samples. Feature vectors
representing original data were then obtained and then used
for fault classification. As shown in Fig.19, a 40-dimension
feature vector is obtained for each record. According to the
results in Fig.19, it is clear that features extracted by proposed
model show obvious divergence among different types of
bearing and similarity in same type. Those local features
extracted by improvedCNN are used for bearing performance
monitoring online, and fault diagnosis can also be conducted
based on the same features.

Considering the high dimensions of local features
extracted, we establish another two-layer DBN after
improved CNN, and single soft-max layer is used for diag-
nosis. Then 80 groups of data from each type of bearing
are selected randomly as training sets and others for testing.
Fig.20 shows that single soft-max layer succeeds in fault
diagnosis and obtains high accuracy.
Comparison: The proposed model consists of a two-layer

untrained CNN and a two-layer common DBN based on
original spectrum of vibration signal, the total number of
layers is four. With comparison, we also set a four-layer
DBN based on original spectrum for diagnosis and show the
classification result in Fig.20. The structures of the models
used are shown in Table.1. When the same reconstruction and
training error thresholds are set, the average time for training
and testing in the proposed model is only 73 seconds while it
is 1905seconds for the four-layer DBN, and most of the time
in four-layer DBN is used for the pre-training of the first and
second restricted Boltzmann machines.

It is concluded that the proposed architecture obtains local
features without labeled data, and when combined with shal-
low DBN, it provides good performance of classification in
accuracy and effectiveness. And it can be thought that any
time when you need a matrix which is too complicated to

TABLE 1. Structures of the model.

study, you can try replacing it with a random matrix and
calculate averages [33]. Results of data verification indicate
that kernels generated from specific distribution combined
average operations contribute the extraction of inherent char-
acteristics in original signal, and the result shows effective-
ness of the features when used for degradation monitoring
and fault diagnosis.

V. CONCLUSION
In this paper, the proposed method combining FFT, STFT
with promoted convolutional neural network is able to cap-
ture the representation of local region in spectrum and time
frequency distribution through multiple nonlinear mapping.
Different from common monitoring method, we described
bearing degradation process using high dimensional local fea-
tures instead of single indicator. And detailed information of
internal structures in vibration signal is reflected from those
local features. A novel performance quantification criterion is
provided to detect incipient degradation and other degrees of
failure. The proposed method recognizes the incipient degra-
dation effectively without prior expertise according to data
analysis. It is analyzed that random kernels combined average
operations contribute to the extraction of inherent character-
istics in original signal and the attempts show good perfor-
mance. The paper focuses on the correspondence between the
features extracted and local field of original input, combined
with prior knowledge of fault sensitive features in degradation
process to diagnose the incipient fault directly when novelty
are detected. Meanwhile the experimental result shows that
those features are effective for fault classification.
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