
Received February 12, 2019, accepted March 12, 2019, date of publication March 22, 2019, date of current version April 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2907057

Methods to Construct Uniform Covering Arrays
JOSE TORRES-JIMENEZ 1, (Senior Member, IEEE), IDELFONSO IZQUIERDO-MARQUEZ1,
AND HIMER AVILA-GEORGE 2, (Senior Member, IEEE)
1Cinvestav Tamaulipas, Ciudad Victoria 87130, Mexico
2Department of Computer Science and Engineering, University of Guadalajara, Ameca 46600, Mexico

Corresponding author: Jose Torres-Jimenez (jtj@cinvestav.mx)

This work was supported in part by the ABACUS-CINVESTAV, CONACYT, under Grant EDOMEX-2011-COI-165873, and in part by the
project: CONACyT 238469–Métodos Exactos para Construir Covering Arrays.

ABSTRACT Uniform covering arrays are covering arrays in which every column has the same alphabet.
In recent years, a number of methods to construct such arrays have been developed. Here, we review several
of these methods organizing them into six classes: algebraic, recursive, exact, greedy, metaheuristic, and
transformations. The objective of this paper is to highlight the strategy of some representative algorithms
of each class. Most of the reviewed methods are accompanied by examples and/or pseudocodes. This paper
ends with a discussion about the general strengths and weaknesses of each class of methods.

INDEX TERMS Covering arrays, uniform covering arrays, methods to construct covering arrays.

I. INTRODUCTION
One option to test the functionality of a software or hardware
component is to test all possible configurations of its input
parameters. However, testing all configurations may require a
large number of test cases. Consider for example a component
with 12 parameters, each of which can take 4 different values;
then, there are 412 = 16, 777, 216 different test cases. One
option to reduce the number of test cases is to use the combi-
natorial designs called covering arrays (CAs). These designs
are used in the combinatorial testing technique, CAs allow
to test all configurations among any subset of t parameters.
Combinatorial testing has proven to be an effective testing
strategy [1]; the main idea in this technique is that most fail-
ures occur due to interactions among a small subset of input
parameters, that is, failures occur when certain parameters
take specific values.

The value of t modulates the coverage of interactions
tested. If t is equal to the number of parameters then we have
full coverage. However, in a series of studies conducted at
the National Institute of Standards and Technology (NIST)
in a wide range of domains determined that, all failures in
the software products under study were due to interactions
involving at most six parameters [2]–[5]. These results indi-
cate that a failure is triggered by the interaction of a relatively
small number of parameters, and therefore testing all con-
figurations of size t is an effective way to detect failures in

The associate editor coordinating the review of this manuscript and
approving it for publication was Roberto Pietrantuono.

FIGURE 1. Example of a CA.

software products. Formally, a covering array CA(N ; t, k, v)
with strength t and order v is an array of size N × k over the
symbol set Zv = {0, 1, . . . , v − 1}, such that every subarray
of size N × t contains as a row each t-tuple over Zv at least
once. A CA of strength t ensures the coverage of all possible
combinations of values among any t columns. As an example
of a CA, Fig 1 shows a CA(12; 2, 7, 3). In this CA every
subarray of t = 2 columns covers at least once every possible
t-tuple over Z3 = {0, 1, 2}, which are the tuples (0, 0), (0, 1),
(0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), and (2, 2). In the
subarray formed by the first two columns the first occurrence
of these nine tuples is colored. Some tuples may occur more
than once, but the requirement is that all of them occur at least
once for every t distinct columns.

42774
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-5029-5340
https://orcid.org/0000-0001-8578-0170

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

CAs can be viewed as test suites where columns represent
parameters of the software or hardware component under
test; the order of a CA is the number of distinct values for
every parameter; and the strength of a CA is the degree
of coverage of interactions. CAs like the one in Fig 1 are
sometimes called uniform covering arrays because every
column has the same set of symbols. On the other hand, there
exist mixed covering arrays (MCAs) which are denoted as
MCA(N ; t, k, (v0, . . . , vk−1)), where symbols in column j ∈
{0, . . . , k−1} come from an alphabet of cardinality vj. For any
t distinct columns j0, . . . , jt−1, every t-tuple in the Cartesian
product of the alphabets associated to these columns occurs
at least once in the N × t subarray formed by the columns
j0, . . . , jt−1. Usually the exponential notation su00 , . . . , s

ul
l is

used to indicate that anMCA has ui columns whose alphabets
have cardinality si. In practice MCAs are used more often
than uniform CAs as test suites because it is very unlikely
that every parameter of the software or hardware component
has the same number of distinct values. CAs have also been
applied in other areas including GUI testing [6], fire accident
reconstruction [7], testing effects of multiple inputs in regu-
lating a biological system [8], and clustering business process
models [9].

The covering array number CAN(t, k, v) is the minimum
number of rows N for which exists a CA with k columns,
strength t , and order v:

CAN(t, k, v) = min{N : ∃ CA(N ; t, k, v)}.

It is very difficult to find the exact value of CAN(t, k, v)
for general values of t , k , and v; but there are particular cases
for which the exact value of CAN(t, k, v) is known:
• CAN(t, t + 1, 2) = 2t for each t ≥ 1.
• CAN(2, k, 2) = N , where N is the least positive integer
that satisfies

(N−1
d
N
2 e

)
≥ k [10], [11].

• CAN(t, v+1, v) = vt for v prime-power and v > t [12].
• CAN(t, t + 1, v) = vt for v prime-power and v ≤ t [13].
• CAN(3, v+ 2, v) = v3 for v = 2n [12].
• CAN(v − 1, v + 2, v) = vv−1 when v = 2n [14]
(Corollary 3.8).

• CAN(t, t + 2, 2) = b 432
t
c for each t ≥ 1 [15].

A CAwith strength t and order vmust have at least vt rows;
so a trivial lower bound for the covering array number is
CAN(t, k, v) ≥ vt . Some works where lower bounds of CAN
are studied are [16], [17]. Similarly, a trivial upper bound for
CAN(t, k, v) is vk , which is the number of vectors of length
k over Zv. The study of theoretical upper bounds on the size
of CAs focuses on determining the value of CAN(t, k, v) as
function of k for fixed t and v. Very recent works addressing
this topic are [18], [19].

The improvement of upper bounds for CAN(t, k, v) is an
active research topic, motivated in part by the reduction of the
number of test cases when CAs are used as test suites. In the
last years, the Covering Array Tables [20] have been used as
the main source to report improvements in the current upper
bounds of covering array numbers.

The construction of CAs is a large and active field, and sev-
eral works have reviewed the different strategies to construct
CAs. The works of Hartman [21] and Colbourn [22] review
combinatorial and searching techniques. Lawrence et al. [23]
presented a survey for binary CAs (CAs of order two).
Kuliamin and Petukhov [24] summarized a large number of
methods to construct CAs, and a special characteristic of
their work is that the complexity of the algorithms is stud-
ied. Torres-Jimenez and Izquierdo-Marquez [25] described
briefly some construction methods. Nie and Leung [26] stud-
ied construction methods in the context of test suite genera-
tion for combinatorial testing; also Khalsa and Labiche [27]
presented the methods in the context of combinatorial testing,
and reviewed methods to construct CAs of various types like
CAs with variable strength and CAs with constraints. Finally,
the work of Zhang et al. [28] explains in great detail several
techniques for constructing CAs.

This paper focuses only on methods to construct uniform
CAs. MCAs are barely mentioned, and also the important
topics of CAs with constraints and CAs with variable strength
are not addressed. We do not touch in this paper methods to
construct related objects such as orthogonal arrays, sequence
covering arrays, and ordered designs are not mentioned,
except for orthogonal arrays of index unity.

It is difficult to classify all existing construction methods
into general classes because some methods combine different
strategies. However, we can classify the existingmethods into
two classes according to the main strategy of the method:
combinatorial methods, and searching methods. In the first
class are methods whose main strategy is based on combi-
natorial arguments; this class includes the works cited in the
above list of known values of CAN. In the second class are
methods that construct the CAs using computational search;
these methods construct the CAs basically cell by cell.

Combinatorial methods are fast and in most cases the size
of the output CA is known in advance; in addition, they
provide an infinite number of CAs and currently they are
the best methods to construct CAs with large values of t , k ,
and/or v. However, they are not completely general because
for some combinations of t , k , v no combinatorial construc-
tion is known; for example there is no combinatorial method
that given t can generate in all cases a CA with strength t ,
t + 3 columns, and order 2. On the other hand, searching
methods can handle any values of t , k , v, but the range of
these parameters is limited by execution time constraints.

To better organize the presentation of the methods covered
in this survey the two high level classes are broken into more
specific classes. Combinatorial methods are divided into
algebraic (Section II) and recursive (Section III) techniques;
and searching methods are divided into exact (Section IV),
greedy (Section V), andmetaheuristic (Section VI) strategies.
In addition, a class of transformation methods is presented
in Section VII. For each class of methods we have tried
to include methods whose strategy is significantly different
from the strategy of other methods in the same class. A par-
ticular characteristic of this survey is the level of detail at

VOLUME 7, 2019 42775

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

which algebraic and recursive methods are described; they
are illustrated with examples in order to expose clearly the
strategy of the method. Another valuable characteristic of
this work is that very recent and powerful methods based on
Linear Feedback Shift Register sequences (LFSR sequences)
and covering perfect hash families (CPHF) are covered.
Section VIII provides a discussion about general strengths
andweaknesses of every class ofmethods. A discussion about
which methods might improve the current upper bounds of
CAN is presented in Section IX. Finally, conclusions are
given in Section X.

II. ALGEBRAIC METHODS
Algebraic methods construct CAs using formulas, alge-
braic structures such as groups and finite fields, or opera-
tions with 1-dimensional objects like polynomials, vectors,
and sequences. Methods under this class do not employ
2-dimensional designs like other CAs, orthogonal arrays, or
difference matrices; this is the difference with the recursive
methods presented in Section III.
Some algebraic methods yield optimal CAs; for examples,

the method to construct a CA(N ; 2, k, 2) by Rényi [29],
Kleitman and Spencer [11], and Katona [10]; the Bush’s
construction [12] to generate an OA(vt ; t, v + 1, v) where
v is prime-power and v > t; the construction of Johnson
and Entringer [15] that produces a CA(b 432

t
c; t, t + 2, 2)

for each t ≥ 1; and the Zero-Sum construction [13] for
OA(vt ; t, t + 1, v).
Other algebraic approaches construct CAs by concatenat-

ing a set of vectors with specific characteristics. For exam-
ples, Tang and Woo [30] constructed test cases for logic
circuits using vectors of a particular set of weights; and
Martinez-Pena and Torres-Jimenez [31] constructed ternary
CAs (v = 3) using sets of rows represented by trinomial
coefficients.

A. CASE T = V = 2
Rényi [29] determined the value of CAN(2, k, 2) for N even;
and Kleitman and Spencer [11], and Katona [10] deter-
mined the value of CAN(2, k, 2) for every N . Given N ,
a CA(N ; 2, k, 2) with k =

(N−1
d
N
2 e

)
columns is constructed by

placing as columns the distinct binary vectors of lengthN that
begin with 0 and have dN2 e 1’s. Theorem 1 gives the value of
CAN(2, k, 2).
Theorem 1 (Kleitman and Spencer [11], Katona [10]):

Let k be a positive integer, then

CAN(2, k, 2) = min
{
N :

(
N − 1
d
N
2 e

)
≥ k

}
.

Fig 2 shows an example of the construction for k = 9.
Theorem 1 gives N = 6, because N = 6 is the smallest N
such that

(N−1
d
N
2 e

)
=
(5
3

)
= 10 is greater than or equal to k = 9.

The nine columns of the CA(6; 2, 9, 2) are 9 of the 10 binary
vectors of length 6 and weight d 62e = 3 that begin with zero.

FIGURE 2. Example of the construction for t = v = 2.

B. BUSH’S CONSTRUCTION
An orthogonal array OAλ(N ; t, k, v) is an array of size N × k
where every N × t submatrix covers exactly λ times each
t-tuple over Zv. If λ = 1 then the OA has index unity and it
is omitted in the notation.

The Bush’s construction [12] generates OAs of index unity
for given values of v and t , when v is a prime-power and v > t .
Let ej, 0 ≤ j ≤ v − 1, be the v elements of Fv (the finite
field with v elements) and consider the distinct polynomials
yi(x) = at−1x t−1+at−2x t−2+· · ·+a1x+a0 with coefficients
in Fv; there are vt of such polynomials since every coefficient
can take any of the v values. Then, we construct an array M
of size vt × v and label the rows from 0 to vt −1 and label the
columns from 0 to v − 1. The value u that is assigned to the
cellMi,j is yi(ej) = eu; thenM is an OA(vt ; t, v, v). One extra
column is added toM by assigning the value u to those rows
associated with a polynomial whose leading coefficient is eu.

FIGURE 3. Bush’s construction for v = 4 and t = 2.

As an example of the construction consider v = 4 and
t = 2. The elements of F4 are 0x+0, 0x+1, x+0, x+1, or in
simplified form 0, 1, x, x + 1. Denote them by e0, e1, e2,
e3 respectively. Because t = 2, polynomials yi(x) are of the
form yi(x) = a1x + a0 where a0, a1 ∈ F4. Fig 3 shows the
construction of OA(16; 2, 5, 4). The value of the entry (11, 3)
is given by y11(e3) = e2e3 + e3. The product e2e3 is equal
to (x)(x + 1) = x2 + x, which using the primitive element

42776 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

x + 1 and taking the modulo 2 of the coefficients is reduced
to x2 + x = (x + 1) + x = 2x + 1 = 0x + 1 = 1. The final
result is given by 1 + e3, which is equal to 1 + (x + 1) =
x + 2 = x + 0 = x. The element x is the element e2 of F4,
so the value of the entry (11, 3) is 2.

The construction of OAs of index unity can be done using
the sum and product tables of Fv. When v ≤ t an OA(vt ; t,
t + 1, v) can be constructed using the Zero-Sum
construction [13].

C. JOHNSON-ENTRINGER CONSTRUCTION
The construction of Johnson and Entringer [15] gives an
optimal CA(b 432

t
c; t, t+2, 2) for each strength t ≥ 1. Let |u|

be the weight of the binary vector u, and let k = t + 2. The
2k binary vectors are partitioned into three sets V 0

k , V
1
k , V

2
k ,

where for j = 0, 1, 2 the set V j
k contains the binary vectors u

of length k such that |u| ≡ j (mod 3). The three sets V 0
k , V

1
k ,

V 2
k are CAs of strength t and k = t + 2 columns, and at least

one of them has b 432
t
c rows.

FIGURE 4. CAs of size b
4
3 24c produced by the Johnson-Entringer

construction for t = 4.

For example, for t = 4 we have k = t+2 = 6, and the CAs
given by the sets V 1

6 and V 2
6 are shown in Fig 4. In this case

there are 64 binary vectors of length 6, and the setsV 0
6 ,V

1
6 ,V

2
6

contains respectively 22, 21, and 21 vectors. The value b 432
t
c

is equal to b 432
4
c = b21.3333c = 21, which is the number of

rows of the CA(21; 4, 6, 2) given by the sets V 1
6 and V 2

6 .

D. BINOMIAL COEFFICIENTS
The method of Torres-Jimenez et al. [32] construct binary
CAs by juxtaposing subsets of binary rows represented by
binomial coefficients. In this method a binomial coefficient(n
r

)
is used to represent the set of vectors of length n that

are formed by r ones and n − r zeros. For k ≥ 2 the
vertical juxtaposition of the k + 1 subsets of rows given
by the binomial coefficients

(k
0

)
,
(k
1

)
, . . . ,

(k
k

)
generates an

OA(2k ; k, k, 2). However, for t < k it is not necessary to
juxtapose all k+1 binomial coefficients, only a proper subset
is required. The problem is to determine the set of binomial
coefficients that produces the smaller CA for the given values
of k and t .

By means of a Branch & Bound algorithm the authors
derived the following equation, which for given values of
k and t provides the binomial coefficients to construct the
smaller CA that can be constructed with binomial coeffi-
cients:⌊ k−(b t2 cmod (k−t+1))

k−t+1

⌋∑
j=0

(
k

(k − t + 1) j+ (b t2cmod (k − t + 1))

)
The summation of binomial coefficients means to juxta-

pose vertically the sets of rows represented by the binomial
coefficients. As an example consider k = 10 and t = 6.
In this case k− t+1 = 5; thus, the expression (b t2cmod (k−
t + 1)) evaluates to (b 62cmod 5) = (3mod 5) = 3, and so⌊ k−(b t2 cmod (k−t+1))

k−t+1

⌋
=
⌊ 10−3

5

⌋
= 1. Therefore, the CA for

k = 10 and t = 6 is given by
∑1

j=0
(10
5j+3

)
=
(10
3

)
+
(10
8

)
. The

rows of the resulting CA(165; 6, 10, 2) are the
(10
3

)
= 120

rows of weight 3 and the
(10
8

)
= 45 rows of weight 8.

E. GROUP CONSTRUCTION AND STARTER VECTORS
The method of Chateauneuf and Kreher [33] constructs a
CA(N ; 3, k, v) from an l × k matrix M over a set � of v
symbols and from a group G acting on �. The number of
rows of the CA is N = l|G| + v. Denote by Mg the matrix
whose (i, j) element is the image under g of the (i, j) element
of M . The method constructs a matrix MG

= [Mg
: g ∈ G]

by juxtaposing vertically the |G| matricesMg. Now, let C be
the |�| × k matrix that has a constant row for every element
of�. With appropriateM and G the juxtaposition ofMG and
C is a CA(N ; 3, k, v).
Meagher and Stevens [34] extended the idea of

Chateauneuf and Kreher [33]. The new construction is based
on selecting a subgroup of the symmetric group of a set
of v symbols, G < Symv, and in finding a starter vector
α ∈ Zkv . From the circular rotations of the starter vector
a cyclic matrix M is constructed; after that, G acting on
M produces |G| matrices that are concatenated to form an
array Z . A small array C may be added to Z to complete the
covering conditions.

Fig 5 shows an example of how this construction works.
Let G = {e, (12)} < Sym3 be a subgroup of the symmetric
group of the set Z3 = {0, 1, 2}, and let α = (0, 1, 1,
1, 2) ∈ Z5

3. Construct the cyclic matrix M (Fig 5(a)) from
the rotations of α. The elements of G acting on M produce
the arrays shown in Fig 5(b). Element e is the identity per-
mutation, so Me = M , and element (12) is the permutation
that changes 1’s by 2’s and 2’s by 1’s. The small vector

VOLUME 7, 2019 42777

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

FIGURE 5. Example of the group construction. (a) Circular matrix M
constructed from the starter vector α = (0,1,1,1,2). (b) The elements of
G acting on M produce Me and M(12). (c) CA(11; 2,5,3) is constructed by
juxtaposing Me, M(12), and C = (0 0 0 0 0).

C = (0 0 0 0 0) is needed to ensure the coverage of all
pairs. The CA(11; 2, 5, 3) is constructed by juxtaposing the
arraysMe, M(1,2), and C , as shown in Fig 5(c).

Lobb et al. [35] developed a generalization of this method
for strength-two CAs that allows any number of fixed
points. Another construction using groups was developed by
Akhtar et al. [36]; in this case the constructed CAs have
strength four and order three.

F. CYCLOTOMY
Colbourn [37] introduced several constructions using cyclo-
tomic vectors. For a given order v, let q be a prime-power
such that q ≡ 1 (mod v), and let ω be a primitive element
of Fq. In this construction q is the number of columns of the
CA. Form a cyclotomic vector xq,v = (xi : i ∈ Fq) ∈ Fqq by
making x0 = 0 and xi = j mod v when i = ωj. From xq,v
construct a q × q cyclotomic matrix Aq,v = (aij) by setting
aij = xj−i. The cyclotomic matrix Aq,v is a CA of strength t
when q > t2v4t . For v = 2, Aq,2 is a CA of strength t when
q > t222t−2.

Given a matrixM = (mij) over Zv, letM + s be the matrix
whose (i, j) entry ismij+s. FromAq,v construct a vq×qmatrix
Bq,v by juxtaposing vertically the v matrices {Aq,v + c | 0 ≤
c < v}. For t ≥ 3 this matrix Bq,v is a CA of strength t when
q > (t − 1)2v2t−2.
Sometimes the matrices Aq,v and Bq,v are CAs of strength t

for values of q smaller than the above bounds. As an example

FIGURE 6. A cyclotomic vector and the cyclotomic matrix constructed
from it. The matrix is a CA(11; 2,11,2).

of this, Fig 6 shows a cyclotomic matrix with v = 2, q = 11,
and t = 2; this value of q is smaller than t222t−2 = (4)
(22) = 16.

G. LFSR SEQUENCES
For any order v that is prime or prime-power the method
developed byRaaphorst et al. [38] constructs a CA of strength
t = 3 and k = v2+ v+1 columns using linear feedback shift
register sequences (LFSR sequences) over Fv. Let f (x) =
c0 + c1x + c2x2 + · · · + cn−1xn−1 + xn be a polynomial of
degree n and coefficients in Fv, and let I = (b0, b1, . . . , bn−1)
be an n-tuple over Fv. An LFSR sequence with characteristic
polynomial f and initial values I is a sequence S(f , I) =
(s0, s1, s2, . . .) defined as:
• si = bi if 0 ≤ i < n.
• si = cn−1si−1 − cn−2si−2 − · · · − c1si−(n−1) − c0si−n if
i ≥ n.

If f is primitive and I is nonzero, then S(f , I) is a sequence
with period vn − 1 (this is the maximum period). Let Cr

i (S)
denote the subinterval of S of length r beginning at position i.
Construct an arrayM of size (v3− 1)× k such that the v3− 1
rows ofM are respectivelyCk

0 (S),C
k
1 (S), . . .,C

k
v3−2

(S). Next,
constructM ′ fromM by reversing the rows ofM . The vertical
juxtaposition ofM ,M ′, and a row of k zeros gives a CA(2v3−
1; 3, v2 + v + 1, v). This method was extended to strengths
t ≥ 4 by Tzanakis et al. [39].

As an example consider v = 2. A primitive polynomial
of degree 3 with coefficients in F2 is f (x) = x3 + x + 1,
and a nonzero tuple is I = (0, 1, 0). In this case s0 = 0,
s1 = 1, s2 = 0, and si = −(0)(si−1) − (1)(si−2) − (1)(si−3)
for i ≥ 3. In this last expression the first factors of the terms
are respectively the coefficient of x2, the coefficient of x, and
the independent term in f (x) = x3+ x+ 1. The evaluation of
si can be transformed to −[(0)(si−1)+ (1)(si−2)+ (1)(si−3)],
where the minus sign indicates to take the additive inverse
of the result. In F2 the additive inverse of 0 is 0, and of 1
is 1, so we can ignore the minus sign. Fig 7(a) shows the

42778 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

FIGURE 7. Construction of CA(15; 3,7,2) from the LFSR sequence
S = (0,1,0,1,1,1,0, . . .). (a) S(x3 + x + 1, (0,1,0)). (b) CA (15;3,7,2).

evaluation of s3, s4, s5, and s6. Because the period of the
sequence is 23 − 1 = 7 we have si = si−7 for i ≥ 7;
thus, S(f , I) = (0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, . . .). The
matrix M is constructed as follows: the first row of M are
elements 0 to 6 of S, the second row ofM are elements 1 to 7
of S, and so on until the seventh row ofM are elements 6 to 12
of S. Fig 7(b) shows the CA(15; 3, 7, 2) given by S; the first
part of the CA is the matrixM , the second partM ′ is obtained
by reversing the rows ofM , and the third part is a constant row
of zeros.

H. DIRECT CONSTRUCTION OF CPHFs
The method of Sherwood et al. [40] constructs CAs of order
v prime-power and strength t using column vectors that
are formed by concatenating permutations of (0, 1, . . . , v −
1). Let (β(i)0 , β

(i)
1 , . . . , β

(i)
t−1) be the base v representation of

i ∈ {0, 1, . . . , vt − 1}; that is, i = β
(i)
0 + v1β(i)1 + · · · +

vt−1β(i)t−1 where every β(i)j ∈ {0, 1, . . . , v − 1}. For each
(t − 1)-tuple (h1, h2, . . . , ht−1) over Fv, a permutation vec-
tor
−−−−−−−−−−−→
(h1, h2, . . . , ht−1) of length vt is the vector that has the

symbol β(i)0 + (h1 × β
(i)
1)+ (h2 × β

(i)
2)+ · · · + (ht−1 × β

(i)
t−1)

in position i for 0 ≤ i ≤ vt − 1.

A tuple of t permutation vectors is called covering if the
array of size vt × t having those permutation vectors as
columns is an OA(vt ; t, t, v); if the array is not an OA then the
tuple is noncovering. A perfect hash family PHF(n; k, q, t)
is an array of size n × k with entries from Zq such that
every subset of t distinct columns has at least one row
where all entries are distinct. To produce CAs, the method
requires a PHF(n; k, q, t) with q = vt−1 such that every
set of t columns has at least one row that is a covering
tuple of t permutation vectors. A PHF with this additional
property is called a covering perfect hash family and it is
denoted by CPHF(n; k, vt−1, t). Replacing the symbols of a
CPHF(n; k, vt−1, t) by their corresponding permutation vec-
tors produces a CA(n · vt ; t, k, v), from which a CA(n ·
(vt − v) + v; t, k, v) is obtained by deleting the repeated
constant rows.

In the work of Torres-Jimenez and Izquierdo-Marquez [41]
the concept of permutation vectors was extended to vectors
generated by t-tuples (h0, h1, . . . , ht−1) over Fv. An extended
permutation vector (EPV)

−−−−−−−−−−−→
(h0, h1, . . . , ht−1) of length vt is

the vector that has the symbol (h0 × β
(i)
0) + (h1 × β

(i)
1) +

(h2 × β
(i)
2) + · · · + (ht−1 × β

(i)
t−1) in position i for 0 ≤ i ≤

vt − 1. For every prime-power order v and for strength t = 3
there exists a CPHF(2; v2−v+3, v3, 3) formed by EPVs that
are length-3 subintervals of a LFSR sequence. This CPHF
generates a CA(2v3−v; 3, v2−v+3, v). The LFSR sequence
is constructed with a primitive polynomial of degree 3 over
Fv and with initial values I = (0, 0, 1).
For v = 3 the LFSR sequence S(f , I) constructed with

f (x) = x3 + 2x + 1 and I = (0, 0, 1) is S = (0, 0, 1, 0,
1, 2, 1, 1, 2, 0, 1, 1, 1, 0, 0, 2, 0, 2, 1, 2, 2, 1, 0, 2, 2, 2, . . .).
By taking the length-3 subintervals from the second element
of S we obtain the CPHF(2; 13, 33, 3) shown at the bottom of
this page.

Here the EPVs
−−−−−−−→
(h0, h1, h2) over F3 are written as h0h1h2.

By removing the columns with exactly one EPV whose
first element is 0 and by replacing the EPVs whose first
nonzero element is not 1 by its isomorphic EPV whose
first nonzero element is 1, the result is the following
CPHF(2; 9, 33, 3):(

010 101 121 112 120 102 111 100 001
001 100 111 102 120 112 121 101 010

)
Replacing each EPV of CPHF(2; 9, 33, 3) by its corre-

sponding column vector of length vt = 33 = 27 results in
a CA(54; 3, 9, 3). In this CA there are v = 3 repeated rows,
which are deleted to obtain the final result CA(51; 3, 9, 3).

III. RECURSIVE METHODS
Recursive methods construct new CAs from smaller ones.
The proof of the theorem CAN(3, 2k, 2) ≤ CAN(3, k, 2) +
CAN(2, k, 2) taken from the doctoral thesis of Roux [42](

010 101 012 121 211 112 120 201 011 111 110 100 002
002 100 110 111 011 201 120 112 211 121 012 101 010

)

VOLUME 7, 2019 42779

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

gives a CA with 2k columns using two CAs with k columns
as ingredients. Some generalizations of the Roux theorem
appear in Chateauneuf and Kreher [33]; and more general-
izations appear in Cohen et al. [43], Colbourn et al. [44], and
Martirosyan and Trung [45]. These constructions are known
as Roux-type Constructions. Other approaches take smaller
CAs as inputs as in [46], [47]; or employ other combinatorial
designs such as ordered designs [43] and difference matri-
ces [48]. Another class of recursive methods construct a base
array whose elements will be replaced by columns of another
array [21].

FIGURE 8. Structure of the product of two covering arrays CA(N1; 2,k, v)
and CA(N2; 2, l, v).

A. PRODUCT OF CAs
Given two covering arrays X = CA(N1; 2, k, v) and
Y = CA(N2; 2, l, v) the product construction reported by
Colbourn et al. [46] generates a covering array Z = CA(N1+

N2; 2, kl, v) as follows: place l copies of X side by side
to form an array with N1 rows and kl columns; next, for
1 ≤ i ≤ l place below the i-th copy of X an array of size
N2 × k formed by replicating k times the i-th column of Y .
As shown in Fig 8 the first N1 rows of Z are l copies of X ,
and below each copy of X is the same column of Y . Any
two distinct columns of Z contain two distinct columns of
X or two distinct columns of Y , and therefore Z is a CA(N1+

N2; 2, kl, v). Fig 9 shows the construction of CA(9; 2, 12, 2)
using as ingredients CA(5; 2, 4, 2) and CA(4; 2, 3, 2).

Colbourn et al. [46] introduced a special type of CA
called partitioned covering array (PCA), which is denoted
as PCA(N ; 2, (k1, k2), v). Fig 10 shows the PCA structure.
Arrays A1 and A2 have size (N − v) × k1 and (N − v) × k2
respectively; X is an array of size v × k2; and P is an array
of size v × k1 where every column is a permutation of the
symbols {0, 1, . . . , v− 1}.

Given that every column of P is a permutation of the sym-
bols {0, 1, . . . , v− 1}, every column of P can be transformed
to the identity permutation, that is, to the column vector
(0, 1, . . . , v − 1). In addition, if all elements of X are zero
then the CA is an SCA(N ; 2, (k1, k2), v).
Theorem 2 (Colbourn et al. [46]): If a PCA(N ; 2, (k1, k2),

v) and an SCA(M ; 2, (l1, l2), v) both exist, then a PCA(N +
M − v; 2, (k1l1, k1l2 + k2l1), v) also exists.
Let A1, A2, D, and X be the partitions of the PCA; and let

B1, B2, D, and O be the partitions of the SCA; the PCA given

FIGURE 9. Example of the product of two CAs.

FIGURE 10. Structure of a partitioned covering array (PCA).

FIGURE 11. Structure of the product of a PCA and an SCA.

by Theorem 2 has the structure shown in Fig 11. Products
Ai ⊗ Bj are computed as explained at the beginning of the
section; D is an array of identity permutations; the array k1 X
is formed by k1 copies of X placed side by side; and O is an
array of all zeros.

A generalization of the product construction using the
profile of a CA (the number of positions in every column that
can be modified without affecting the coverage of the CA)
was developed by Colbourn and Torres-Jimenez [49].

B. POWER (K n)
Hartman [21] describes a recursive construction to square the
number of columns of a CA(N ; t, k, v). The number of rows
of the resulting CA is computed based on the Turan number
T (t, v), which is defined as the number of edges in the Turan
graph with t vertices partitioned into v subsets.
Theorem 3 (Squaring Covering Arrays [21]): If CAN(t ,

k , v)= N and there exist T (t, v)−1mutually orthogonal Latin
squares of side k (or equivalently CAN(2,T (t, v) + 1, k) =
k2) then CAN(t, k2, v) ≤ N (T (t, v)+ 1).

42780 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

FIGURE 12. The construction of Theorem 3.

FIGURE 13. Example of squaring the number of columns.

This construction generates a CA(N (T (t, v) + 1); t, k2, v)
from the following two ingredients:
• A CA(N ; t, k, v).
• An OA(k2; 2,T (t, v)+ 1, k).
The procedure is as follows: let X be a CA(N ; t, k, v) and

let X i be the i-th column of X . Let Y = (yij) be an strength-
two OA with T (t, v) + 1 columns over {0, 1, . . . , k − 1}.
Construct an array of blocks Z = (zij) with T (t, v) + 1 rows
and k2 columns; now replace element zij with column X yij ,
as shown in Fig 12. The construction of CA(8; 2, 9, 2) using
as ingredients CA(4; 2, 3, 2) and OA(9; 2, 2, 3) is illustrated
in Fig 13.
To raise to the n-th power the number of columns k of

CA(N ; t, k, v) it is required a CA(M; s, l, r) with the follow-
ing properties:
• r = k
• M = kn

• s = n
• l = (n− 1)× T (v, t)+ 1
The procedure is similar to squaring. In this case the block

array Z has kn columns and Nl rows. Some other power
constructions using perfect hash families as the object in
which the elements are replaced by columns of another object

have been developed in [37], [50], [51].

C. DUPLICATION (2K)
The method developed by Roux [42] allows the duplication
of the number of columns of two input CAs.
Theorem 4 (Roux [42]): CAN(3, 2k, 2) ≤ CAN(3, k, 2)+

CAN(2, k, 2).
This method constructs a CA(N2 + N3; 3, 2k, 2) using

X = CA(N3; 3, k, 2) and Y = CA(N2; 2, k, 2). The first
step is to concatenate horizontally two copies of X , which
gives an N3 × 2k array. Below the first copy of X is placed
a copy of Y , and below the second copy of X is placed the
bit-complement of Y (0’s are changed to 1’s and 1’s are
changed to 0’s). Fig 14 illustrates this construction, and Fig 15
shows the construction of CA(13; 3, 8, 2) using as ingredients
X = CA(8; 3, 4, 2) and Y = CA(5; 2, 4, 2).

FIGURE 14. Original Roux construction.

The following Theorem 5 is a generalization for v ≥ 2 of
the Roux construction:
Theorem 5 (Chateauneuf and Kreher [33]): CAN(3,

2k, v) ≤ CAN(3, k , v) +(v− 1) CAN(2, k, v).
This construction requires two covering arrays X =

CA(N3; 3, k, v) and Y = CA(N2; 2, k, v) with the same order
v and number of columns k . Let π be a cyclic permutation of
{0, 1, . . . , v− 1}. The construction first places two copies of
X side by side, and then for 1 ≤ i ≤ v − 1 the construction
appends verticallyN2 rows formed by concatenating horizon-
tally Y and Y π

i
, where Y π

i
is the array obtained by applying

the permutation π i to the symbols of Y . Fig 16 shows the
structure of the CA resulting from the construction.

As an example of this construction, Fig 17 and Fig 18
show the construction of Z = CA(45; 3, 8, 3) using the
ingredients X = CA(27; 3, 4, 3) and Y = CA(9; 2, 4, 3).
In this case π = (0, 1, 2), and so π1

= (0, 1, 2) and π2
=

(0, 1, 2)◦(0, 1, 2) = (0, 2, 1). The array Y π
1
is obtained from

Y using π1
= (0, 1, 2), which indicates to change 0’s by 1’s,

1’s by 2’s, and 2’s by 0’s. Similarly, Y π
2
is obtained from Y

replacing 0’s by 2’s, 2’s by 1’s, and 1’s by 0’s.

D. V -PLICATION (vk)
Colbourn et al. [44] proposed a number of recursive Roux-
type constructions for strength three and four.
Theorem 6 (Colbourn et al. [44]): For any prime-power

v ≥ 3, CAN(3, vk , v)≤ CAN(3, k, v)+(v−1)CAN(2, k, v)+
v3 − v2.
This construction requires four ingredients: (1) a covering

array C3 = CA(N3; 3, k, v), (2) a covering array C2 =

CA(N2; 2, k , v), (3) a subarray B of the orthogonal array

VOLUME 7, 2019 42781

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

FIGURE 15. CA(13; 3,8,2) is constructed using the Roux construction
with ingredients CA(8; 3,4,2) and CA(5; 2,4,2).

FIGURE 16. Structure of the construction of Theorem 5.

A = OA(v3; 3, v, v), and (4) an arrayD = DCA(v−1; 2, v, v)
constructed by deleting the first row of the multiplication
table of Fv.
The first step is to obtain the subarray B of A =

OA(v3; 3, v, v), where A is generated using the Bush’s con-
struction. The subarray B is formed by the rows of A labeled
by the polynomials that have degree 2, that is, B is formed by
the last v3 − v2 rows of A. Ingredients C2, C3, B, D are used
to form three arrays G1, G2, G3 that juxtaposed vertically
generate the resulting CA(M; 3, vk, v), as shown in Fig 19.
Fig 20 and Fig 21 show an example of this Roux-type

construction to generate a CA(63; 3, 12, 3). Fig 20 shows the
ingredients needed, and Fig 21 illustrates the construction
of the arrays G1, G2, and G3. The array G1 is formed by
v = 3 copies ofC3 = CA(27; 3, 4, 3) placed side by side (see
Fig 21, row 1). The array G2 is a matrix with rows indexed

FIGURE 17. An example of Theorem 5. Ingredients X = CA(27; 3,4,3) and
Y = CA(9; 2,4,3).

by (r, s) and columns indexed by (f , h) where each cell is the
result of adding to cell (r, f) of C2 = CA(9; 2, 4, 3) the value
of cell (s, h) of D = DCA(2; 2, 3, 3), and taking modulo v
(see Fig 21, row 2). The array G3 is formed by k copies of
each column of the array B (see Fig 21, row 3).
For strength four, one of the constructions is given in

Theorem 7:
Theorem 7 (Colbourn et al. [44]): For any prime-power

v ≥ 4, CAN(4, vk , v)≤ CAN(4, k, v)+(v−1)CAN(3, k, v)+
(v3 − v2)DCAN(2, k, v)+ CODN(2, k , v2) + v4 − v2.

This construction generates a CA(L; 4, vk, v) by follow-
ing a procedure similar to the construction of Theorem 6.
In this case the following elements are required: (1) a
CA(N4; 4, k, v); (2) a CA(N3; 3, k, v); (3) a DCA(S; 2, k, v);
(4) a DCA(v − 1, 2, v, v); (5) a COD(N2; 2, k, v2);
(6) an OA(v2; 2, v, v); (7) an OA(v3; 3, v, v); and (8) an
OA(v4; 4, v, v). These elements are combined to construct
five matrices G1, G2, G3, G4, and G5, which juxtaposed
vertically form a CA(L; 4, vk, v), where L is the addition of
the rows of each matrix Gi.

E. AUGMENTATION
Chateauneuf and Kreher [33] describe a construction
called Construction D which takes two covering arrays

42782 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

FIGURE 18. An example of Theorem 5. Result Z = CA(45; 3,8,3).

A = CA(N ; 3, k, v − 1) and B = CA(M; 2, k − 1, v − 1)
to construct an array C as shown in Fig 22. The array C is
a CA(N + kM + k(v − 1); 3, k, v) over V = V ′ ∪ {0}, and
so CAN(3, k, v) ≤ CAN(3, k, v − 1) + k · CAN(2, k − 1,
v− 1)+ k(v− 1).

In the same work [33] it is described another construction
to multiply the order to two CAs. Let A = CA(N ; t, k, v)
be a CA with entries aij ∈ V = {0, 1, . . . , v − 1}, and

FIGURE 19. The construction of CA(M; 3, vk, v) of Theorem 6.

let B = CA(M; t, k,w) be a CA with entries bij ∈ W =
{0, 1, . . . ,w − 1}. For l = 1, 2, . . . ,M let Cl be the array
of size N × k with entries (aij, blj), where i = 1, 2, . . . ,N
and j = 1, 2, . . . , k . Entries (aij, blj) are transformed to an
integer cij between 0 and vw−1 by ci,j = (aij)(w)+blj. Then
[C1 C2 · · · CM]T is a CA(NM; t, k, vw) over V × W =
{0, 1, . . . , vw− 1}, and thus CAN(t, k, vw) ≤ CAN(t, k, v) ·
CAN(t, k,w).

Another form of augmentation is given by
Colbourn et al. [16]:

CAN(t, k, v)≤
⌊

v
v− 1

⌊
v

v−1
· · ·

⌊
vCAN(t, k, v−1)

v−1

⌋
· · ·

⌋⌋
︸ ︷︷ ︸

k times

Given A = CA(N ; t, k, v− 1) the objective is to construct
B = CA(M; t , k , v). The process consists in adding the
new symbol to each column of A in a greedy manner. Let
σ ′ = v− 1 be the symbol to add to every column of A, and
let C0 = A. Index the columns of A starting from 1. For
j = 1, 2, . . . , k construct Cj from Cj−1 as follows: initially
Cj is equal to Cj−1, then select in column j the symbol σ ∈
{0, 1, . . . , v−2} that appears the least number of times; next,
for every row of Cj−1 that contains symbol σ in column j add
a new row to Cj that is identical to the row of Cj−1 except that
column j contains σ ′ instead of σ .

Finally, Colbourn [52] introduced some strategies to
increase in one unit the order of CAs of strength two. The
idea of one of these strategies is to construct a CA of order v
by juxtaposing v− 1 arrays on two symbols to a CA of order
v− 1.

F. AUGMENTED ANNEALING
Augmented annealing introduced by Cohen et al. [43] com-
bines combinatorial constructions with simulated annealing.
The problem is divided into smaller subproblems or ingredi-
ents using a combinatorial construction; next, the ingredients

VOLUME 7, 2019 42783

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

FIGURE 20. Ingredients to construct CA(63; 3,12,3) using Theorem 6.
(a) C3 = CA(27; 3,4,3). (b) C2 = CA(9; 2,4,3). (c) A = OA(27; 3,3,3), and
the shaded area corresponds to the submatrix B. (d) D is the
multiplication table of F3, and the shaded area corresponds to
D = DCA(2; 2,3,3).

are generated either by a combinatorial construction or by
simulated annealing.

One of the constructions introduced for CAs of strength
three is based on ordered designs (OD). An ordered design
OD(t, k, v) is an array of size

(v
t

)
t!×k over a set of v symbols

such that every subarray of t columns covers each t-tuple of
distinct symbols. For q prime-power an OD(3, q + 1, q + 1)
exists [13]. From this OD a CAwith strength t = 3, k = q+1
columns, and order v = q+1 can be constructed by appending
to the OD

(q+1
2

)
copies of a CA(N ; 3, q+ 1, 2).

For example, consider q = 3, so k = q + 1 = 4 and
v = q+ 1 = 4. Fig 23(a) shows an OD(3, 4, 4); this OD has(v
t

)
t! = 4·6 = 24 rows, and it covers all triples (x, y, z), where

x 6= y 6= z 6= x and x, y, z ∈ {0, 1, 2, 3}, in every subset
of 3 columns. The CA of order 2 needed to complete the
triples missing in the OD is shown in Fig 23(b). The number
of copies required of this CA is

(4
2

)
= 6, and these copies

should be relabeled using the symbols sets {0, 1}, {0, 2},
{0, 3}, {1, 2}, {1, 3}, and {2, 3} respectively. The final result
is a CA(24+ 6(8); 3, 4, 4).

IV. EXACT METHODS
Exact methods construct CAs by exhaustive search. There-
fore, they can only be used to construct small CAs. In this
category we found Branch & Bound strategies, such as the
work proposed by Bracho-Rios et al. [53]; and SAT encod-
ings, like the ones developed by Banbara et al. [54].

Because more than one method exploit the symmetries in
CAs it is convenient to introduce here the three symmetries
of CAs. Given a covering array A = CA(N ; t, k, v) we can
permute the rows and the columns of A, and the resulting
array is a CA isomorphic to A, that is, the new array has the
same coverage properties thatA. In addition, in any column of
the matrix A the v symbols can be permuted, and the resulting
array is also isomorphic to A. Therefore, the CA A can have
up to N !k!(v!)k isomorphic CAs. Symbol permutations are
also called column relabelings or relabelings. Exact methods
try to break some of these three symmetries to accelerate the
search.

A. THE AUTOMATIC GENERATOR EXACT
Yan and Zhang [55] introduced an exhaustive search tech-
nique to construct CAs. The algorithm assigns values to each
cell of an N × k matrix until all covering conditions are
satisfied. After assigning a value, a constraint propagation
function is executed to determine if this assignment implies a
value for another cell or a contradiction. The search is acceler-
ated by symmetry breaking techniques and by two heuristics
called respectively LNHand SCEH. The heuristic LNHuses a
variable mdn to store the largest value present in the assigned
cells; when a new cell will be assigned the candidate values
are {0, 1, . . . ,mdn+ 1}, that is, values greater than mdn+ 1
are not considered. The heuristic SCEH assumes that it is
always possible to find a CA where each sub-combination
(or sub-tuple) of size s occurs almost the same number of
times in a subset of s columns. The authors integrated all these
techniques in a program called EXACT (EXhaustive seArch
of Combinatorial Test suites). The EXACT tool was further
improved in [56].

B. NEW BACKTRACKING ALGORITHM
Bracho-Rios et al. [53] introduced a searching algorithm to
construct binary CAs (v = 2) of strength t and dimensions
N × k . The algorithm constructs the CAs column by column
imposing a lexicographic ordering of the columns to break
the column and row symmetries. The columns to construct
the CAs are balanced in symbols, so the candidate columns
have bN2 c zeros andN−b

N
2 c ones. Before starting the search,

a block of t columns is fixed, the first N − 2t rows of the

42784 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

FIGURE 21. Example of the construction of CA(63; 3,12,3) of Theorem 6. Rows 1, 2, 3 illustrate respectively the construction of the matrices G1, G2,
and G3. Column 2 corresponds to the resulting covering array G = CA(63; 3,12,3).

block are filled with zeros and the last 2t rows are filled with
the 2t tuples of size t over the symbol set {0, 1}. Suppose we
have a partial solution with r columns (t ≤ r < k), and let

l be the last column of the partial solution. To construct a
CA of strength t and r + 1 columns, the algorithm checks all
columns l ′ greater than l in lexicographic order until finding

VOLUME 7, 2019 42785

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

FIGURE 22. Construction D.

FIGURE 23. Ingredients to construct a CA(24 + 6(8); 3,4,4).

one which makes a CA of strength t with the r columns of the
partial solution, and such that the rows and columns of the
new partial solution are sorted lexicographically. If no such
column is found the algorithm backtracks to column r − 1.

C. GENERATION OF NON-ISOMORPHIC CAs
Torres-Jimenez and Izquierdo-Marquez [57] proposed an
algorithm to generate non-isomorphic CAs. For given values
N , t , k , v the set of all covering arrays CA(N ; t, k, v) is par-
titioned into classes of isomorphic CAs. The algorithm con-
structs one CA from each isomorphism class, and so its output
is a set of non-isomorphic CAs. The CAs are constructed
column by column verifying that the current partial CA is the
minimum of its class. The minimum of an isomorphism class
is defined as the CA with the minimum lexicographic order
when its elements are arranged in column-major order. If for
some parameters N , t , k , v none CA with k columns was con-
structed, then CA(N ; t, k, v) does not exists. The optimality
of a CA(N ; t, k, v) is proven by showing that the set of non-
isomorphic CA(N − 1; t, k, v) is empty. This algorithm takes
into account the three symmetries of CAs to accelerate the
search.

D. CONSTRAINT PROGRAMMING
Hnich et al. [58] developed constraint programming models
for the construction of CAs. The first model, called naive
matrix model, uses variables xri such that xri = m if the
entry (r, i) of the matrix is equal to m. Consider t = 3; to
express that the tuple at row r in columns (i, j, l) is (m, n, p)
the constraint is xrijlmnp = (xri = m & xrj = n & xrl = p).
The constraint that each t-tuple must occur at least once in
every subset of t columns is expressed by

∑
r xrijlmnp ≥ 1.

In the alternative matrix model a tuple of t variables of
the first model is represented by a compound variable. With
t = 3, for example, the compound variable yr(i,j,l) represents
the tuple of variables (xri, xrj, xrl). The domain of a compound
variable is {0, 1, . . . , vt − 1}; and the coverage constraints
require that in every subset of t columns there must be at least
one compound variable for each number from 0 to vt − 1.

The integrated model combines the variables of the two
previous models. Assigning a value to a compound variable
assigns a value to each variable of the naive model, and in the
same way assigning a value to a variable of the naive model
reduces the domain of the compound variable.

E. SAT ENCODINGS
Lopez-Escogido et al. [59] introduced a SAT encoding for
strength-two CAs. The model uses v variables for each entry
of the matrix M = (mij) that will contain the CA; if M has
size N × k the total number of variables is Nkv. Element mij
gets the value 0 ≤ x < v if and only if the variable mi,j,x is
true. The clauses of the model guarantee that (1) each element
of M takes at least one value from the set {0, 1, . . . , v − 1},
(2) each element ofM takes only one value, and (3) thematrix
M satisfy the coverage properties to be a CA.

The work of Ansótegui et al. [60] proposes a SAT
encoding for the construction of optimal CAs, but in this
work the encoding is solved as a MAXSAT instance. Ban-
bara et al. [54] also developed two SAT encodings to con-
struct CA; these encodings are called order encoding and
mixed encoding respectively.

42786 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

V. GREEDY METHODS
Greedy methods have the characteristic of generating
good solutions in short time. Commonly, greedy algo-
rithms are use to generate both CAs and MCAs. Most
of the public available tools to generate test suites use
greedy algorithms (AETG [61], TCG [62], ACTS [63], and
IPOG-F [64]). Other important greedy algorithms are the
Building-Block Algorithm (BBA) of Ronneseth and Col-
bourn [65], the Intersection Residual Pair Set Strategy (IRPS)
of Younis et al. [66], the Deterministic Density Algo-
rithm (DDA) of Bryce and Colbourn [67], and the method of
Calvagna and Gargantini [68] based on coverage inheritance.
An interesting experimentation to identify empirically the
best greedy algorithm for strength-two CAs was done by
Nie et al. [69].

A. TEST CASE GENERATOR (TCG)
Tung and Aldiwan [62] proposed a tool called Test Case Gen-
erator (TCG). This tool constructs strength-two MCAs one
row at a time. The k parameters of the MCA are permuted
in such a way they are arranged in non-increasing order of
the cardinality of their alphabets. LetM be the cardinality of
the larger alphabet. TCG generates up to M candidate rows,
where each candidate row is constructed element by element
following a special procedure based on counting the new pairs
that are covered when an element is added to the current
partial row. From the M candidate rows, the one that covers
the greatest number of new pairs is taken as the winner row.
Rows are added in this way until the MCA is complete.

B. DETERMINISTIC DENSITY ALGORITHM (DDA)
Bryce and Colbourn [67] developed an algorithm to con-
struct strength-twoMCAs calledDeterministic DensityAlgo-
rithm (DDA). Let vi denote the number of levels (symbols)
that the i-th factor (parameter) can take. The local density
for factors i and j is δi,j = ri,j/vivj, with ri,j being the
number of missing pairs between factors i and j. The global
density is the sum of the local densities of each pair of factors:
δ =

∑
1≤i<j≤k δi,j. The objective of DDA is to generate rows

covering at least δ uncovered pairs. To construct a new row,
a factor is fixed and the densities are updated; the process
is repeated until all factors are fixed. Suppose that fs is a
free factor; the level for fs is selected as follows: let ρi,s,σ
be 1/vi times the number of missing pairs involving a level
of fi and level σ of fs; then, select the value σ that maximizes∑

1≤i≤k
i6=s

ρi,s,σ .

The method also requires a way to assign a density to
each factor and to each level. Different rules for computing
the factor density are applied depending on the number of
remaining levels for the factor; the same is true for level
density. Algorithm 1 shows the DDA pseudocode taken from
Bryce and Colbourn [67]. Factor or level tie-breaking rules
are applied to select respectively a factor or level among the
ones with equal maximum densities. The work of Bryce and
Colbourn [70] extends the density method to higher strengths.

Algorithm 1 DDA, Deterministic Density
Algorithm (Bryce and Colbourn [67]).

1 begin
2 start with an empty CA
3 while there are uncovered pairs do
4 compute factor density for each factor
5 initialize a new row with all factors not fixed
6 while there is a factor whose level is not fixed in

the new row do
7 select such a factor f with largest density,

using a factor tie-breaking rule
8 compute level density for each level of factor

f
9 select a level ` for f with maximum density

using a level tie-breaking rule
10 fix f to level `
11 recompute densities for each factor
12 end while
13 add the constructed row to the CA
14 end while
15 end

C. IN-PARAMETER-ORDER (IPO)
Lei and Tai [71] introduced a newmethod for pairwise testing
called In-Parameter-Order (IPO). This method begins with
the generation of a test set with two parameters, and itera-
tively adds new parameters. The extension process has two
stages: horizontal growth and vertical growth. Suppose the
new parameter has q symbols. For 1 ≤ j ≤ q the row
j of the new parameter gets the value j; and the remaining
elements of the new parameter get the value that covers the
greatest number of uncovered pairs. The pairs not covered in
the horizontal growth are stored in a list π , and they will be
covered later in the vertical growth stage.

Rows added by the vertical growth stage may contain unas-
signed positions denoted by ‘‘−’’. Suppose that the current
number of parameters is k . To cover a missing pair (w, u)
between a parameter r (r < k) and parameter k , the algorithm
checks if there is a row that has ‘‘−’’ in column r and u in col-
umn k; in this case ‘‘−’’ is replaced byw. If no such row exists
the algorithm adds a new row where all positions are ‘‘−’’
except for the corresponding to columns r and k that contain
the pair (w, u). Algorithm 2 shows the pseudocode of the
IPO strategy as described in Lei and Tai [71]. Lei et al. [72]
generalized the IPO strategy to multi-way testing. The new
algorithm was called In-Parameter-Order-General (IPOG).

D. INTERSECTION RESIDUAL PAIR SET STRATEGY (IRPS)
Younis et al. [66] introduced a novel strategy for generating
strength-two CAs called Intersection Residual Pair Set Strat-
egy (IRPS). The IRPS strategy performs the following steps:

1) Generate all pairs to be covered by any two factors and
store the pairs into a compact linked list called Pi. For
a test set with k parameters, the Pi list contains (k − 1)

VOLUME 7, 2019 42787

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

Algorithm 2 IPO, In-Parameter-Order (Lei and Tai [71]).

1 begin
2 T ← initial test set for the parameters f1 and f2
3 for i = 3, . . . , n do

/* horizontal growth */
4 assume that the values for factor fi are v1, . . . , vq
5 π ← { pairs between values of fi and values of

f1, . . . , fi−1 }
6 if |T | ≤ q then
7 for 1 ≤ j ≤ |T | assign vj to row j and remove

from π the covered pairs
8 end if
9 else
10 for 1 ≤ j ≤ q assign vj to row j and remove

from π the covered pairs
11 for q ≤ j ≤ |T | assign to row j a value of fi

such that the resulting test covers the
greatest number of uncovered pairs, and
remove from π the covered pairs

12 end if
/* vertical growth */

13 T ′← ∅
14 foreach pair in π do
15 assume that the pair contains value w of fr ,

1 ≤ r < i, and value u of fi
16 if T ′ contains a row with ‘‘−’’ as the value

of fr and u as the value of fi then
17 modify this row by replacing ‘‘−’’ by w
18 end if
19 else
20 add a new test to T ′ that has w as the

value of fr , u as the value of fi, and ‘‘−’’
as the value of every other parameter

21 end if
22 end foreach
23 T ← T ∪ T ′

24 end for
25 end

linked lists, so Pi is a linked list of linked lists. Every
pair of values to be covered by any two factors appears
exactly once in Pi.

2) Search the Pi list to construct the row or test case that
covers the larger number of uncovered pairs.

3) Repeat step 2 until Pi is empty.

Consider a system with k = 4 factors X , Y , Z , and W ,
each one with three possible values {x0, x1, x2}, {y0, y1, y2},
{z0, z1, z2}, and {w0,w1,w2} respectively. The number of dis-
tinct pairs of values is

(4
2

)
32 = 54. The weight of a candidate

row is defined as the number of pairs that are uncovered in
the current test suite but covered in the candidate row. For
example, the row x0y0z0w0 covers the pairs {x0, y0}, {x0, z0},
{x0,w0}, {y0, z0}, {y0,w0}, and {z0,w0}; so its weight is 6 if
none of these pairs has been covered by another row. The first

added row has maximum weight because at the beginning all
pairs are uncovered. From the second row onward, the algo-
rithm tries to construct a test case with maximum weight, but
if no such test case is found then the algorithm searches for
a test case with weight equal to wmax − 1. Thus, the desired
weight is reduced in one unit when no row for the cur-
rent desired weight is found. For every new generated row,
the variables involved in it are deleted from the Pi list. The
algorithm iterates in this manner until the Pi list is empty.

E. BUILDING-BLOCK ALGORITHM (BBA)
Ronneseth and Colbourn [65] introduced a new algorithm to
construct CAs, the Building-Block Algorithm (BBA). The
fundamental idea of this algorithm is to combine smaller CAs
to form a partial CA with a number of columns equal to
the sum of the number of columns of the smaller CAs; the
partial CA has a number of uncovered pairs which are covered
by adding rows to the partial CA. The rows of the smaller
CAs are reordered to reduce the number of rows needed to
complete the partial CA. Pairs involving two factors in the
same smaller CA are covered in the partial CA, but pairs
involving factors of distinct smaller CAsmay be uncovered in
the partial CA; additional rows are added to the partial CA to
cover these cross pairs. Themost important decision is how to
reorder and combine the rows of the building blocks in order
to minimize the number of uncovered pairs. After combining
rows, some new rows are added to cover the uncovered cross
pairs; this can be done using greedy algorithms like AETG,
DDA, and TCG, or using heuristic algorithms such as simu-
lated annealing, tabu search, and hill climbing.

F. TWO STAGE ALGORITHMS
The method of Torres-Jimenez et al. [73] integrates a greedy
technique and a simulated annealing algorithm to increase the
number of columns of an initial CA. The first stage consists
in adding a new column to the input CA, trying to cover the
greatest number of tuples between the new column and (t−1)
of the previous columns. At the beginning the new column has
all its cells unassigned; at each iteration one of the free cells is
filled with the value that gives the least number of uncovered
tuples. The second stage is a simulated annealing algorithm
whose objective is to cover the tuples not covered in the first
stage. If the new column was added successfully, then the
two stages are repeated to add another column. Occasionally,
a row is added to help the simulated annealing algorithm to
cover the missing tuples.

Sarkar and Colbourn [74] developed a two-stage frame-
work for the construction of CAs. In the first stage a ran-
domized algorithm creates the initial array; this initial array
should cover all but at most ρ tuples. The uncovered tuples
are saved in a list L, and in the second stage they are covered
using a deterministic strategy. For the first state there are two
options: a basic randomized algorithm, and a Moser-Tardos
type algorithm. For the second stage there are four options:
adding one row per uncovered tuple, a greedy coloring strat-
egy, the density algorithm, and a graph coloring algorithm.

42788 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

G. RANDOM EXTENSION OF CPHFs
The method of Colbourn et al. [75] improved a great num-
ber of upper bounds of CAN by constructing CPHFs using
column resampling and random extension algorithms. The
column resampling method is a Moser-Tardos type algorithm
in which the initial CPHF is created by selecting all its
elements uniformly at random from the set of possible values
(the set of all permutation vectors); then, the columns that
are part of uncovered t-subsets of columns are resampled
independently and uniformly at random until all t-subsets
of columns are covered. In the random extension algorithm
the input is a CPHF with k0 columns and the objective is to
construct a CPHF with k ≥ k0 columns. The new columns
are added by performing several iterations of a loop that
generates a random column and verifies if that column makes
a CPHF with the previous columns. When a candidate col-
umn does not form a CPHF with the current columns, that
candidate column can replace one of the current columns
of the CPHF if one column of the CPHF is involved in all
uncovered combinations generated by adding the candidate
column to the current CPHF. The random extension algorithm
is a greedy algorithm, and it performs better than the column
resampling algorithm. Using these algorithms Colbourn and
Lanus [76] constructed CPHFs with restricted entries; these
CPHFs generate smaller CAs than the ones given by CPHFs
without restricted entries.

VI. METAHEURISTIC METHODS
Some metaheuristics that have been used to construct
CAs are simulated annealing [77]–[80], tabu search [44],
[81]–[83], memetic algorithms [84], genetic algorithms [81],
[85], [86], ant colony [87], particle swarm optimization
[88]–[90], harmony search [91], and cuckoo search [92].
Some of these approaches have been implemented following
a parallel programming paradigm, like the parallel simulated
annealing approach to construct CAs implemented in [93].
Also, hyperheuristic search has been applied to construct
CAs [94], [95]. Metaheuristic methods are currently the best
methods to construct MCAs and other variations of CAs such
as variable strength CAs and constrained CAs, but for uni-
form CAs only tabu search and simulated annealing have suc-
ceeded in constructing some of the best-known uniform CAs.

A. SIMULATED ANNEALING
Torres-Jimenez and Rodriguez-Tello [79] developed a sim-
ulated annealing (SA) algorithm to construct binary CAs.
The main characteristics of this algorithm are the creation
of the initial solution, and the neighborhood function. The
initial solution is generated randomly, but every column
has bN/2c zeros and N − bN/2c ones. The neighborhood
function is formed by two functions N1 and N2, which are
based on two procedures called respectively switch(A, i, j)
and swap(A, i, j, l). An application of switch changes the (i, j)
entry of the current solution A from 0 to 1, or from 1 to 0; and
swap exchanges the contents of rows i and l in column j of the

current solution. The function N1 makes ω successive calls to
switch with distinct values i and j, and the final result of the
function is the switch that minimizes the number of missing
tuples. Function N2 behaves similarly to N1 but uses the
swap procedure. The algorithm finalizes when a CA without
missing tuples is constructed, when the final temperature is
reached, or when the best global solution is not improved in
φ consecutive temperature decrements.

Avila-George et al. [93] presented three parallel SA algo-
rithms. The first one is denominated independent search; here
every process works independently, and the final solution
is selected from the best solutions found by each process.
In the semi-independent search theMarkov chains are divided
among the available processes. After generating their corre-
sponding subchains, the processes share their intermediate
solutions to obtain the current best global solution; from
this global solution the processes restart the search. The
cooperative search is similar to the semi-independent search,
the difference is that a process can update the global best
solution without waiting for the other processes to finish
their subchains. Thus, the global best solution is updated
asynchronously, and also the processes start their subchains
asynchronously taking as initial solution the current best
global solution.

SA has also been used to construct CPHFs. In [96] it was
developed a SA algorithm to construct CPHFs of order v = 3,
and in [97] SA was used to construct CPHFs of order v = 4.

B. TABU SEARCH
Tabu search (TS) was used by Nurmela [82] to construct CAs.
In this method the initial solution is generated randomly. The
cost of a solution is defined as the number of uncovered
t-tuples in the solution. Uncovered tuples are covered by
selecting one of them randomly and searching if there are
some rows that can cover the tuple by updating only one
element of the row; these kind of changes are called moves.
If several moves can cover the tuple, then the move that pro-
duces the smaller cost is selected; in case of a tie, the winner
move is selected randomly among the best moves. A move is
tabu if it changes an element updated in the last T moves. If a
missing tuple can not be covered by a move, then the tuple is
covered in any of the rows. The algorithm performs a move
after another until the current solution becomes a CA. When
a CA is constructed a row is deleted and the tabu search is
restarted to try to construct another CA with one less row.

Zekaoui [83] developed two TS algorithms called respec-
tively Point Tabu Search (POT) and Pair Tabu Search (PAT)
to construct CAs and MCAs of strength two. In POT the
neighborhood of the current solution consists in all arrays
having one entry distinct of the current solution. From this
neighborhood a random sample is taken and the array with
the lowest cost (the smallest number of uncovered tuples) is
selected; in case of a tie, one of the best arrays is chosen ran-
domly. PAT is very similar to the algorithm of Nurmela [82];
here an uncovered pair is selected randomly and the neigh-
borhood is formed by all arrays that cover the selected pair

VOLUME 7, 2019 42789

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

by changing one or two values, although priority is given to
arrays that only require one change. The cost of each array in
the neighborhood is computed and the array with the lowest
cost is selected as the new current solution.

Walker II and Colbourn [98] used TS to construct CAs
indirectly through the construction of CPHFs.

C. GENETIC ALGORITHMS
Stardom [81] developed a genetic algorithm (GA) to con-
struct CAs. The population is a set of matrices with uncovered
tuples. There are two ways to mate the genes (the elements
of the population) tournament selection and quick conver-
gence. In tournament selection the population is partitioned
into groups of four elements; in each group the two fittest
genes are selected as parents and recombined to produce two
offspring, which replace the other two genes not selected
as parents. In quick convergence the population of size S
is partitioned into two groups of size S/2. The i-th mem-
bers of each group are mated, and then the S offspring are
mutated by changing one of its entries by a random value.
After that, the median fitness value of the population is
computed and the T arrays with a fitness smaller than the
median value pass to the next generation, together with other
S − T arrays selected randomly from those arrays with a
fitness greater than or equal to the median value. Parents can
be mated in three ways called respectively row crossover,
column crossover, and point crossover. Suppose the size of
the arrays is N × k , and define two values 1 < i < N
and 1 < j < k . In row crossover the parents are divided
into two groups of rows determined by i; similarly, in column
crossover the parents are divided into two groups of columns
according to the value of j; and finally, in point crossover the
parents are divided into two blocks of cells, one formed by
the first i rows and the first j columns, and other formed by
the remaining cells.

Shiba et al. [85] proposed a genetic algorithm to construct
test suites. The approach of this algorithm is to generate one
test case at a time. To generate a test case the algorithm creates
P random candidate solutions. These candidate solutions are
evolved until the best solution is not improved in T consec-
utive generations. The fitness of a candidate solution S is
defined as the number of tuples not covered in the initial test
but covered in S. The crossover operator consists in exchang-
ing with a probability of 0.5 the values of every position of
two candidate solutions. The mutation operator replaces the
value of one position of the candidate solution with the value
of another position of the same candidate solution.

D. ANT COLONY SYSTEM
Chen et al. [87] constructed test suites by using an ant colony
strategy. Test suites are constructed following a one-test-at-
a-time strategy. The first step of the method is to construct
a directed graph G = (F,E) that represents the solution
space. The set of nodes F is formed by nodes f1, . . . , fk ,
where each fi denotes a factor, and by a special node End that
only has incoming edges. The set of all edges leaving node fi

represents the symbol set of fi. A path from the first node f1
to the final node End is a valid test. To construct a test case,
a set of ants is placed in node f1, and from this node every ant
generates a test case by applying an edge selection rule that is
directed by the pheromone information. The winner test case
is the one that covers the greatest number of uncovered tuples.

E. MEMETIC ALGORITHM
Rodriguez-Tello and Torres-Jimenez [84] presented a
memetic algorithm to construct binary CAs of strength three.
In this algorithm the population is initialized randomly, but
the symbols are balanced in every column of an individ-
ual. At every generation the population is partitioned into
groups of four individuals. Within every group, the two fittest
individuals are recombined to generate two offspring; these
offspring are improved by means of a local search operator,
and finally the two individuals with lower fitness are replaced
by the improved offspring. The recombination operator ran-
domly selects a row index i, then the rows of the two parents
are divided into two sets of rows: the rows with indices less
than or equal to i, and the rows with indices greater than i.
The two offspring are formed by taking a set of rows from
one parent and a set of rows from the other parent. The local
search operator is formed by two neighborhood functions
that make small changes in the offspring; these changes
are: switching an element, and exchanging two elements in
a column. Simulated annealing is used as the local search
technique.

F. PARTICLE SWARM OPTIMIZATION
The work of Ahmed et al. [89] constructs uniform and vari-
able strength CAs by means of a particle swarm optimization
algorithm called PSTG (Particle Swarm-based t-way Test
Generator). Here we describe the algorithm in the context
of uniform CAs. The first step in PSTG is to generate the
interaction elements (IEs), which are the t-tuples that must
be covered in a combination of t parameters (or columns).
For example, suppose the CA to be constructed has strength
t = 2, order v = 3, and k = 5 parameters; then, for each
of the

(5
2

)
= 10 combinations of t = 2 parameters there

are 32 = 9 IEs. Take for example the parameters 2 and 5;
one of the nine IEs for this combination of parameters is
(∗ 2 ∗ ∗ 0), which covers the tuple (2, 0) in parameters
2 and 5; the positions corresponding to parameters 1, 3, and
4 contain ∗ in the IEs. The set of all IEs is stored in a list
called Ps.

The particles are k-dimensional vectors Xj = (Xj,1,
Xj,2, . . . ,Xj,k), where each dimension represents a parameter
and contains an integer of the set {0, 1, . . . , v − 1}; that
is, a particle is a candidate test case, or a row of the CA.
As the algorithm iterates, the velocity and position of the
particles are updated using standard equations of PSO. For
each particle PSTG computes its weight, that is defined as
the number of IEs covered by the particle. If a particle has
maximum weight then that particle is added to the final CA,

42790 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

and the IEs covered by the particle are removed from the Ps
list. In the above example the maximum weight is

(5
2

)
= 10,

which is the maximum number of t-tuples that a single test
case can cover. If no particle has the maximum possible
weight then PSTG chooses the particle covering most IEs as
the local best solution lBest. In the following iterations the
positions of the particles are updated taking into account the
current value of lBest and if a better lBest is found then lBest
is updated. When lBest is not further improved, PSTG sets
lBest as the global best gBest and adds it to the final CA. The
algorithm iterates until Ps is empty.

G. CUCKOO SEARCH
Ahmed et al. [92] introduced a cuckoo search method to
construct CAs. The method starts by generating a list of the
t-tuples to be covered. If there are k parameters then the
elements of this list are length-k vectors with elements from
{0, 1, . . . , v − 1} for the parameters in the combination and
with ∗ for parameters not in the combination. For example if
t = 3, v = 2, and k = 7, the vector (1 0 ∗ ∗ 0 ∗ ∗) represents
the tuple (1, 0, 0) for the combination of parameters {1, 2, 5}.
After generating the t-tuples list, a random population of
nests is created; each nest represents a candidate test case,
and the weight of a nest is the number of t-tuples covered
by the nest that are not covered in the current partial CA.
The current partial CA is constructed by adding one test case
at a time. In every iteration of the algorithm the nests are
sorted according to their weights; the nests with the lowest
weights are abandoned, so a Lévy flight is performed to
replace the current test case by another one. For the nests with
the better weighs also a Lévy flight is performed, but they are
updated only if a better test case is obtained. Nests reaching
the maximum possible weight are added to the final CA; if no
nest reaches the maximum weight after a predefined number
of iterations then the nest with the best weight is added to the
final CA.

VII. TRANSFORMATIONS
A given CA can be subject to a set of changes to modify
its internal structure without affecting the property of being
a CA, or to obtain another CA with distinct parameters.
We classified as transformations the methods that follow one
of these two approaches. Postoptimization algorithms such as
the randomized method of Nayeri et al. [99], the metaheuris-
tic method of Torres-Jimenez and Rodriguez-Cristerna [100],
and the graph-based method of Perez-Torres and Torres-
Jimenez [101], belong to the first class of transformation
methods.

A. DETECTION OF WILDCARDS
Sometimes a CA contains elements that can be freely mod-
ified without affecting the coverage properties of the CA.
These elements are called redundant elements or wildcards.
Fig 24(a) shows a CA(16; 3, 13, 2), and Fig 24(b) shows the
same CA with redundant elements replaced by asterisks; it
can be checked that the matrix of Fig 24(b) is still a CA of

FIGURE 24. Detection of redundant elements in a CA(16; 13,3,2).

strength three. From [57] we know that the CA(16; 3, 13, 2)
is optimal; therefore, even optimal CAs can have redundant
elements. In non-optimal CAs it can happen that all elements
of a row are redundant, and that row can be deleted to reduce
the size of the CA.

The postoptimization method of Nayeri et al. [99] is based
on detecting wildcards to select the rows to be eliminated.
The method of Kim et al. [102] replaces wildcards in a CA
of strength two by other valid symbols; this is done with
the objective of finding CAs of strength two that have high
desirable properties, such as a good coverage of 3-tuples.

B. PROJECTION
Colbourn [103] introduced two projection techniques for
strength t = 2. The first one takes an MCA(N ; 2, k ,
(v0, . . . , vk−1)) to produce an MCA(N − 1; 2, k + 1, (v0 −
1, . . . , vk−1−1, s)) for some s ≤ k . This construction reduces
in one unit the order of every column j ∈ {0, . . . , k − 1}, but
adds a new column of order s. The second construction takes

VOLUME 7, 2019 42791

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

an OA(v2; 2, v+ 1, v) to produce an MCA(v2− r; 2, v+ 1+
r, (v− r)v+1sr) for some 1 ≤ r ≤ v and 1 ≤ s ≤ v− r . When
s = v − r the result is a CA(v2 − r; 2, v + 1 + r, v − r).
This construction is based on repeating r times the first
construction, deleting one symbol at each stage.

We will illustrate the second projection technique with
inputs A = OA(25; 2, 6, 5), r = 2, and s = 5 − 2 = 3.
As shown in Fig 25(a) the first v = 5 rows of A have five
constant entries and the last entry is equal to 0. Denote by x
the first row ofA. Partition the rows ofA other than x in s+1 =
4 classes C0, C1, C2, andD, where class C0 contains the rows
of A that have symbol x0 = 0 in column 0, class C1 contains
the rows of A that have symbol x1 = 0 in column 1, class C2
contains the rows of A that have symbol x2 = 0 in column 2,
and classD contains the rows not inC0,C1, orC2. ThenC0 =

{5, 10, 15, 20}, C1 = {9, 13, 17, 21}, C2 = {8, 11, 19, 22},
and D = {1, 2, 3, 4, 6, 7, 12, 14, 16, 18, 23, 24}. Delete row
x from A. For i = 0, 1, 2 replace the column i of the four
rows of Ci by a permutation of the symbols {2, 3, 4} plus
one wildcard (∗). In this way, all occurrences of symbol 0 are
deleted in columns 0, 1, and 2 of A. In the columns 3, 4, and
5 of A replace every occurrence of symbol 0 by ∗. Add a new
column to A such that for l = 1, . . . ,N − 1 the symbol of the
new column is equal to i if l ∈ Ci, or the symbol is equal to ∗
if l ∈ D. The result is the array A′ shown in Fig 25(b).

Now, take A′ as the base array. Denote by x the first row
of A′. Partition the rows of A′ other than x in s+1 = 4 classes
C0, C1, C2, and D, where for i = 0, 1, 2 class Ci contains
the rows of A′ that have symbol xi = 1 in column i, and
class D contains the rows not in C0, C1, or C2. Then C0 =

{5, 10, 15, 20}, C1 = {4, 13, 17, 21}, C2 = {8, 11, 14, 22},
and D = {1, 2, 3, 6, 7, 9, 12, 16, 18, 19, 23}. Delete row x
from A′. For i = 0, 1, 2 replace the column i of the four
rows of Ci by a permutation of the symbols {2, 3, 4} plus
one wildcard. In the columns 3, 4, and 5 of A′ replace every
occurrence of symbol 1 by ∗. Add a new column to A′ such
that for l = 1, . . . ,N − 1 the symbol of the new column is
equal to i if l ∈ Ci, or the symbol is equal to ∗ if l ∈ D.
The result is the array A′′ shown in Fig 25(b). Finally, for
i = 0, 1, 2 replace the last r = 2wildcards of row i by symbol
i to get a CA(23; 2, 8, 3).

C. FUSION
Colbourn et al. [16] introduced the fusion technique. For
general CAs the fusion operation reduces in one unit the
order of the CA, but deletes two rows. For OAs with t = 2
and k ≤ v + 1 three rows are deleted. We will describe
the first case. Given a CA(N ; t, k, v) permute symbols in the
k columns to obtain a constant row with symbols equal to
v−1. Delete this row and choose a second row Rwith entries
(r0, . . . , rk−1). In all rows other than R whenever a symbol
v − 1 occurs in column j replace the symbol v − 1 by rj if
rj ≤ v − 2, and replace the symbol v − 1 by any symbol in
{0, . . . , v−2} if rj = v−1. The result is CA(N−2; t, k, v−1).
Rodriguez-Cristerna [104] generalized the fusion operator

to MCAs. The generalized fusion operator (GFO) uses a well

FIGURE 25. Example of projection. (a) The initial OA(25; 2,6,5). (b) The
array after the first projection. (c) The array after the second projection.

designed combination of procedures that involve a main cycle
that detects redundant symbols and reduces the number of
rows by exploiting redundant symbols. When the main cycle

42792 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

can not be applied (that is, the resulting MCA has missing
tuples) a simulated annealing algorithm is used. If the SA
reduces the number of missing tuples to zero the main cycle
runs one more time, otherwise GFO stops.

D. DERIVATION
In Colbourn et al. [16] it is described a technique called
derivation. This technique allows the reduction of the
strength in one unit while the number of columns is also
reduced in one unit. The following inequality taken from [16]
defines the technique:

CAN(t, k, v) ≤
⌊
CAN(t + 1, k + 1, v)

v

⌋
In a given CA(N ; t + 1, k + 1, v) select any column j and

permute the rows of the CA in such a way the elements of
column j are sorted in lexicographic order. In this manner,
the N rows are partitioned into v + 1 subsets, where for
0 ≤ i ≤ v the i-th subset contains the rows that have symbol
i in column j. Take the subset that has the less number of
rows and delete column j in this subset of rows; the result
is CA with k columns, strength t , and number of rows at
most bN/vc.
One example of the use of the derive method is the

CA(12; 3, 11, 2), which was derived from CA(24; 4, 12, 2).
Fig 26 shows a covering array A = CA(24; 4, 12, 2) where
the elements of the first column are sorted in lexicographic
order. The covering array B = CA(12; 3, 11, 2) is obtained
by taking the first 12 rows and the last 11 columns of A.

VIII. GENERAL CHARACTERISTICS OF THE
CLASSES OF METHODS
In this section we analyze some general features of the classes
in which the methods studied were grouped. We also give
some guidelines about what kind of methods are more conve-
nient to employ according to the values of t , k , and v, and
based on the time and computational resources willing to
invest in the construction of the CA.

Algebraic methods construct the CAs very fast, given that
no search or little search is done. Moreover, some algebraic
methods yield optimal CAs. A drawback of this kind of
methods is that they are not applicable to all combinations
of values of t , k , and v. For example, the methods based
on LFSR sequences [38], [39] only work for v prime-power.
However, when the target CA has appropriate parameters t ,
k , v for an algebraic method, then there is a good chance that
algebraic approaches are the best option. Another area where
algebraic algorithms are good options is for binary CAs with
large k and t; the methods of constant weight vectors [30]
and binomial coefficients [32] can construct arbitrarily large
binary CAs. Also very large CAs can be constructed by
cyclotomy [37]; in this case the restrictions are that k must
be prime-power and v must be related to k in such a way
k ≡ 1 (mod v).

Recursive algorithms are also fast algorithms that gener-
ally do not perform a computational search to construct the

FIGURE 26. Example of derivation. B = CA(12; 3,11,2) was derived from
A = CA(24; 4,12,2).

final CA; some exceptions are augmented annealing [43] that
uses simulated annealing to construct some parts of the final
CA, and tower of covering arrays [47] where the next CA in
the tower is constructed by exploring a number of arrange-
ments of the columns of the input CA. On the other hand,
the classical recursive techniques of product, Roux-type con-
structions, and powering only takes the input ingredients and
construct the output CA by following a fixed procedure to
combine the inputs; in this methods the size of the final CA
is known in advance, and so the quality of the output CA
depends on the quality of the input ingredients. This kind of
algorithms are the more convenient option for constructing
CAs with large k and t; for many of such cases they currently
give the best-known CAs (reported in [20]). A disadvantage
of recursive methods is the excessive redundancy in the final
CAs; this redundancy is needed to ensure that the final result
is a CA. Generally, non-recursive techniques provides better

VOLUME 7, 2019 42793

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

solutions when they can be applied to the given parameters t ,
k , and v. Similarly to algebraic methods, recursive construc-
tions are only applicable for certain CA parameters.

Exact algorithms have the advantage of generating optimal
CAs. Also, near-optimal CAs can be constructed by exact
methods if the search is not exhaustive. However, they are
applicable only to small CAs. The main use of exact algo-
rithms is in proving the optimality of CAs, as in [57], or in
improving the lower bound of some CAs, as in [54]. For
instances where exact methods are not applicable, meta-
heuristic methods generally construct those instances in a
very short time, but without ensuring the optimality of the
constructed CA.

The class of greedy algorithms can be subdivided into
two subclasses: methods that construct the CA one-row-at-
a-time, and methods that construct the CA one-parameter-
at-a-time. Most greedy methods belong to the first subclass,
and the most successful of them is the deterministic density
algorithm [67] and its variants; for the second subclass the
most successful method are in-parameter-order [71] and its
variants, and the recent method to construct CPHFs [75].
These methods are good options to balance the quality of
the solutions and the execution time, because they are gen-
erally faster than metaheuristic methods and the quality of
the solutions is acceptable; in fact a lot of the current upper
bounds of CAN reported in [20] were generated by greedy
methods. In addition, most of the greedy methods can be
used with any values of t , k , and v, that is, they are general
constructions. Greedy methods execute faster than exact and
metaheuristic methods, so they are good option to construct
CAs with sizes such that metaheuristic methods take to much
time. Other positive characteristic of greedy methods is that
they can be adapted to construct other kind of arrays such
as MCAs and variable strength CAs. For cases where meta-
heuristic methods can be executed without taking to much
time, the result of greedy methods is generally inferior to the
result of metaheuristic methods.

Metaheuristic methods are a good option to construct small
andmedium-size CAs, say tens and hundreds of columns. For
small CAs this kind of methods give results very close to the
optimal ones, but as the size of the CA increases the results
of metaheuristic methods also move away from the estimated
lower bounds. Metaheuristic methods are also general meth-
ods that can be used to construct CAs with any mixture
of parameters t , k , v; but for large parameter values these
methods are slow or can not be executed at all, due to some of
them require data structures that grows as the CA parameters
grow; for example, the particle swarm optimization method
developed in [89] requires a list of size

(k
t

)
· k . Currently,

the development of metaheuristic methods to construct CAs
is very active, especially for constructing MCAs, variable
strength CAs, and constrained CAs. For uniform CAs the
most successful techniques have been simulated annealing
and tabu search.

Transformation methods can be applied to any CA,
although the best results have been obtained by applying

postoptimization techniques to CAs constructed with greedy
methods, as in [100]; also, postoptimization is recommended
with CAs produced by recursive techniques because those
CAs have a lot of redundancy. The fusion method have
reported some of the best-known CAs, particularly for non-
prime-power orders where the application of fusion to CAs
constructed using LFSR sequences and from CPHFs produce
good CAs (see [20]).

IX. FUTURE IMPROVEMENTS ON THE SIZE
OF UNIFORM COVERING ARRAYS
The current best sizes of covering arrays (or the current upper
bounds of CAN) with strengths 2 ≤ t ≤ 6 and orders
2 ≤ v ≤ 25 are reported in the Covering Array Tables [20].
These tables have been used as the main point of comparison
to report improvements on the upper bounds of covering array
numbers. Next, we will give some of the most representative
constructions that currently appear in the tables for each
strength 2 ≤ t ≤ 6:

t = 2: Simulated annealing, product, starter vectors, projec-
tion.

t = 3: Simulated annealing, augmented annealing, two
stage, duplication, LFSR sequences, CPHFs, power,
cyclotomy.

t = 4: Cyclotomy, Roux-type construction, group construc-
tion, power, CPHFs, LFSR sequences, DDA, IPO.

t = 5: Cyclotomy, Roux-type construction, power, CPHFs,
DDA, IPO, augmentation.

t = 6: Cyclotomy, Roux-type construction, power, CPHFs,
DDA, IPO.

In the above list only the generic method is mentioned,
but we will assume that all specializations of the method are
included. In addition, the transformation approaches of wild-
card detection, fusion, and derivation have also contributed to
reach some of the current best upper bounds of CAN.

Although each time it is more difficult to improve the size
of uniform CAs, we will make some comments about which
type of algorithms may continue to improve the current sizes
in the near future. The comments are based only on existing
methods to construct CAs, but of course completely new
methods may appear in the near future. Firstly, let us make
a very simply partition of the universe of CAs based on the
number of columns they have:

• Small: CAs with k ≤ 100 columns.
• Medium: CAs with 100 < k ≤ 1000 columns.
• Large: CAs with 1000 < k ≤ 10000 columns.

For small CAs and small orders (say v ≤ 7) metaheuris-
tic and greedy algorithms have a good chance to continue
improving the current upper bounds; especially simulated
annealing, which has been the most successful metaheuristic
technique. For larger alphabets the methods based on CPHFs
(Subsection V-G) may become more important. In a very
recent work of Colbourn et al. [75] CPHFs were used to
improve the asymptotic upper bound of CAN(t, k, v), but also
concrete CPHFs whose derived CAs improve a current bound

42794 VOLUME 7, 2019

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

were given. Other candidates to improve the current upper
bounds are methods that use starter vectors.

In the case of medium CAs the two-stage methods seem
to be good candidates to improve the current upper bounds.
It is probable that multi-stage algorithms will be developed
in the near future; these algorithms may combine recur-
sive or algebraic constructions, with greedy and metaheuris-
tic constructions, plus some postoptimization technique.
On the other hand, the methods based on LFSR sequences
(Subsection II-G) may also be extended to greater strengths
(currently there is only one direct construction for strength
three, and one construction involving computer search for
strength four). CPHF-based methods are expected to play
an important role in this range of columns because they
allow the generation of medium CAs using metaheuristic and
greedy techniques. Also CPHF-based methods could be part
of multi-stage algorithms.

Probably for larger CAs the recursive constructions of
product, power, and Roux-type will continue to be the main
constructions. As soon as some small or medium CAs are
improved, they can be used in the recursive constructions
to improve some large CAs. On the other hand, the cyclo-
tomy technique may be benefited from parallel computing,
because its main restriction is the time it takes to verify that a
cyclotomic matrix is a CA. Finally, as for the other two cases
CPHF-based methods are expected to contribute some new
upper bounds on the size of large CAs.

X. CONCLUSIONS
This paper presented a summary of different approaches for
the construction of uniform covering arrays. The revised
methods were grouped into algebraic, recursive, exact,
greedy, metaheuristic, and transformation techniques. Most
of the analyzed methods were accompanied with examples
and/or pseudocodes; in fact one important difference with
previous related works is that the strategy of several meth-
ods was clarified with an example, especially in the case of
algebraic and recursive algorithms. We studied methods with
very different strategies in each class of methods to give an
idea of the available strategies to construct uniform covering
arrays. The final part of the document provides a discussion
about the general characteristics of each class of methods.

ACKNOWLEDGEMENTS
The authors acknowledge ‘‘Xiuhcoatl’’-CGSTIC of
CINVESTAV for providing access of high performance
computing.

REFERENCES
[1] R. Kuhn, Y. Lei, and R. Kacker, ‘‘Practical combinatorial testing: Beyond

pairwise,’’ IT Prof., vol. 10, no. 3, pp. 19–23, May 2008.
[2] D. R.Wallace and D. R. Kuhn, ‘‘Failure modes in medical device software:

an analysis of 15 years of recall data,’’ Int. J. Rel., Quality Saf. Eng.,
vol. 8, no. 4, pp. 351–371, 2001.

[3] D. R. Kuhn and M. J. Reilly, ‘‘An investigation of the applicability of
design of experiments to software testing,’’ in Proc. 27th Annu. NASA
Goddard Softw. Eng.Workshop (SEW-),Washington, DC,USA,Dec. 2002,
pp. 91–95.

[4] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, ‘‘Software fault interactions
and implications for software testing,’’ IEEE Trans. Softw. Eng., vol. 30,
no. 6, pp. 418–421, Jun. 2004.

[5] D. R. Kuhn and V. Okum, ‘‘Pseudo-exhaustive testing for software,’’ in
Proc. 30th Annu. IEEE/NASA Softw. Eng. Workshop, Washington, DC,
USA, Apr. 2006, pp. 153–158.

[6] X. Yuan, M. B. Cohen, and A. M. Memon, ‘‘GUI interaction testing:
Incorporating event context,’’ IEEE Trans. Softw. Eng., vol. 37, no. 4,
pp. 559–574, Jul./Aug. 2011.

[7] P. Yang, X. Tan, H. Sun, D. Chen, and C. Li, ‘‘Fire accident reconstruc-
tion based on LES field model by using orthogonal experimental design
method,’’ Adv. Eng. Softw., vol. 42, no. 11, pp. 954–962, 2011.

[8] D. E. Shasha, A. Y. Kouranov, L. V. Lejay, M. F. Chou, and G. M. Coruzzi,
‘‘Using combinatorial design to study regulation by multiple input signals.
A tool for parsimony in the post-genomics era,’’ Plant Physiol., vol. 127,
no. 4, pp. 1590–1594, 2001.

[9] H. Ordoñez, J. Torres-Jimenez, A. Ordoñez, and C. Cobos, ‘‘Clus-
tering business process models based on multimodal search and cov-
ering arrays,’’ in Advances in Soft Computing, O. Pichardo-Lagunas
and S. Miranda-Jiménez, Eds. Cham, Switzerland: Springer, 2016,
pp. 317–328.

[10] G. O. H. Katona, ‘‘Two applications (for search theory and truth functions)
of Sperner type theorems,’’ Periodica Math. Hungarica, vol. 3, nos. 1–2,
pp. 19–26, 1973.

[11] D. J. Kleitman and J. Spencer, ‘‘Families of k-independent sets,’’ Discrete
Math., vol. 6, no. 3, pp. 255–262, 1973.

[12] K. A. Bush, ‘‘Orthogonal arrays of index unity,’’ Ann. Math. Statist.,
vol. 23, no. 3, pp. 426–434, 1952.

[13] C. J. Colbourn, CRC Handbook of Combinatorial Designs. Boca Raton,
FL, USA: CRC Press, 1996.

[14] A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays.
New York, NY, USA: Springer-Verlag, 1999.

[15] K. A. Johnson and R. Entringer, ‘‘Largest induced subgraphs of the n-
cube that contain no 4-cycles,’’ J. Combinat. Theory, B, vol. 46, no. 3,
pp. 346–355, 1989.

[16] C. J. Colbourn, G. Kéri, P. P. R. Soriano, and J.-C. Schlage-Puchta, ‘‘Cover-
ing and radius-covering arrays: Constructions and classification,’’Discrete
Appl. Math., vol. 158, no. 11, pp. 1158–1180, Jun. 2010.

[17] S. Choi, H. K. Kim, and D. Y. Oh, ‘‘Structures and lower bounds for binary
covering arrays,’’ Discrete Math., vol. 312, no. 19, pp. 2958–2968, 2012.

[18] N. Francetić and B. Stevens, ‘‘Asymptotic size of covering arrays:
An application of entropy compression,’’ J. Combinat. Des., vol. 25, no. 6,
pp. 243–257, 2017.

[19] K. Sarkar and C. J. Colbourn, ‘‘Upper bounds on the size of covering
arrays,’’ SIAM J. Discrete Math., vol. 31, no. 2, pp. 1277–1293, 2017.

[20] C. J. Colbourn, Covering Array Tables for t = 2, 3, 4, 5, 6. Accessed:
Sep. 6, 2017. [Online]. Available: http://www.public.asu.edu/ ccol-
bou/src/tabby/catable.html

[21] A. Hartman, ‘‘Software and hardware testing using combinatorial
covering suites,’’ in Graph Theory, Combinatorics and Algorithms
(Operations Research/Computer Science Interfaces Series), vol. 34,
M. C. Golumbic and I. B.-A. Hartman, Eds. NewYork, NY, USA: Springer,
2005, pp. 237–266.

[22] C. J. Colbourn, ‘‘Combinatorial aspects of covering arrays,’’ Le Matem-
atiche, vol. 59, nos. 1–2, pp. 125–172, 2004.

[23] J. Lawrence, R. N. Kacker, Y. Lei, D. R. Kuhn, and M. Forbes, ‘‘A survey
of binary covering arrays,’’ Electron. J. Combinat., vol. 18, no. 1, 2011,
Art. no. P84.

[24] V. V. Kuliamin and A. A. Petukhov, ‘‘A survey of methods for constructing
covering arrays,’’ Program. Comput. Softw., vol. 37, no. 3, pp. 121–146,
2011.

[25] J. Torres-Jimenez and I. Izquierdo-Marquez, ‘‘Survey of covering arrays,’’
in Proc. 15th Int. Symp. Symbolic Numeric Algorithms Sci. Comput.
(SYNASC), Sep. 2013, pp. 20–27.

[26] C. Nie and H. Leung, ‘‘A survey of combinatorial testing,’’ ACM Comput.
Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011.

[27] S. K. Khalsa and Y. Labiche, ‘‘An orchestrated survey of available algo-
rithms and tools for combinatorial testing,’’ in Proc. IEEE 25th Int. Symp.
Softw. Rel. Eng., Nov. 2014, pp. 323–334.

[28] J. Zhang, Z. Zhang, and F. Ma, Automatic Generation of Combinatorial
Test Data. Berlin, Germany: Springer, 2014.

[29] A. Rényi, Foundations of Probability. Hoboken, NJ, USA: Wiley, 1971.

VOLUME 7, 2019 42795

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

[30] D. T. Tang and L. S.Woo, ‘‘Exhaustive test pattern generationwith constant
weight vectors,’’ IEEE Trans. Comput., vol. C-32, no. 12, pp. 1145–1150,
Dec. 1983.

[31] J. Martinez-Pena and J. Torres-Jimenez, ‘‘A branch and bound algorithm
for ternary covering arrays construction using trinomial coefficients,’’ Res.
Comput. Sci., vol. 49, no. 1, pp. 61–71, 2010.

[32] J. Torres-Jimenez, I. Izquierdo-Marquez, A. Gonzalez-Gomez, and
H. Avila-George, ‘‘A branch& bound algorithm to derive a direct construc-
tion for binary covering arrays,’’ in Advances in Artificial Intelligence and
Soft Computing, G. Sidorov and S. Galicia-Haro, Eds. Cham, Switzerland:
Springer, 2015, pp. 158–177.

[33] M. Chateauneuf and D. L. Kreher, ‘‘On the state of strength-three covering
arrays,’’ J. Combinat. Des., vol. 10, no. 4, pp. 217–238, 2002.

[34] K. Meagher and B. Stevens, ‘‘Group construction of covering arrays,’’ J.
Combinat. Des., vol. 13, no. 1, pp. 70–77, 2005.

[35] J. R. Lobb, C. J. Colbourn, P. Dazinger, B. Stevens, and J. Torres-Jimenez,
‘‘Cover starters for covering arrays of strength two,’’ Discrete Math.,
vol. 312, pp. 943–956, Mar. 2012.

[36] Y. Akhtar, S. Maity, and R. C. Chandrasekharan, ‘‘Covering arrays of
strength four and software testing,’’ in Mathematics and Computing,
R. Mohapatra, D. Chowdhury, and D. Giri, Eds. New Delhi, India:
Springer, 2015, pp. 391–398.

[37] C. J. Colbourn, ‘‘Covering arrays from cyclotomy,’’Des., Codes Cryptogr.,
vol. 55, nos. 2–3, pp. 201–219, 2010.

[38] S. Raaphorst, L. Moura, and B. Stevens, ‘‘A construction for strength-3
covering arrays from linear feedback shift register sequences,’’Des., Codes
Cryptogr., vol. 73, no. 3, pp. 949–968, 2014.

[39] G. Tzanakis, L. Moura, D. Panario, and B. Stevens, ‘‘Constructing new
covering arrays from LFSR sequences over finite fields,’’ Discrete Math.,
vol. 339, no. 3, pp. 1158–1171, 2016.

[40] G. B. Sherwood, S. S. Martirosyan, and C. J. Colbourn, ‘‘Covering arrays
of higher strength from permutation vectors,’’ J. Combinat. Des., vol. 14,
no. 3, pp. 202–213, 2006.

[41] J. Torres-Jimenez and I. Izquierdo-Marquez, ‘‘Covering arrays of strength
three from extended permutation vectors,’’ Des., Codes Cryptogr., vol. 86,
no. 11, pp. 2629–2643, Nov. 2018. doi: 10.1007/s10623-018-0465-6.

[42] G. Roux, ‘‘k-propriétés dans des tableaux de n colonnes; cas particulier de
la k-surjectivité et de la k-permutivité,’’ Ph.D. dissertation, Dept. Math.,
Univ. Paris, Paris, France, 1987.

[43] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, ‘‘Constructing strength
three covering arrayswith augmented annealing,’’DiscreteMath., vol. 308,
no. 13, pp. 2709–2722, 2008.

[44] C. J. Colbourn, S. S. Martirosyan, T. Van Trung, and R. A. Walker, II,
‘‘Roux-type constructions for covering arrays of strengths three and four,’’
Des., Codes Cryptogr., vol. 41, no. 1, pp. 33–57, Oct. 2006.

[45] S. Martirosyan and T. van Trung, ‘‘On t-covering arrays,’’ Des., Codes
Cryptogr., vol. 32, nos. 1–3, pp. 323–339, 2004.

[46] C. J. Colbourn, S. S. Martirosyan, G. L. Mullen, D. Shasha,
G. B. Sherwood, and J. L. Yucas, ‘‘Products of mixed covering arrays of
strength two,’’ J. Combinat. Des., vol. 14, no. 2, pp. 124–138, 2006.

[47] J. Torres-Jimenez, I. Izquierdo-Marquez, R. N. Kacker, and
D. R. Kuhn, ‘‘Tower of covering arrays,’’ Discrete Appl. Math.,
vols. 190–191, pp. 141–146, Aug. 2015.

[48] L. Ji, Y. Li, and J. Yin, ‘‘Constructions of covering arrays of strength five,’’
Des., Codes Cryptogr., vol. 62, no. 2, pp. 199–208, Feb. 2012.

[49] C. Colbourn and J. Torres-Jimenez, ‘‘Profiles of covering arrays of strength
two,’’ J. Algorithms Comput., vol. 44, no. 1, pp. 31–60, 2013.

[50] C. J. Colbourn and J. Torres-Jimenez, ‘‘Heterogeneous hash families and
covering arrays,’’ Contemp. Math., vol. 523, pp. 3–15, Sep. 2010.

[51] C. J. Colbourn and J. Zhou, ‘‘Improving two recursive constructions for
covering arrays,’’ J. Stat. Theory Pract., vol. 6, no. 1, pp. 30–47, 2012.

[52] C. J. Colbourn, ‘‘Augmentation of covering arrays of strength
two,’’ Graphs and Combinatorics, vol. 31, no. 6, pp. 2137–2147,
2015.

[53] J. Bracho-Rios, J. Torres-Jimenez, and E. Rodriguez-Tello, ‘‘A new back-
tracking algorithm for constructing binary covering arrays of variable
strength,’’ in Advances in Artificial Intelligence (Lecture Notes in Com-
puter Science), vol. 5845, A. H. Aguirre, R. M. Borja, and C. A. R. García,
Eds. Berlin, Germany: Springer-Verlag, 2009, pp. 397–407.

[54] M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue, ‘‘Generating com-
binatorial test cases by efficient SAT encodings suitable for CDCL SAT
solvers,’’ in Proc. 17th Int. Conf. Logic Program., Artif. Intell., Reason-
ing (LPAR). Berlin, Germany: Springer-Verlag, 2010, pp. 112–126.

[55] J. Yan and J. Zhang, ‘‘Backtracking algorithms and search heuristics to
generate test suites for combinatorial testing,’’ in Proc. 30th Annu. Int.
Comput. Softw. Appl. Conf. (COMPSAC), vol. 1. Washington, DC, USA:
IEEE Computer Society, Sep. 2006, pp. 385–394.

[56] J. Yan and J. Zhang, ‘‘A backtracking search tool for constructing combi-
natorial test suites,’’ J. Syst. Softw., vol. 81, no. 10, pp. 1681–1693, 2008.

[57] J. Torres-Jimenez and I. Izquierdo-Marquez, ‘‘Construction of non-
isomorphic covering arrays,’’ Discrete Math., Algorithms Appl., vol. 8,
no. 2, 2016, Art. no. 1650033.

[58] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith, ‘‘Constraint
models for the covering test problem,’’ Constraints, vol. 11, no. 2–3,
pp. 199–219, Jul. 2006.

[59] D. Lopez-Escogido, J. Torres-Jimenez, E. Rodriguez-Tello, and
N. Rangel-Valdez, ‘‘Strength two covering arrays construction using
a SAT representation,’’ in Advances in Artificial Intelligence (Lecture
Notes in Computer Science), vol. 5317. Berlin, Germany: Springer, 2008,
pp. 44–53.

[60] C. Ansótegui, I. Izquierdo, F. Manyà, and J. Torres-Jiménez, ‘‘A max-sat-
based approach to constructing optimal covering arrays,’’ inArtificial Intel-
ligence Research and Development (Frontiers in Artificial Intelligence and
Applications), vol. 256, K. Gibert, V. Botti, and R. Reig-Bolaño, Eds.
Amsterdam, The Netherlands: IOS Press, 2013, pp. 51–59.

[61] D.M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, ‘‘The combinatorial
design approach to automatic test generation,’’ IEEE Softw., vol. 13, no. 5,
pp. 83–88, Sep. 1996.

[62] Y.-W. Tung and W. S. Aldiwan, ‘‘Automating test case generation for the
new generation mission software system,’’ in Proc. IEEE Aerosp. Conf.
Big Sky, MT, USA: IEEE Computer Society, vol. 1, Mar. 2000,
pp. 431–437.

[63] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, ‘‘IPOG:
A general strategy for T-Way software testing,’’ in Proc. 14th Annu. IEEE
Int. Conf. Workshops Eng. Comput.-Based Syst. (ECBS). Tucson, AZ,
USA: IEEE Computer Society, Mar. 2007, pp. 549–556.

[64] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, ‘‘Refining
the in-parameter-order strategy for constructing covering arrays,’’ J. Res.
Nat. Inst. Standards Technol., vol. 113, no. 5, pp. 287–297, 2008.

[65] A. H. Ronneseth and C. J. Colbourn, ‘‘Merging covering arrays and com-
pressing multiple sequence alignments,’’ Discrete Appl. Math., vol. 157,
no. 9, pp. 2177–2190, 2009.

[66] M. I. Younis, K. Z. Zamli, M. F. J. Klaib, Z. H. C. Soh, S. Abdullah, and
N. Isa, ‘‘Assessing IRPS as an efficient pairwise test data generation
strategy,’’ Int. J. Adv. Intell. Paradigms, vol. 2, no. 1, pp. 90–104, 2010.

[67] R. C. Bryce and C. J. Colbourn, ‘‘The density algorithm for pair-
wise interaction testing,’’ Softw. Test., Verification Rel., vol. 17, no. 3,
pp. 159–182, 2007.

[68] A. Calvagna and A. Gargantini, ‘‘T-wise combinatorial interaction test
suites construction based on coverage inheritance,’’ Softw. Test., Verifica-
tion Rel., vol. 22, no. 7, pp. 507–526, 2012.

[69] C. Nie, J. Jiang, H. Wu, H. Leung, and C. J. Colbourn, ‘‘Empirically
identifying the best greedy algorithm for covering array generation,’’ in
Proc. IEEE 6th Int. Conf. Softw. Test., Verification Validation Workshops,
Mar. 2013, pp. 239–248.

[70] R. C. Bryce and C. J. Colbourn, ‘‘A density-based greedy algorithm for
higher strength covering arrays,’’ Softw. Test., Verification Rel., vol. 19,
no. 1, pp. 37–53, 2009.

[71] Y. Lei and K.-C. Tai, ‘‘In-parameter-order: A test generation strategy for
pairwise testing,’’ in Proc. 3rd IEEE Int. Symp. High-Assurance Syst.
Eng. (HASE). Washington, DC, USA: IEEE Computer Society, Nov. 1998,
pp. 254–261.

[72] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, ‘‘IPOG-IPOG-D:
Efficient test generation for multi-way combinatorial testing,’’ Softw. Test.,
Verification Rel., vol. 18, no. 3, pp. 125–148, 2008.

[73] J. Torres-Jimenez, H. Avila-George, and I. Izquierdo-Marquez, ‘‘A two-
stage algorithm for combinatorial testing,’’ Optim. Lett., vol. 11, no. 3,
pp. 457–469, 2017.

[74] K. Sarkar and C. J. Colbourn. (2016). ‘‘Two-stage algorithms for covering
array construction.’’ [Online]. Available: https://arxiv.org/abs/1606.06730

[75] C. J. Colbourn, E. Lanus, and K. Sarkar, ‘‘Asymptotic and constructive
methods for covering perfect hash families and covering arrays,’’ Des.,
Codes Cryptogr., vol. 86, no. 4, pp. 907–937, 2018.

[76] C. J. Colbourn and E. Lanus, ‘‘Subspace restrictions and affine composi-
tion for covering perfect hash families,’’ Art Discrete Appl. Math., vol. 1,
no. 2, pp. 1–19, 2018.

42796 VOLUME 7, 2019

http://dx.doi.org/10.1007/s10623-018-0465-6

J. Torres-Jimenez et al.: Methods to Construct Uniform Covering Arrays

[77] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn,
‘‘Constructing test suites for interaction testing,’’ in Proc. 25th Int. Conf.
Softw. Eng., May 2003, pp. 38–48.

[78] H. Avila-George, J. Torres-Jimenez, L. Gonzalez-Hernandez, and
V. Hernández, ‘‘Metaheuristic approach for constructing functional
test-suites,’’ IET Softw., vol. 7, no. 2, pp. 104–117, Apr. 2013.

[79] J. Torres-Jimenez and E. Rodriguez-Tello, ‘‘New bounds for binary
covering arrays using simulated annealing,’’ Inf. Sci., vol. 185, no. 1,
pp. 137–152, 2012.

[80] J. Torres-Jimenez and E. Rodriguez-Tello, ‘‘Simulated annealing for con-
structing binary covering arrays of variable strength,’’ inProc. IEEECongr.
Evol. Comput. Barcelona, Spain: IEEE Computer Society, Jul. 2010,
pp. 4102–4109.

[81] J. Stardom, ‘‘Metaheuristics and the search for covering and packing
arrays,’’ M.S. thesis, Dept. Math., Simon Fraser Univ., Burnaby, BC,
Canada, 2001.

[82] K. J. Nurmela, ‘‘Upper bounds for covering arrays by tabu search,’’ Dis-
crete Appl. Math., vol. 138, nos. 1–2, pp. 143–152, 2004.

[83] L. Zekaoui, ‘‘Mixed covering arrays on graphs and tabu search algo-
rithms,’’ M.S. thesis, Ottawa-Carleton Inst. Comput. Sci., Univ. Ottawa,
Ottawa, ON, Canada, 2006.

[84] E. Rodriguez-Tello and J. Torres-Jimenez, ‘‘Memetic algorithms for con-
structing binary covering arrays of strength three,’’ in Artifical Evolu-
tion (Lecture Notes in Computer Science), vol. 5975. Berlin, Germany:
Springer, 2010, pp. 86–97.

[85] T. Shiba, T. Tsuchiya, and T. Kikuno, ‘‘Using Artificial Life Techniques
to Generate Test Cases for Combinatorial Testing,’’ in Proc. 28th Annu.
Int. Comput. Softw. Appl. Conf. (COMPSAC). HongKong: IEEEComputer
Society, Sep. 2004, pp. 72–77.

[86] R.-Z. Qi, Z.-J. Wang, and S.-Y. Li, ‘‘A parallel genetic algorithm based on
spark for pairwise test suite generation,’’ J. Comput. Sci. Technol., vol. 31,
no. 2, pp. 417–427, Mar. 2016.

[87] X. Chen, Q. Gu, A. Li, and D. Chen, ‘‘Variable strength interaction testing
with an ant colony system approach,’’ in Proc. 16th Asia–Pacific Softw.
Eng. Conf., Dec. 2009, pp. 160–167.

[88] T. Mahmoud and B. S. Ahmed, ‘‘An efficient strategy for covering array
construction with fuzzy logic-based adaptive swarm optimization for soft-
ware testing use,’’ Expert Syst. Appl., vol. 42, no. 22, pp. 8753–8765, 2015.

[89] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, ‘‘Application of particle swarm
optimization to uniform and variable strength covering array construction,’’
Appl. Soft Comput., vol. 12, no. 4, pp. 1330–1347, 2012.

[90] H. Wu, C. Nie, F. C. Kuo, H. Leung, and C. J. Colbourn, ‘‘A discrete
particle swarm optimization for covering array generation,’’ IEEE Trans.
Evol. Comput., vol. 19, no. 4, pp. 575–591, Aug. 2015.

[91] X. Bao, S. Liu, N. Zhang, and M. Dong, ‘‘Combinatorial test generation
using improved harmony search algorithm,’’ Int. J. Hybrid Inf. Technol.,
vol. 8, no. 9, pp. 121–130, 2015.

[92] B. S. Ahmed, T. S. Abdulsamad, and M. Y. Potrus, ‘‘Achievement of mini-
mized combinatorial test suite for configuration-aware software functional
testing using the cuckoo search algorithm,’’ Inf. Softw. Technol., vol. 66,
pp. 13–29, Oct. 2015.

[93] H. Avila-George, J. Torres-Jimenez, and V. Hernández, ‘‘New bounds
for ternary covering arrays using a parallel simulated annealing,’’ Math.
Problems Eng., vol. 2012, Jul. 2012, Art. no. 897027.

[94] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, ‘‘Learning combinato-
rial interaction test generation strategies using hyperheuristic search,’’ in
Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., vol. 1, May 2015,
pp. 540–550.

[95] K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, ‘‘A tabu search hyper-
heuristic strategy for t-way test suite generation,’’ Appl. Soft Comput.,
vol. 44, pp. 57–74, Jul. 2016.

[96] J. Torres-Jimenez and I. Izquierdo-Marquez, ‘‘A simulated annealing algo-
rithm to construct covering perfect hash families,’’ Math. Problems Eng.,
vol. 2018, Jul. 2018, Art. no. 1860673.

[97] I. Izquierdo-Marquez, J. Torres-Jimenez, B. Acevedo-Juárez, and
H. Avila-George, ‘‘A greedy-metaheuristic 3-stage approach to construct
covering arrays,’’ Inf. Sci., vols. 460–461, pp. 172–189, Sep. 2018.

[98] R. A. Walker, II, and C. J. Colbourn, ‘‘Tabu search for covering arrays
using permutation vectors,’’ J. Stat. Planning Inference, vol. 139, no. 1,
pp. 69–80, 2009.

[99] P. Nayeri, C. J. Colbourn, and G. Konjevod, ‘‘Randomized post-
optimization of covering arrays,’’ Eur. J. Combinatorics, vol. 34, no. 1,
pp. 91–103, 2013.

[100] J. Torres-Jimenez and A. Rodriguez-Cristerna, ‘‘Metaheuristic post-
optimization of the NIST repository of covering arrays,’’ CAAI Trans.
Intell. Technol., vol. 2, no. 1, pp. 31–38, 2017.

[101] J. C. Perez-Torres and J. Torres-Jimenez, ‘‘A graph-based postoptimiza-
tion approach for covering arrays,’’ Qual. Rel. Eng. Int., vol. 33, no. 8,
pp. 2171–2180, Dec. 2017.

[102] Y. Kim, D.-H. Jang, and C. M. Anderson-Cook, ‘‘Selecting the best wild
card entries in a covering array,’’ Qual. Rel. Eng. Int., vol. 33, no. 7,
pp. 1615–1627, 2017.

[103] C. J. Colbourn, ‘‘Strength two covering arrays: Existence tables and
projection,’’ Discrete Math., vol. 308, nos. 5–6, pp. 772–786, 2008.

[104] A. Rodriguez-Cristerna, ‘‘Construcción de covering arrays mixtos usando
una generalización del operador de fusión,’’ M.S. thesis, Center Res. Adv.
Studies Nat. Polytech. Inst., Inf. Technol. Lab., Ciudad Victoria, Mexico,
2012.

JOSE TORRES-JIMENEZ received the Ph.D.
degree from ITESM Cuernavaca, Mexico. He is
currently a Teacher and a Researcher with Cinves-
tav Tamaulipas, Mexico.

He is also an Expert in combinatorial optimiza-
tion. He has graduated more than ten Ph.D. pro-
fessionals and more than 50 M.Sc. professionals.
He has dedicatedmore than a decade to build many
of the best-known covering arrays (mathematical
objects that are used to do software and hardware

testing). He has many international collaborations in the USA, Spain,
Colombia, France, and Austria. He is a Level III Member of the National
System of Researchers, Mexico. He has been an IEEE Senior Member,
since 1999.

IDELFONSO IZQUIERDO-MARQUEZ is cur-
rently pursuing the Ph.D. degree with Cinvestav
Tamaulipas, Mexico. He has published 12 journal
papers, mostly on covering arrays, and three con-
ference papers. He has carried out three research
stays in Mexico and Spain. His research interest
includes the construction and classification of the
combinatorial objects called covering arrays.

HIMER AVILA-GEORGE received the Ph.D.
degree in computer science from the Politeìcnica
de Valeìncia, Spain. He was a Researcher and the
AcademicManager in various universities inMex-
ico. In consideration of his professional career,
since 2014, he has been a Distinguished National
Researcher (Level I) with the National System of
Researchers, Mexico. He is currently a Full Pro-
fessor with the University of Guadalajara, Mexico.
His current research interests include combinato-

rial optimization, software engineering, and machine learning.

VOLUME 7, 2019 42797

	INTRODUCTION
	ALGEBRAIC METHODS
	CASE T=V=2
	BUSH'S CONSTRUCTION
	JOHNSON-ENTRINGER CONSTRUCTION
	BINOMIAL COEFFICIENTS
	GROUP CONSTRUCTION AND STARTER VECTORS
	CYCLOTOMY
	LFSR SEQUENCES
	DIRECT CONSTRUCTION OF CPHFs

	RECURSIVE METHODS
	PRODUCT OF CAs
	POWER (Kn)
	DUPLICATION (2K)
	V-PLICATION (vk)
	AUGMENTATION
	AUGMENTED ANNEALING

	EXACT METHODS
	THE AUTOMATIC GENERATOR EXACT
	NEW BACKTRACKING ALGORITHM
	GENERATION OF NON-ISOMORPHIC CAs
	CONSTRAINT PROGRAMMING
	SAT ENCODINGS

	GREEDY METHODS
	TEST CASE GENERATOR (TCG)
	DETERMINISTIC DENSITY ALGORITHM (DDA)
	IN-PARAMETER-ORDER (IPO)
	INTERSECTION RESIDUAL PAIR SET STRATEGY (IRPS)
	BUILDING-BLOCK ALGORITHM (BBA)
	TWO STAGE ALGORITHMS
	RANDOM EXTENSION OF CPHFs

	METAHEURISTIC METHODS
	SIMULATED ANNEALING
	TABU SEARCH
	GENETIC ALGORITHMS
	ANT COLONY SYSTEM
	MEMETIC ALGORITHM
	PARTICLE SWARM OPTIMIZATION
	CUCKOO SEARCH

	TRANSFORMATIONS
	DETECTION OF WILDCARDS
	PROJECTION
	FUSION
	DERIVATION

	GENERAL CHARACTERISTICS OF THE CLASSES OF METHODS
	FUTURE IMPROVEMENTS ON THE SIZE OF UNIFORM COVERING ARRAYS
	CONCLUSIONS
	REFERENCES
	Biographies
	JOSE TORRES-JIMENEZ
	IDELFONSO IZQUIERDO-MARQUEZ
	HIMER AVILA-GEORGE

