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ABSTRACT With complexity and uncertainty having an increasing impact on the decision-making environ-
ment, much attention is being paid to the development and application of multiple criteria group decision-
making (MCGDM) models owing to the potential for fully exploiting the diverse strengths and expertise
of various members. In general, inevitable interactions among decision makers (DMs), when a number
of DMs share similar knowledge and experiences, can have a significant impact on the management of
decision information directly or indirectly related to DMs, and can easily lead to distorted and unconvincing
decision outcomes. In order to model the MCGDM problem in which DMs share a similar background,
a consolidated MCGDMmodel in the context of intuitionistic fuzzy sets (IFSs) is developed. First, we refine
the constructive principles for intuitionistic fuzzy entropy (IFE) and use them as a basis to produce a novel
IFE measure simultaneously factoring in the intuitionism and fuzziness of IFSs. With the aim of dealing
with the impact on the specifications of the weights of DMs and criteria, an integrated method is then
proposed based on the novel IFE measure, 2-additive fuzzy measure, and Choquet integral. Due to their
capability of modeling effectively the interrelationships among arguments, the weighted intuitionistic fuzzy
Bonferroni mean (WIFBM) and the weighted intuitionistic fuzzy geometric Bonferroni mean (WIFGBM)
are introduced to fuse the individual evaluation values of alternatives on criteria. In addition, simple additive
weighting based on the WIFBM or WIFGBM is applied to rank alternatives and select the best one. Finally,
the feasibility and effectiveness of the proposed model are explored with a case study of an emergency plan
decision-making problem accompanied with sensitivity and comparison analysis.

INDEX TERMS Intuitionistic fuzzy sets, Bonferroni mean, intuitionistic fuzzy entropy, 2-additive fuzzy
measure, choquet integral, multiple criteria group decision making.

I. INTRODUCTION
Decision-making environments faced by enterprises and
organizations today have become increasingly complex

The associate editor coordinating the review of this manuscript and
approving it for publication was Corrado Mencar.

and uncertain, necessitating scientific decision-making tech-
niques that can help provide decision makers (DMs) or
experts with clear qualitative thinking or with tools for quan-
titative analysis. Multiple criteria decision making (MCDM)
is an important decision-making technique which can pro-
vide DMs with a systematic framework to facilitate decision

41958
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-4360-5459


J.-P. Chang et al.: Intuitionistic Fuzzy MCGDM

analysis and conduct effective decision making by evaluating
the multiple and conflicting criteria that stakeholders factor
into [33], [35], [36], [40], [52], [61], [85]. Groups and teams
are reported to be collectively wiser than their individual
members and usually play a significant role in societies and
organizations [2], [4], [22], [49], [62]. Therefore, a num-
ber of MCDM researchers have been attempting to extend
the theories and methods of the classic MCDM model to
develop multiple criteria group decision making (MCGDM)
models and to apply the MCGDMmethods to various socioe-
conomic areas, including management science, social sci-
ence, economics, public administration, military research,
and emergency management evaluation [7], [10], [11],
[26], [27], [76].

The MCGDM process involves multi-faceted problems
that need to be addressed when conducting efficient and
feasible decision analysis. Several attempts have been made
to enhance the ability of an MCGDM model to deal with
the increasing complexity of the socioeconomic environment
by introducing theoretical and methodological concepts
for studying MCGDM processes from different perspec-
tives. The scope of these efforts includes the following
concerns: the articulation and representation of decision
information; the determination of weights of DMs and
criteria; information aggregation; and the ranking of
alternatives.

In real-life group decision-making scenarios, if a num-
ber of DMs share similar knowledge and experiences,
the inevitable interactions among them can have a signif-
icant impact on the management of decision information
directly or indirectly related to DMs, including the specifi-
cations of the weights of DMs and criteria, and the fusion
of individual arguments. When building the structure of an
MCGDMmodel, if we fail to tackle explicitly the interactions
among DMs, the decision information obtained during the
MCGDM process may be overestimated or underestimated
and can easily lead to distorted and unconvincing decision
outcomes. However, the literature on the construction of
MCGDM models has not delved into the interactions among
DMs and their effects on decision information [4], [7], [18],
[23], [24], [26], [27], [50], [56], [70], [75], [76], [81]. Bridg-
ing this gap has provided the motivation to develop a novel
MCGDM model in the current study.

This paper develops a consolidated model to address
the MCGDM problem in which there exist the interactions
among DMs arisen from their similar knowledge and expe-
riences. In the proposed model, intuitionistic fuzzy numbers
(IFNs) [2], [3] are introduced to characterize the uncertain
evaluation information on alternatives. To obtain the weights
of DMs and criteria, an integrated method capable of dealing
with the impacts of the interactions among DMs is pro-
posed based on a novel intuitionistic fuzzy entropy measure,
2-addtive fuzzy measure, and Choquet integral. Because
of their ability to model the interrelationships among
arguments, the weighted intuitionistic fuzzy Bonferroni
mean (WIFBM) [82] and the weighted intuitionistic

fuzzy geometric Bonferroni mean (WIFGBM) [84] are
employed to fuse individual arguments into collective
evaluation information. Subsequently, the traditional sim-
ple additive weighting (SAW) method based on the
WIFBM or the WIFGBM is used to rank the alterna-
tives. Finally, the paper presents a practical application
to an emergency plan decision-making problem combined
with sensitivity analysis and comparison analysis to val-
idate the effectiveness and practicability of the proposed
MCGDM model. The contributions of the proposed model
can be summarized as follows:
(i) The model introduces the intuitionistic fuzzy set (IFS),

which is coined by Atanassov [2], [3] as an exten-
sion of the fuzzy set [88] and has drawn much
attention from notable scholars owing to its capac-
ity to deal with uncertainty and imprecision, to char-
acterize uncertain evaluation values in the proposed
MCGDM model. Additionally, we refine the construc-
tive principles for intuitionistic fuzzy entropy (IFE)
and establish a novel IFE measure, which performs
better than the existing IFE measures [34], [60], [72],
[73], [78] in measuring the uncertainty of IFS. The
measure can support the construction of an entropy-
based method to determine the individual criterion
weights.

(ii) To cope with the impact resulting from the interac-
tions among DMs on the specifications of the weights
of DMs and criteria, the paper presents an integrated
method of determining simultaneously the criterion
weights and the DM weights, building on the proposed
IFE measure, 2-additive fuzzy measure, and Choquet
integral [31].

(iii) The WIFBM and the WIFGBM, which can both
model effectively the interrelationships among decision
information [82], [84], are introduced in building the
structure of the MCGDM model, not only to fuse
individual evaluation values into a collective value but
also to serve as a decision-making method for deriv-
ing the final ranking order of alternatives. In addition,
the two aggregationmeans can provide DMswithmany
choices of parameters depending on their levels of
optimism or pessimism.

The rest of this paper is organized as follows. Relevant
basic concepts are introduced in Section II. An improved
axiomatic definition for IFE and a novel IFE measure
are proposed in Section III. This section also presents a
comparison with existing IFE measures to validate the effec-
tiveness of the proposed IFE measure. Section IV devel-
ops a consolidated MCGDM model in which the IFNs are
embedded, based on the novel IFE measure, 2-additive fuzzy
measure, Choquet integral, the WIFBM, and the WIFGBM.
Section V presents a practical case of an emergency planning
decision making problem accompanied by sensitivity anal-
ysis and comparison analysis to illustrate the merits of the
new consolidated MCGDM model. Section VI presents the
conclusions.
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II. LITERATURE REVIEW
A. MULTI-CRITERIA GROUP DECISION MAKING (MCGDM)
MCGDM problems have traditionally been addressed by
applying a selection process to choose the best alterna-
tive or subset of alternatives based on multiple or conflicting
criteria. These problems are generally categorized as multiple
criteria discrete alternative problems. Different models have
been proposed in the literature to solve diverse MCGDM
problems. With respect to a common MCGDM problem
in which the criterion values are set in different forms by
DMs or experts and the weight information on criteria and
that on DMs are both unknown, the process of addressing
the MCGDM problem mainly includes, but is not limited to,
the following steps [24], [56]:
Step1: Establishing individual decision matrices in groups

and normalizing these matrices.
Step2: Determining the weights of criteria and DMs.
Step3: Fusing individual normalized decision matrices into

a collective decision matrix with the utilization of an appro-
priate information aggregation operator in which the criterion
weights are embedded.
Step4: Using an appropriate decision-making method to

rank alternatives and select the best one.
The MCGDM models in the literature have concentrated

on the following research topics:

1) THE ARTICULATION AND REPRESENTATION OF
INDIVIDUAL EVALUATION INFORMATION
During an MCGDM process, each DM is required to provide
individual evaluation information, which would constitute a
decision matrix or a preference matrix. The elements of a
decision matrix comprise the performance evaluation infor-
mation of alternatives on each criterion, while the elements
of a preference matrix comprise the preference evaluation
information obtained by pairwise comparisons of each two
alternatives with regard to a criterion [17], [18], [68]. The
evaluation information in these two types of matrix takes dif-
ferent formats, such as real numbers (crisp), 2-tuple models,
fuzzy numbers, or linguistic information [13], [15], [25], [53],
[62]. Owing to the increasing complexity and uncertainty of
the decision-making environment, DMs prefer to articulate
evaluation information in the form of fuzzy sets. Since its
creation by Zadeh [88], the fuzzy set and its extended forms
(such as intuitionistic fuzzy sets [24], [33], [35], [36], [39],
[40]; hesitant fuzzy sets [10], [53]; type-2 fuzzy sets [51];
neutrosophic sets; and Pythagorean fuzzy sets) have occupied
a prominent place in the theoretical development and prac-
tical application of MCDM and MCGDM [52], [54]. In the
proposed MCGDM model, the IFNs are utilized by DMs to
characterize uncertain evaluation information owing to their
strong application potential.

2) THE DETERMINATION OF WEIGHTS OF DMS AND
CRITERIA
Assigning weights to criteria and DMs is a basic step in
building an MCGDM model, but the literature related to

MCGDM places more focus on deriving the weights of cri-
teria than on determining the weights of DMs. The existing
methods for deriving weights of DMs and criteria can be clas-
sified into the following three categories [21], [23]: subjective
methods; objective methods; and integrated methods.
(i) In subjective methods, the weights of criteria are

obtained depending on the DMs’ preference informa-
tion on criteria, while the weights of DMs are assigned
by a supervisor or by a mutual evaluation of the DMs
depending on expert knowledge and experiences. The
subjective methods include analytic hierarchy process
(AHP) [51],[53], analytic network process (ANP), and
Delphi method.

(ii) In objective methods, the weights of DMs and criteria
are acquired depending on the objective decision infor-
mation. The objective methods for DMweights encom-
pass similarity-based approaches, consensus-based
approaches, and consistency-based approaches [23].
The objective methods for criteria weights include the
entropy-based method, the standard deviation (SD)
method, the criteria importance through inter-criteria
correlation (CRITIC) method, the correlation coeffi-
cient and standard deviation (CCSD) method, the ideal
point (IP) method, and the maximizing deviation (MD)
method [48]

(iii) In integrated methods, the weights of DMs or criteria
are determined by integrating several methods, espe-
cially the combination of a subjective method and an
objective method.

In this paper, with the aim of handling the impacts of the
interactions among DMs on the weights of DMs and criteria,
we design an integrated method to simultaneously specify the
weights of DMs and criteria, based on a novel IFE measure,
2-additive fuzzy measure, and Choquet integral.

3) THE AGGREGATION OF INDIVIDUAL EVALUATION
INFORMATION
Aggregating several numerical values to output a single
representative value is an instrumental step in building
an MCGDM model [14]. This necessitates the construc-
tion or selection of aggregation functions in accordance with
the specific requirements of diverse information aggregation
applications. Various families of aggregation functions have
been put forward in the literature, such as the family of
traditional averaging aggregation functions [33], the family
of OWA-type aggregation functions [53], and the family of
Bonferroni mean (BM) type aggregation functions [11], [37],
[82], [84]. Among the numerous families of aggregation
functions, the BM and its extensions has been identified as
the one useful aggregation function owing to its ability to
model the homogeneous interrelationships among the given
arguments in decision-making contexts. Xu [82] extended the
BM to an IFSs context and developed the intuitionistic fuzzy
Bonferroni mean (IFBM) and the weighted IFBM (WIFBM).
Xia et al. [84] proposed the concept of the geometric Bonfer-
roni mean (GBM) to generalize BM [12] and the geometric
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FIGURE 1. Emergency management system and emergency plan management.

mean [40], and further extended the BM to the intuitionistic
fuzzy GBM (IFGBM) and the weighted version (WIFGBM).
Thus, the proposed MCGDM model introduces the WIFBM
and the WIFGBM to synthesize the individual evaluation
information.

4) THE RANKING AND SELECTION OF ALTERNATIVES
The literature describes many MCDM methods for rank-
ing or selecting alternatives and each method has its own
characteristics. These methods can be categorized into four
main groups [50]: non-compensatory methods; value-based
methods; analytic hierarchical process (AHP) methods; and
outranking methods. Compared with the other categories
of MCDM methods, value-based methods such as simple
additive weighting (SAW) [50], Technique for Order Pref-
erence by Similarity to Ideal Solution (TOPSIS) [24], [28],
[31], [35], and VIšekriterijumsko Kompromisno Rangiranje
(VIKOR) [75], are the most popular methods in the academic
and application fields. Furthermore, SAW, in which the over-
all performance evaluations of each alternative obtained by
aggregation functions serve as the basis for ranking alterna-
tives, is the simplest and most widely used MCDM method
among value-based methods [50]. Given the interrelation-
ships among the evaluation information of each alternative on
criteria, the SAWmethod based onWIFBM andWIFGBM is
applied in this paper to rank alternatives.

B. EMERGENCY PLAN DECISION MAKING
In recent decades, natural, technological, or human-induced
incidents and disasters have increased in frequency, scope,
complexity, and severity, and have exerted severely negative
impacts on social and economic development. This has neces-
sitated the scientific management of various emergencies to
eliminate or reduce the effects. Emergency management as

an interdisciplinary research area has attracted considerable
interest from researchers and practitioners [6], [9], [29], [63],
[86]. In China, an emergency management system, consisting
of emergency law, emergency organizational structure, emer-
gency mechanisms, and emergency plans, has been devel-
oped at each level of a public organization to cope with
emergencies [30], [87]. In the system, emergency plan (EP)
not only provides guidance for stakeholders by specifying
the activities, the resources required, and the assignment
of responsibility for managing emergencies, but can also
help discover unrecognized risks or deficiencies and pro-
mote safety awareness among stakeholders. The EP manage-
ment process is a dynamic and cyclical process consisting
of drafting, approving and publishing, training and exercis-
ing, implementing, and revising, in which decision making
is reliant on evaluation or assessment and is deemed to be
one of the cornerstones of EP management [41]. Conducting
EP decisionmaking or assessment can help identify strengths,
weaknesses, and opportunities for the improvement of EP [5].
Fig. 1 depicts the structures of the emergency management
system and EP management. In this section, we concentrate
on the application of the proposed hybrid MCGDMmodel to
EP decision making.

To date, the practitioners and researchers who focus on
EP decision making or assessment mainly prefer to structure
guidelines or standards for EP development, but seldom pro-
vide a consolidated model for the assessment of EPs or deci-
sion making. The Federal Emergency Management Agency
(FEMA) [29] provided a series of criteria for successful
planning which included acceptability, adequacy, complete-
ness, consistency and standardization of products, feasibility,
flexibility, interoperability, and collaboration. Alexander [1]
put forward 18 principles for the judgment of EP quality.
Perry and Lindell [65] presented 10 guidelines for emergency
planning. Lindell and Perry [57] identified a set of general
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TABLE 1. The criteria for emergency plan decision making.

criteria for the evaluation of emergency response plans which
fall into two categories: substantive criteria and supporting
criteria. Lumbroso et al. [58] developed a series of met-
rics for assessment of flood EPs, and further put forward a
systematic method named as the FIM FRAME method for
the assessment and improvement of EPs [59]. The method
includes the following three phases: a quick assessment phase
to evaluate the content and quality of a plan; a more detailed
analytical phase for the specification of specific issues; and
an implementation phase for the improvement of a plan.
Ren et al. [66] provided 30 indicators for assessing the
effectiveness of an earthquake EP and further developed a
model based on the hesitant analytic hierarchy process for
EP assessment. Girard et al. [42] introduced the Function-
Interactions-Structure (FIS) to conduct the assessment of
an EP under multi-state degradation. Cheng and Qin [16]
introduced a fuzzy comprehensive assessment model to con-
duct EP decision making using the criteria of completeness,
operability, effectiveness, flexibility, rapidity, and rationality
of responsibility assignment.

This review of the literature shows that there are only
a few studies that concentrate on the development of an
EP decision-making model. It also shows that those stud-
ies have acknowledged the necessity of including fuzzy set
theory in the construction of an EP decision-making model.
This necessity provides further motivation for developing a
consolidated MCGDM model which could then be applied
to the EP decision-making problem. Before developing the
model, we specify a series of criteria for EP decision making
by reviewing the existing studies and regulations related to
EP. These are depicted in Table 1.

III. PRELIMINARIES
This section introduces the basic notions, definitions,
and properties of IFS. It also presents the axiomatic
definition of intuitionistic fuzzy entropy, the WIFBM,
the WIFGBM, 2-additive Fuzzy Measure, and the Choquet
integral.

A. INTUITIONISTIC FUZZY SETS
Definition (1) [2], [3]: Let X be a non-empty set called the
universe of discourse. An IFS A defined on X according to
Atanassov’s definition is

A = {〈x, µA (x) , υA (x)〉 |x ∈ X } ,

whereµA (x) : X → [0, 1] and υA (x) : X → [0, 1] are called
respectively the membership degree and non-membership
degree of x to A with the condition 0 ≤ µA (x)+ υA (x) ≤ 1
for all x ∈ X . Now define πA (x) = 1 − µA (x) − υA (x)
for all x ∈ X . This value is called the hesitancy degree of x
to A, which is also a mapping from X to [0, 1] and satisfies
πA (x) ∈ [0, 1].
In particular, if πA (x) = 0 for all x ∈ X , then an IFS is

degenerated to a fuzzy set in the sense that every fuzzy set
can be viewed as a special case of IFS. For convenience,
the set IFS (X) is used to stand for all IFSs in X .To facilitate
further analysis, each pair of (µA (x) , υA (x)) in Ais called
an IFN [82]. We denote an IFN by α = (µα, υα),
where

µα, υα ≥ 0, µα + υα ≤ 1, πα = 1− µα − υα,

and Sα = µα − υα and Hα = µα + υα are called
the score and accuracy degree, respectively, of the IFN α.
To rank any two IFNs αi =

(
µαi , υαi

)
(i = 1, 2), Xu [81] and

Xu and Yager [82] proposed the following order relation
between any two IFNs.
Definition 2: Let Sαi = µαi −υαi be the score of αi (i = 1, 2)
and Hαi = µαi + υαi be the accuracy degree of αi (i = 1, 2).
1) If Sα1 > Sα2 , then α1 > α2.
2) If Sα1 = Sα2 , then

2a) If Hα1 = Hα2 , then α1 = α2;
2b) If Hα1 > Hα2 , then α1 > α2.

Xu [81] and Xu and Yager [82] developed the following
basic operations of the IFNs αi =

(
µαi , υαi

)
(i = 1, 2) and

α = (µα, υα), which are employed in the next section.
1) α1 ⊕ α2 =

(
µα1 + µα2 − µα1µα2 , υα1υα2

)
.

2) α1 ⊗ α2 =
(
µα1µα2 , υα1 + υα2 − υα1υα2

)
.
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3) λα =
(
1− (1− µα)λ , υλα

)
, λ > 0.

4) αλ =
(
µλα, 1− (1− υα)

λ
)
, λ > 0.

All the results of the aforementioned operations are
also IFNs. No loss of information occurs for operations 1)
to 4) when aggregating the arguments. These operations are
also capable of dealing with situations where the importance
of the arguments must be considered. The classic axiomatic
definition of intuitionistic fuzzy entropy is also introduced to
facilitate further analysis.
Definition (3) [8]: Let A,B ∈ IFS (X). The intuitionistic
fuzzy entropy measure is a real-valued function E (A) :
IFS (X) → [0, 1] that satisfies the following axiomatic
principles:

3.1) E (A) = 0 iff A is a crisp set, that is, {µA (xi) = 1 and
υA (xi) = 0} or {µA (xi) = 0 and υA (xi) = 1} for all xi ∈ X .
3.2) E (A) = 1 iff µA (xi) = υA (xi) for all xi ∈ X .
3.3) E (A) = E (Ac) for all xi ∈ X .
3.4) E (A) ≤ E (B) if A is less fuzzy than B; that is, for all

xi ∈ X :
µA (xi) ≤ µB (xi) and υA (xi) ≥ υB (xi) for µB (xi) ≤

υB (xi); and
µA (xi) ≥ µB (xi) and υA (xi) ≤ υB (xi) for µB (xi) ≥

υB (xi).
Xu and Yager [82] proposed theWIFBM based on the BM.

Xia et al. [84] further extended the BM by proposing the
WIFGBM, based on the usual geometric mean and the BM.
Some related concepts are introduced below.
Definition (4) [82]:Letαi =

(
µαi , υαi

)
(i = 1, 2, · · · , n) be a

collection of IFNs and ω = (ω1, ω2, · · · , ωn)
T be the weight

vector of αi (i = 1, 2, · · · , n), where ωi indicates the impor-
tance degree of αi that satisfies ωi > 0 (i = 1, 2, · · · , n) and∑n

i=1 ωi = 1. If

IFBp,qω (α1, α2, · · · , αn)

=

(
1

n (n+ 1)

(
n
⊕

i,j=1i6=j

(
(ωiαi)

p
⊗
(
ωjαj

)q))) 1
p+q

(1)

for any p, q > 0, then IFBp,qω is called the WIFBM.
Definition (5) [84]:Letαi =

(
µαi , υαi

)
(i = 1, 2, · · · , n) be a

collection of IFNs and ω = (ω1, ω2, · · · , ωn)
T be the weight

vector of αi (i = 1, 2, · · · , n), where ωi indicates the impor-
tance degree of αi that satisfies ωi > 0 (i = 1, 2, · · · , n) and∑n

i=1 ωi = 1. If

IFGBp,qω (α1, α2, · · · , αn)

=
1

p+ q

(
n
⊗

i,j=1i6=j

(
pαωii ⊕ qα

ωj
j

) 1
n(n−1)

)
(2)

for any p, q > 0, then IFGBp,qω is called the WIFGBM.

B. 2-ADDITIVE FUZZY MEASURE AND CHOQUET
INTEGRAL
We consider a finite referential set Y = {1, 2, · · · , n} of
n elements. This set is usually regarded as criteria in the
MCGDM problem. Let us denote the set of subsets of Y
by P (Y ). Subsets of Y are denoted by A, B, . . .

Definition (6) [45]: A fuzzy measure, non-additive mea-
sure, or capacity over Y , is a set function µ : P (Y )→ [0, 1]
that satisfies the following:

(i) µ (∅) = 0, µ (Y ) = 1 (boundary conditions).
(ii) ∀A,B ∈ P (Y ), if A ⊆ B, then µ (A) ⊂ µ (B)

(monotonicity).
The set of all fuzzy measures on Y is denoted by Y .

As usual, algebras and σ -algebras are required in definitions
on general spaces but not in the discrete case.

In the framework of MCGDM, the number µ (A) can be
interpreted as the importance of the subset A ⊆ X , and the
monotonicity (condition (ii) in Definition 6) of the fuzzy
measure means that the importance of a subset of criteria
(or DMs) cannot decrease when new criteria (or DMs) are
added to it. A fuzzy measure is mainly characterized by
its non-additivity, which enables it to represent flexibly the
heterogeneous interactions among decision criteria (or DMs),
ranging from redundancy (negative interaction) to synergy
(positive interaction) [43]– [45].

The pseudo-Boolean function is an important concept that
is often used to represent a set function. Moreover, this func-
tion can represent a fuzzy measure, which is characterized by
exponential complexity.
Definition (7) [47]: A pseudo-Boolean function is a real-
valued function f : {0, 1}n→ <.
Any pseudo-Boolean function can be expressed in the form

of a multilinear polynomial in n variables given by:

f (y) =
∑
T⊂Y

[
a (T )

∏
i∈T

yi

]
, (3)

with a (T ) ∈ <, and y = (y1, · · · , yn) ∈ {0, 1}n.
A fuzzy measure can be seen as a particular case of the

pseudo-Boolean function that is defined for any A ⊂ Y such
that A is equivalent to a point y = (y1, · · · , yn) in {0, 1}n,
where yi = 1 iff i ∈ A.
The set of coefficients a (T ) ,T ⊂ Y can be viewed as a set

function, which in fact corresponds to the Möbius transform.
If we denote any set function µ : P (Y ) → < by µ, then
the Möbius transform of µ is a set function a on Y defined
by [45] as follows:

a (T ) =
∑
K⊂T

(−1)|T\K | µ (K ),∀T ⊂ Y . (4)

This transformation is invertible. When a is given, we can
recover the original µ using the so-called Zeta-transform,
which is given by:

a (T ) =
∑
S⊂T

a (S),∀T ⊂ Y . (5)

Let us consider the case of additive measures. Following
Eq. (1), we know that additive measures have a linear rep-
resentation given by f (y) =

∑n
i=1 aiyi, where µi ≡ ai

and the notations µi = µ ({i}) and ai = a ({i}) are used.
By extension, fuzzy measures with a polynomial represen-
tation of the degree of any fixed integer k can be defined.
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The k-order additive fuzzy measure (or simply k-additive
measure) is defined below.
Definition (8) [45]: A fuzzy measure µ defined on Y is said
to be a k-order additive if its corresponding pseudo-Boolean
function is a multilinear polynomial of degree k; that is, its
Möbius transform is a (T ) = 0 for all T such that |T | > k ,
and ∃ at least one subset T of Y with exactly k elements such
that a (T ) 6= 0.
An extremely important case of additive fuzzy measures is

when k takes the value of 2. The 2-additive fuzzy measure is
defined by:

µ (K ) =
n∑
i=1

aiyi +
∑
{i,j}⊆Y

aijyiyj. (6)

For any K ⊆ Y , |K | ≥ 2 with yi = 1 if i ∈ K ; otherwise,
yi = 0. With µi = ai for all i, the following expression is
obtained:

µij = ai + aj + aij = µi + µj + aij. (7)

The general formula of the 2-additive fuzzy measure is:

µ(K )=
∑
i∈K

ai+
∑
{i,j}⊆K

aij=
∑
{i,j}⊆K

µij−(|K |−2)
∑
i∈K

µi (8)

for any K ⊆ Y such that |K | ≥ 2. The 2-additive fuzzy
measure is clearly determined by the coefficients µi and µij.

When using the 2-additive fuzzy measure to model the
importance of the subsets of criteria (or DMs), a suitable
aggregation function is the Choquet integral [79].
Definition (9) [79]: Let µ : F → [0, 1] be a fuzzy measure
on a measurable space (X ,F) and f : X → [0,∞) be a
measurable function. The Choquet integral of f with respect
to µ is defined by:

Cµ (f ) = (C)
∫
f ◦ µ =

∫
∞

0
µ (Hα) dα, (9)

where Hα = {x ∈ Y | f (x) ≥ α}, ∀α ∈ [0, 1].
Suppose that the function f (x) is discrete on X =

[x1, x2, · · · , xn], and let the value of a function at a point
xi ∈ Y be denoted by fi. Consider a permutation of the
function values in increasing order denoted by f

(
x(1)

)
, . . . ,

f
(
x(n)

)
, with f

(
x(0)

)
= 0, X(i) =

{
x(i), x(i+1), · · · , x(n)

}
,

and x(n+1) = ∅. The Choquet integral can then be written
as follows [79]:

Cµ (f ) =
n∑
i=1

(
f
(
x(i)
)
− f

(
x(i−1)

))
µ
(
X(i)

)
(10)

or

Cµ (f ) =
n∑
i=1

(
µ
(
X(i)

)
− µ

(
X(i+1)

))
f
(
x(i)
)
. (11)

The Choquet integral has some well-known properties that
suit information aggregation; these properties include idem-
potence, compensativeness, and comonotonic additivity [79].

IV. A NOVEL IFE MEASURE AND COMPARISON
ANALYSIS
Since its introduction by Zadeh [90], the concept of fuzzy
entropy, a measure of uncertainty of FSs, has captured a
great deal of attention from large numbers of researchers who
have proposed axiomatic structures for entropy and quanti-
fied the entropy measure for FS as well as IFS [32], [38].
Firstly, De Luca and Termini [20] axiomatized the struc-
ture of fuzzy entropy based on the concept of Shannon’s
entropy [69]. Subsequently, Burillo and Bustince [8]
presented an axiomatic definition of an IFE measure and
provided a group of IFE measures. Garg [34] proposed a gen-
eralized entropy measure for interval-valued IFSs (IVIFSs)
and put forward a family of fuzzy entropies for IVIFSs which
can be extended to IFSs. However, the entropy measures for
IFSs proposed by Burillo and Bustince [8] and Garg [34]
factor in only one aspect of uncertainty which amounts to the
hesitancy degree and is known as the intuitionism of IFS [8].
Szmidt and Kacprzk [72] formulated a new axiomatic defi-
nition of entropy for IFSs and proposed another IFE based
on a geometric interpretation of IFSs. As an extension of
the definitions in [72], Szmidt and Kacprzk [73] proposed a
distance-based entropy measure for IFSs. However, the IFE
proposed by [73] focuses only on the other aspect of uncer-
tainty induced by the deviation from the membership degree
to the non-membership degree, which is known as the fuzzi-
ness of IFS. A number of researchers have reached a con-
sensus that the IFE measure should simultaneously take into
account the intuitionism and fuzziness of IFS [60], [64], [78].
Wei et al. [78] and Mao et al. [60] proposed new IFEs
respectively, simultaneously taking into account these two
aspects. Mao et al. [60] further pointed out that the entropy
value increases alongwith enhanced fuzziness under the same
intuitionism, and decreases alongwithweakened intuitionism
under the same fuzziness. In this section, we propose a novel
axiomatic definition of IFE and present a novel IFE based
on this axiom. We then conduct a comparison with existing
IFE measures to validate the advantages of the proposed
IFE measure.

A. A NOVEL IFE MEASURE
Firstly, suppose the universe X is a finite set; that is,
X = {x1, x2, . . . , xn}, where n ≥ 1 and n ∈ N+. Let
φA (xi) = |µA (xi)− υA (xi)| for an IFS A (∈ IFS (X)), which
can be interpreted as the balance of power between support
and opposition in a voting model [60].
Definition 10: Let A ∈ IFS (X). We then define φA (xi) as
the deviation of A from the membership degree µA (xi) to the
non-membership degree υA (xi) for all xi ∈ X , and we define
µA (xi) υA (xi) as the linear product of µA (xi) and υA (xi) in
terms of A for all xi ∈ X .

Using Definition 3 as a basis, we propose a new axiomatic
definition of the IFE measure.
Definition 11: Let A,B ∈ IFS (X). The intuitionistic fuzzy
entropymeasure is a real-valued function E (A) of πA (xi) and
φA (xi); that is,
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E (A) = f (πA (xi) , φA (xi)) : IFS (X) → [0, 1] , where
E (A) satisfies the following axiomatic principles:

(E1) E (A) = 0 iff A is a crisp set; that is, {µA (xi) = 1 and
υA (xi) = 0} or {µA (xi) = 0 and υA (xi) = 1} for all xi ∈ X .
(E2) E (A) = 1 iff πA (xi) = 1 or φA (xi) = 0 for all xi ∈ X .
(E3) E (A) = E (Ac) for all xi ∈ X .
(E4) E (A) ≤ E (B) holds in the following two situations:
a) When A is less fuzzy than B; that is, for all xi ∈ X :
µA (xi) ≤ µB (xi) and υA (xi) ≥ υB (xi) for µB (xi) ≤

υB (xi); and
µA (xi) ≥ µB (xi) and υA (xi) ≤ υB (xi) for µB (xi) ≥

υB (xi).
b) When Y ⊂ X such that, for xi ∈ Y ,

〈xi, µB (xi) , υB (xi)〉 =
〈
xi, µ′A (xi) , υ

′
A (xi)

〉
,

where φ′A (xi) = φB (xi) and π
′
A (xi) < πB (xi), and

〈xi, µB (xi) , υB (xi)〉 = 〈xi, µA (xi) , υA (xi)〉 for xi /∈ Y .
Situation a) in Definition 11 shows that f (πA (xi) , φA (xi))

is a real-valued continuous function that decreases with
respect to φA (xi) for all xi ∈ X when the value of πA (xi) is
fixed. The entropy value thus decreases along with enhanced
fuzziness under the same intuitionism. Meanwhile, situation
b) shows that f (πA (xi) , φA (xi)) increases with respect to
πA (xi) for all xi ∈ X when the value of φA (xi) is fixed,
thus indicating that the entropy value increases along with
enhanced intuitionism under the same fuzziness.

On the basis of the concepts defined in Definition 11,
we can discuss some properties of intuitionistic fuzzy
entropy.
Proposition 1: Let A,B ∈ IFS (X) and let Y ⊂ X such that,

for xi ∈ Y ,

〈xi, µB (xi) , υB (xi)〉 =
〈
xi, µ′A (xi) , υ

′
A (xi)

〉
,

where φ′A (xi) ≥ φB (xi) and π ′A (xi) = πB (xi); and, for
xi /∈ Y ,

〈xi, µB (xi) , υB (xi)〉 = 〈xi, µA (xi) , υA (xi)〉 .

We then obtain E (A) ≤ E (B).
Proof:See Appendix A.

Proposition 2: Let A,B ∈ IFS (X) and let Y ⊂ X such that,
for xi ∈ Y ,

〈xi, µB (xi) , υB (xi)〉 =
〈
xi, µ′A (xi) , υ

′
A (xi)

〉
,

where π ′A (xi) = πB (xi) andµ
′
A (xi) υ

′
A (xi) < µB (xi) υB (xi);

and, for xi /∈ Y ,

〈xi, µB (xi) , υB (xi)〉 = 〈xi, µA (xi) , υA (xi)〉 .

We then obtain E (A) ≤ E (B).
Proof: See Appendix B.

Theorem 1: Proposition 2 is equivalent to situation a) of
principle (E4) in Definition 11.
Following the proofs of Proposition 1 and Proposition 2,

we can easily obtain this theorem. We know from
Theorem 1 that the deviation between the membership degree
µA (xi) and the non-membership degree υA (xi) or the linear

FIGURE 2. Variations in the intuitionism of A. with respect to µA (x)
and υA (x).

product of µA (xi) and υA (xi) can both reflect the fuzziness
of an IFS. We define a novel intuitionistic fuzzy entropy
measure based on the above analysis.
Theorem 2: For an IFS A ∈ IFS (X), then the equation

Eq. (12), as shown at the bottom of the next page, is an
intuitionistic fuzzy entropy measure.

Proof:See Appendix C.
The uncertain information of IFSs generally consists of

intuitionistic information and fuzzy information. Based on
the intuitionistic fuzzy entropy E (A), the intuitionistic infor-
mation and the fuzzy information of A are given by

f (xi) = 1− |µA (xi)− υA (xi)| = 1− φA (xi) (13)

and

g (xi) = 1+ πA (xi) (µA (xi)− υA (xi))2

= 1+ πA (xi) φ2A (xi) (14)

respectively.
Here, we treat g (xi) as a form that describes the intuition-

ism of A and f (xi) as a form that depicts the fuzziness of A.
Suppose that the universe X has only one object; that is,
X = {x}. We then determine the variations in the intuitionism
and fuzziness of A with respect to µA (x) and υA (x). These
variations are illustrated in Figs. 2 and 3.

As shown in Figs. 2 and 3, the real-valued function g (xi)
measures the uncertain information caused by the intuition-
ism in an IFS, whereas the real-valued function f (xi) depicts
the uncertain information caused by fuzziness. The two real-
valued functions are reviewed as effective tools for interpret-
ing properly how IFE measures the uncertain information
of IFSs.

B. COMPARISON ANALYSIS
This subsection presents a comparison analysis to demon-
strate some prominent characteristics of the proposed mea-
sure and its advantages.

The family of fuzzy entropies provided by Garg [34] is
analogous to those proposed by Burillo and Bustince [8] but
focuses only on the intuitionism of an IFS. We conduct an
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TABLE 2. The comparison of different intuitionistic fuzzy entropy measures.

FIGURE 3. Variations in the fuzziness of A. with respect to µA (x)
and υA (x) .

equivalence conversion from one of the fuzzy entropy mea-
sures for IVIFSs proposed by Garg [34] to an IFE measure
presented in Eq. (15), as shown at the bottom of the next page.

Szmidt and Kacprzk provided an IFE measure in [72],
which results from the geometric interpretation of IFSs and is
exhibited in Eq. (16). In Eq. (16), as shown at the bottom of
the next page, for each i, Ai denotes the single-element in an
IFS corresponding to the element xi in X , and is described as
Ai = {〈xi, µA (xi) , υA (xi)〉}. They then came up with another
novel IFE measure depicted in Eq. (17), as shown at the
bottom of the next page, which factors in only the fuzziness
of IFS [73].

Wei et al. [78] and Mao et al. [60] introduced novel IFEs
respectively which focus simultaneously on the fuzziness

and intuitionism of IFS and are represented by Eq. (18) and
Eq. (19), as shown at the bottom of the next page.

We present an example below to illustrate the dif-
ference between the proposed IFE measure E (A) and
the existing measures EG (A), ESK1 (A), ESK2 (A), EM (A)
and EW (A).
Example 1: Suppose the universe X = {x} has the 9 IFSs
{A1,A2, · · · ,A9} that are presented in Table 2. We can make
use of the intuitionistic fuzzy entropy measures provided
above to calculate the entropy values of the nine IFSs. The
entropy values are shown in Table 2.

1) The comparison of E (A) with EG (A).
From Table 2, we see that EG (A) cannot distinguish A7,

A8, and A9, owing to the fact that EG (A) focuses only on
the intuitionism of IFS and the three IFSs have the same
degree of hesitancy or intuitionism. It is apparent that the
deviation degree of the supportability and opposability of A9
is larger than that of A7 and A8, indicating that the uncer-
tainty degree of A9 is larger than that of A7 and A8. In con-
trast, the proposed IFE measure E (A) produces the result
E (A9) > E (A8) > E (A7), indicating that E (A) is incon-
sistent with human intuition and that E (A) performs better
than EG (A).
2) The comparison of E (A) with ESK2 (A).
Table 2 indicates that ESK2 (A) cannot tell the difference

between A2, A4, and A5. Although A2, A4, and A5 take the
same value in the deviation degree of supportability and
opposability, it is apparent that A5 is more uncertain than
A4 and A2 because of the larger hesitancy degree embedded
in A5. Applying E (A) produces the result E (A5) > E (A4) >
E (A2), which accords with human intuition.

E (A) =
1
n

n∑
i=1

(1− |µA (xi)− υA (xi)|)
[
1+ (1− µA (xi)− υA (xi)) (µA (xi)− υA (xi))2

]
=

1
n

n∑
i=1

(1− φA (xi))
(
1+ πA (xi) φ2A (xi)

)
(12)
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3) The comparison of E (A) with EM (A).
From Table 2, we see that A1, A6, and A7 take the same

value 1 when E (A) is applied, whereas EM (A) produces dif-
ferent results on A1, A6, and A7. The main reason is that E (A)
is constructed according to the principle (E2) inDefinition 11,
which points out that E (A) = 1 iff πA (xi) = 1 OR φA (xi) =
0 for all xi ∈ X . However, the corresponding constructive
principle for EM (A) is that E (A) = 1 iff πA (xi) = 1 AND
φA (xi) = 0 for all xi ∈ X . We hold that the principle (E2)
in Definition 11 is essential for the construction of an IFE
measure owing to the fact that entropy is introduced to mea-
sure the uncertainty degree, whereas the counterpart held by
EM (A) is appropriate to measure the amount of information
embedded in an IFS which has been called the knowledge
measure of an IFS [19], [46], [74]. Essentially, the entropy
measure and the knowledge measure differ significantly from
a practical point of view [19], [46], [74].

4) The comparison of E (A) with ESK1 (A) and EW (A).
Firstly, we convert ESK1 (A) to the formula E ′SK1 (A)

depicted in Eq. (20), as shown at the bottom of this page,
which has been proved to be equivalent to ESK1 (A) by
Wei et al. [77]. From Eq. (20), we find that E ′SK1 (A) and
EW (A) take a similar form. Table 2 indicates that it is hard
to tell the difference between E (A), ESK1 (A), and EW (A).
However, if we fix the intuitionism of the three IFEmeasures,
we find that E (A) is a linear function and is more uniform
than ESK1 (A) and EW (A). Thus, we hold that the proposed
IFE measure is more consistent with human intuition. To fur-
ther facilitate the discussion, consider the universe X = {x}
for an IFS A = {〈x, µA (x) , υA (x)〉}. The variations in the
entropy values of A with respect to µA (x) and υA (x) within
the range of [0, 1] using the IFE measures E (A), E ′SK1 (A),
and EW (A) are presented in Figs. 4 to 6.
As shown in the figures, the entropy values obtained by

the proposed IFE measure (Fig. 4) are more uniform than
those obtained by its counterparts (Figs. 5 and 6). To conclude

FIGURE 4. Variations in the entropy values of A with respect to µA (x) and
υA (x) using E

(
A
)
.

this analysis, the comparisons confirm the rationality and
efficiency of the proposed intuitionistic fuzzy entropy mea-
sure. We can sum up the characteristics of the proposed
measure as follows:
(i) The constructive function for the IFE measure is sym-

metric;
(ii) The IFE measure takes the value of 0 if πA (xi) = 1

or µA (x) = υA (x);
(iii) The IFE value increases with the hesitancy degree

πA (xi) when the deviation between the membership
degree µA (x) and the non-membership degree υA (x)
is fixed, and decreases with the deviation from µA (x)
to υA (x) when πA (xi) is fixed;

(iv) The IFE value decreases with respect to the linear prod-
uct µA (x) υA (x) with a fixed hesitancy degree πA (xi).

V. A CONSOLIDATED MODEL FOR MCGDM
In this section, we structure a consolidated model based
on IFNs for an MCGDM problem in which interactions
among DMs, arising from their similar backgrounds, lead to

EG (A) =
1
n

n∑
i=1

(
1− (µA (xi)+ υA (xi)) e1−(µA(xi)+υA(xi))

)
=

1
n

n∑
i=1

(
1− (1− πA (xi)) eπA(xi)

)
(15)

ESK1 (A) =
1
n

n∑
i=1

maxCount
(
Ai ∩ ACi

)
maxCount

(
Ai ∪ ACi

) (16)

ESK2 (A) = 1−
1
2n

n∑
i=1

|µA (xi)− υA (xi)| = 1−
1
2n

n∑
i=1

φA (xi) (17)

EW (A) =
1
n

n∑
i=1

2µA (xi) υA (xi)+ πA (xi)

µ2
A (xi)+ υ

2
A (xi)+ πA (xi)

=
1
n

n∑
i=1

1− φ2A (xi)+ π
2
A (xi)

1+ φ2A (xi)+ π
2
A (xi)

(18)

EM (A) =
1

2n ln 2

n∑
i=1

(
πA (xi) ln 2+ φA (xi) lnφA (xi)+ (φA (xi)+ 1) ln

2
φA (xi)+ 1

)
(19)

E ′SK1 (A) =
1
n

n∑
i=1

1− |µA (xi)− υA (xi)| + πA (xi)
1+ |µA (xi)− υA (xi)| + πA (xi)

=
1
n

n∑
i=1

1− φA (xi)+ πA (xi)
1+ φA (xi)+ πA (xi)

(20)
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FIGURE 5. Variations in the entropy values of A with respect to µA (x) and
υA (x) using E ′

SK1
(
A
)
.

FIGURE 6. Variations in the entropy values of A with respect to µA (x) and
υA (x) using EW

(
A
)
.

interrelationships among the DM-related decision informa-
tion, which includes the individual criteria weights, the DM
weights, and the evaluation information on alternatives. In the
model, an integrated method capable of tackling the interrela-
tionships among the decision information associated with the
individual criteria weights and the DMweights is put forward
based on the proposed IFEmeasure, 2-additive fuzzymeasure
and Choquet integral to determine simultaneously the DM
weights and the criterion weights. In addition, because of
its ability to model the interrelationships among the evalua-
tion information on alternatives, the WIFBM (or WIFGBM)
is introduced to fuse the individual evaluation information.
Based on the WIFBM or the WIFGBM, the SAW method is
then applied to determine the best alternative.

The following notations are used to denote the indices, sets,
and variables in an MCGDM problem.

• m : Total number of alternatives;
• n : Total number of criteria;
• t : Total number of DMs involved in the decision
process;

• i ∈ M = {1, 2, · · · ,m} : Index of alternatives;
• j ∈ N = {1, 2, · · · , n} : Index of criteria;
• k ∈ T = {1, 2, · · · , t} : Index of DMs;
• Ai : The ith alternative;
• A = {A1,A2, · · · ,Am} : A set of m alternatives;
• Cj : The jth criterion;
• C = {C1,C2, · · · ,Cn} : A set of n criteria, which are
considered to be independent;

• Dk : The kth expert;
• D = {D1,D2, · · · ,Dt } : A set of t DMs;
• δk :Weight of the kth DM;
• δ = (δ1, δ2, · · · , δt)

T
: Vector of the weights of the

DMs, where
∑t

k=1 δk = 1, 0 ≤ δk ≤ 1, and
k = 1, 2, · · · , t;

• ωkj :Weight of the jth criterion with respect to DM Dk ;

• ωk =
(
ωk1, ω

k
2, · · · , ω

k
n
)T
: Vector of criterion weights

with respect to DM Dk , where
∑n

j=1 ω
k
j = 1, 0 ≤ ωkj ≤

1, and j = 1, 2, · · · , n;
• ω = (ω1, ω2, · · · , ωn)

T
: Overall weight vector of the

criteria, where
∑n

j=1 ωj = 1, 0 ≤ ωj ≤ 1, and j =
1, 2, · · · , n;

• Nb : A collection of benefit criteria (i.e., larger criterion
value indicates greater preference);

• Nc : A collection of cost criteria (i.e., smaller criterion
value indicates greater preference) such that Nb ∪ Nc =
N and Nb ∩ Nc = ∅;

• rkij : Evaluation of alternative Ai concerning criterion Cj
that is given by DM Dk and is an IFN;

• R =
(
R1,R2, · · · ,Rk

)T
: Vector of intuitionistic fuzzy

decision matrices with respect to all DMs.
In this work, we focus on addressing an MCGDM problem

aimed at ranking alternatives and selecting the most desirable
alternative(s) from an alternative set A based on the criteria
set C . The basic process for solving this MCGDM problem
is illustrated in Fig. 7.
Step 1:Establish and normalize decision matrices.
Each DM provides his or her intuitionistic fuzzy decision

information on alternatives, with respect to each criterion,
which can constitute a matrix depicted as follows:

Rk

=

(
rkij
)
m×n
=


(
µk11, υ

k
11

) (
µk12, υ

k
12

)
· · ·

(
µk1n, υ

k
1n

)(
µk21, υ

k
21

) (
µk22, υ

k
22

)
· · ·

(
µk2n, υ

k
2n

)
...

...
...

...(
µkm1, υ

k
m1

) (
µkm2, υ

k
m2

)
· · ·

(
µkmn, υ

k
mn
)


where rkij (i ∈ M , j ∈ N , k ∈ T ) represents the intuitionistic
fuzzy value of criterion Cj (∈ C) of the alternative Ai (∈ A),
which is provided by Dk (∈ D).

The evaluations do not need normalization if all the criteria
Cj (1, 2, · · · , n) are of the same type. However, MCGDM
commonly comprises benefit and cost criteria. In such cases,
we may transform the evaluations of the cost type into
evaluations of the benefit type. According to Xu [83],
Rk =

(
rkij
)
m×n

can be transformed into the normalized
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FIGURE 7. The proposed MCGDM process.

intuitionistic fuzzy decision matrix Qk =
(
qkij
)
m×n

, where

qkij =
(
tkij , f

k
ij

)
=

{
rkij , for benefit criterionCj ∈ Nb
r̄kij , for cost criterionCj ∈ Nc

and r̄kij is the complement of rkij such that r̄kij =
(
υkij, µ

k
ij

)
.

Step 2:Determine the weights of DMs and criteria.
A key element in the MCGDM process is specifying the

weights of DMs and criteria. If we overlook a key crite-
rion or a key DM (e.g., we assign a higher weight than
necessary to a criterion or DM), then information that could
be used to distinguish the options on this dimension may be
ignored, thereby increasing the likelihood of an inappropri-
ate decision. Hence, the method for specifying the weights
of DMs and criteria should factor in the impact resulting
from the interactions among the DMs who share a similar
knowledge. Inspired by Shi et al. [70] who put forward a
method for determining the weights of DMs considering the
interactions among them, we propose an integrated method
to simultaneously determine the weights of DMs and criteria.
Step 2.1:Determine the individual criterion weights.
The entropy-based method based on the proposed IFE

measure is introduced to obtain the individual weights of the
criteria ωk =

(
ωk1, ω

k
2, · · · , ω

k
n
)T

with respect to each DM
Dk (∈ D) which are specified by the following formula:

ωkj =

1−
m∑
i=1

E
(
rkij
)

n−
n∑
j=1

m∑
i=1

E
(
rkij
) (21)

Step 2.2:Determine the initial weights of DMs andmeasure
the degrees of resemblance between DM knowledge levels.

A supervisor who is supposed to be familiar with all of the
DMs is required to assign initial weights to each of the DMs,
which are denoted by ζ = (ζ1, ζ2, · · · , ζt)

T , and to further
determine the degree of resemblance between the knowledge
levels of any two DMs. If any two of the DMs (e.g., Dk
andDl) share similar knowledge levels to a large degree, then
the resemblance degree can be denoted by dkl , which takes
the value of 1 in this case. Conversely, if DMsDk andDl lack
resemblance, then dkl takes the value of −1.
Step 2.3:Measure the degrees of resemblance between

DM preferences.
According to Shi et al. 70], the DM preferences are

reflected in the weight vectors of the criteria corresponding to
each DMDk (∈ D). Thus, the degree of resemblance between
the preferences of Dk and Dl is defined as:

skl = coskl θ =
ωk · ωl∣∣ωk ∣∣ ∣∣ωl ∣∣ (22)

where skl = slk and skl ∈ [0, 1].
Obviously, a large skl indicates a large degree of resem-

blance between the preferences of Dk and Dl .
Step 2.4:Calculate the fuzzy measureµkwith respect

to DMDk .
The fuzzy measure µk with respect to Dk is assumed to be

linearly correlated with the initial weight of Dk . Thus,

µk = λζk (k ∈ T ) (23)
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where λ represents the linear coefficient of Eq. (23) and
λ ≥ 0. If the information associated with the interactions
among DMs is redundant, we then have λ > 1. In this
case, a great degree of information redundancy results in a
large λ. If the information associated with the interactions
among DMs is complementary, we then have λ < 1. In this
case, a great degree of complementary information results in
a small λ. In particular, if the information redundancy and
the information complementation are of the same degree,
then λ = 1.

By combining Steps 2.2 and 2.3, we can define themeasure
of the degree of information redundancy or information com-
plementation associated with the interactions among DMs;
that is,

χ =
∑
k,l∈T

ζkζldklskl, (24)

where χ > 0 represents information redundancy, χ < 0
represents information complementation, and χ = 0 shows
the homogeneity of the degree of information redundancy
and that of information complementation. The relationship
between λ and χ can be defined by:

λ =
1

1− χ
. (25)

Hence, the fuzzy measure µk with respect to DM Dk is
determined by µk = λζk .
Step 2.5:Calculate the fuzzy measureµklcorresponding to

any two DMs.
Let us consider DMs Dk and Dl . If the information pro-

vided by Dk is considered as redundant with respect to Dl
(that is, Dk would provide the same information that Dl may
have provided because of their similarity in knowledge levels
and preferences), then Dk is supposed to be assigned a low
degree of importance. However, if the information provided
by any one of the two DMs is considered as complemen-
tary with respect to the other (that is, DM Dk can provide
information that complements DM Dl), then Dk is supposed
to be assigned a large degree of importance. Considering
the interactions among DMs, we can define the importance
degree of Dk as:

δ′k = ζk −

t∑
l=1,l 6=k

1
2
ζkζldklskl . (26)

Thus the weight of Dk can be obtained by normalizing δ′k ,
which leads to:

δk = δ
′
k

/
t∑

l=1

δ′l . (27)

Furthermore, the fuzzy measure µkl can be determined
by:

µkl = µk + µl − λζkζldklskl (28)

The 2-additive fuzzy measure is determined by µk and µkl
as:

µ (S) =
∑
{k,l}⊂S

µkl − (|S| − 2)
∑
l⊂S

µl (29)

for any S ⊆ T such that |S| ≥ 2.
Step 2.6:Determine the collective weight vector of the

criteriaω = (ω1, ω2, · · · , ωn)
T .

The collective weight of criterion Cj can be written using
the Choquet integral as:

ωj=
ω∗j
n∑
j=1
ω∗j

=

t∑
k=1

ω
(k)
j

[
µ
(
D(k)

)
− µ

(
D(k+1)

)]
n∑
j=1

t∑
k=1

ω
(k)
j

[
µ
(
D(k)

)
− µ

(
D(k+1)

)] , (30)

where (·) indicates a permutation on N such that ω(1)j ≤

ω
(2)
j ≤ · · · ≤ ω

(n)
j , and D(i) =

{
D(i),D(i+1), · · · ,D(t)

}
with

D(t+1) = ∅.
Both the collective weight vector of the criteria and the

weight vector of DMs can be determined by following
Steps 2.1 to 2.6.
Step 3:Fuse individual normalized decision matrices.
To capture the interrelationships among the individual

evaluations of each alternative with respect to each criterion,
we use theWIFBM or theWIFGBM for fusing the individual
evaluation values

{
q1ij, q

2
ij, · · · , q

t
ij |i ∈ M , j ∈ N

}
to derive

the collective evaluation value zij =
(
φij, ϕij

)
of each alter-

native on each criterion. The collective preference value is
obtained in the following cases.
Case 1: If we use the WIFBM, we then have

zij =
(
φij, ϕij

)
= IFBp,qδ

(
q1ij, q

2
ij, · · · , q

t
ij

)
.

Case 2: If we use the WIFGBM, we then have

zij =
(
φij, ϕij

)
= IFGBp,qδ

(
q1ij, q

2
ij, · · · , q

t
ij

)
.

Step 4:Rank alternatives and select the best one.
It is worth noting that there are also interrelationships

among the collective evaluation values {zi1, zi2, · · · , zin |i ∈ M }
of each alternative. Thus, the SAW method based on the
WIFBM or the WIFGBM is introduced to generate a final
ranking of alternatives. With the aid of the WIFBM or the
WIFGBM, we can derive the overall evaluation value ci =
(κi, ηi) of alternative Ai by aggregating the collective prefer-
ence values of alternative Ai on all the criteria.
Case 1: If we use the WIFBM, we then have

ci = (κi, ηi) = IFBp,qω (zi1, zi2, · · · , zin) .

Case 2: If we use the WIFGBM, we then have

ci = (κi, ηi) = IFGBp,qω (zi1, zi2, · · · , zin) .

We can then rank the alternatives depending on the score and
accuracy values of ci = (κi, ηi) (i = 1, 2, · · · , 6) and find the
most desirable alternative.
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VI. CASE STUDY
A. APPLICATION TO EP DECISION-MAKING
A security department of a railway administrative body in
China intends to draw up a new EP to respond to train
derailment, which is one of the most frequent accidents in
the railway sector. An EP can be decomposed into a sequence
of actions required for dealing with specific scenarios. As a
new derailment accident shares features and requirements
with similar cases experienced previously, the department can
adopt a case-based reasoning method to generate the EP for
derailment, in which the actions required are specified by
retrieving and revising the operations for the most similar
scenarios which have been stored in a case database in a struc-
tured form. After the retrieval procedure has generated a few
candidates, a selection procedure for the most appropriate EP
can then be activated with the aid of the proposed MCGDM
model. Given the alternatives {A1,A2,A3,A4,A5,A6} and the
criteria {C1,C2,C3,C4,C5,C6} described in Table 1, the
department establishes a temporary decision-making team
{D1,D2,D3,D4} composed of the relevant experts, man-
agers, and staff involved in train derailments to conduct the
selection and revision procedures. Additionally, a supervisor
in the department assigns weights ζ = (0.4, 0.25, 0.15, 0.2)T

to DMs based on their knowledge, experience, status, and so
on.
Step 1:Establish and normalize decision matrices.
Each DM Dk (k = 1, 2, 3, 4) is asked to provide the evalu-

ation information for alternatives on each criteria in the form
of IFNs, which can be denoted by Rk =

(
rkij
)
6×6

in which

rkij is an IFN and represents the performance of EP Ai under
criterion Cj provided by the DM Dk (i = 1, 2, · · · , 6, j =
1, 2, · · · , 6, k = 1, 2, 3, 4). The results are shown in Table 3.
As all the criteria for EP evaluation are the benefit criteria,
there is no need to normalize the decision matrices.
Step 2:Determine the weights of DMs and criteria.
Step 2.1:Determine the individual criterion weights.
By the proposed IFE measure in Eq. (12) and the entropy-

based method for determining criterion weights in Eq. (21),
we can derive the individual criterionweightsωk for eachDM
Dk (k = 1, 2, 3, 4) as follows:

ω1
= (0.167, 0.195, 0.125, 0.182, 0.157, 0.174)

ω2
= (0.152, 0.185, 0.183, 0.165, 0.159, 0.156)

ω3
= (0.189, 0.197, 0.152, 0.197, 0.14, 0.124)

and

ω4
= (0.154, 0.155, 0.182, 0.165, 0.182, 0.162) .

Step 2.2:Measure the degrees of resemblance between
DM knowledge levels.

The degree of resemblance between the knowledge lev-
els of any two DMs is determined by the group leader as
d12 = +1, d13 = +1, d14 = +1, d23 = −1, d24 = −1,
and d34 = −1.
Step 2.3:Measure the degrees of resemblance between DM

preferences.

TABLE 3. Intuitionistic fuzzy decision matrices R1, R2, R3, and R4.

Following Eq. (22), we can obtain the degree of resem-
blance between the preferences of any two DMs as follows:
s12 = 0.964; s13 = 0.978; s14 = 0.987; s23 = 0.993;
s24 = 0.917; and s34 = 0.934.
Step 2.4:Calculate fuzzymeasureµkwith respect to DMDk .
By using Eq. (23), we can calculate χ = 0.123 and λ =

1.14. Furthermore, the fuzzy measuresµk (k = 1, 2, 3, 4) are
µ1 = 0.456, µ2 = 0.285, µ3 = 0.171, and µ4 = 0.228.
Step 2.5:Determine the weights of individual DMs.
Following Eq. (26) and Eq. (27), we determine the weights

of DMs D1, D2, D3, and D4 as δ1 = 0.323, δ2 = 0.277, δ3 =
0.175, and δ4 = 0.225, respectively. The 2-additive fuzzy
measures can be calculated following Eq. (28) and Eq. (29).
The results are shown in Table 4. Fig. 8 illustrates the process
of calculating the 2-additive fuzzy measures.
Step 2.6:Determine the overall weight vector of the criteria.
Using the Choquet integral, the overall weight vector of the

criteria is determined as:

ω = (0.163, 0.183, 0.162, 0.176, 0.159, 0.158) .

Step 3:Fuse individual normalized decision matrices.
To obtain the collective evaluations of the EPs on each

criterion, the WIFBM (or WIFGBM) is used to synthesize
the individual evaluations

{
q1ij, q

2
ij, q

3
ij, q

4
ij |i ∈ M , j ∈ N

}
.

Xu [82] pointed out that the value derived by the IFBM
depends on the choice of parameters p and q, which are not
robust. In general, an extensive calculation is needed when
parameters p and q are large. In the special case where at least
one of these two parameters takes the value of 0, the IFBM
cannot capture the interrelationships among individual pref-
erences. As a result, the values of the two parameters are taken
as p = q = 1 in practical applications. This approach, which

VOLUME 7, 2019 41971



J.-P. Chang et al.: Intuitionistic Fuzzy MCGDM

FIGURE 8. The process of calculating 2-additive fuzzy measures.

TABLE 4. The 2-additive fuzzy measures.

is intuitive and simple, considers fully the interrelationships
among the individual arguments. The corresponding results
obtained by the WIFBM and the WIFGBM with the overall
weight vector of criteria ω are shown in Tables 5 and 6,
respectively.
Step 4:Rank alternatives and select the best one.
The WIFBM or the WIFGBM (here, we take p = q = 1)

and the DM weight vector δ are utilized to calculate the
overall evaluation information of the EPs. The results are
shown in Table 7. By Definition 2, we can obtain the ranking
of alternatives A6 � A4 � A5 � A3 � A1 � A2 in
Case 1 with the EP A6 ranking first, and the ranking of
alternatives A6 � A3 � A5 � A1 � A2 � A4 in Case 2 with
EP A2 ranking first. The ranking result using WIFBM in
Case 1 is obviously different from the ranking of alternatives
byWIFGBM in Case 2, but the alternative A2 is obviously the
best EP among the candidates. Table 7 shows that most of the
scores obtained by the WIFBM are smaller than 0 and that
most of those obtained by the WIFGBM are bigger than 0.
This result indicates that the WIFGBM can obtain optimistic
expectations, whereas the WIFGBM can obtain pessimistic
expectations.

With respect to the WIFBM and the WIFGBM,
Xia et al. [84] pointed out that the values of parame-
ters can be considered as representing either optimistic or

pessimistic levels. Therefore, the decision results may differ
given changes to the parameters p and q. Fig. 9 shows the
WIFBM scores for the alternatives when the parameters
change in the following cases:

i) p = q ∈ [0, 10];
ii) p ∈ [0, 10] , q = 1;
iii) p ∈ [0, 10] , q = 3;
iv)p ∈ [0, 10] , q = 5;
v)p ∈ [0, 10] , q = 7;
vi) p ∈ [0, 10] , q = 9.
The scores for q ∈ [0, 10] , p = 1, 3, 5, 7, 9 are exactly the

same as p = [0, 10] , q = 1, 3, 5, 7, 9 because the WIFBM
is a symmetric function. Fig. 10 shows the WIFGBM scores
for the alternatives when the parameters change in the same
cases. An intuitive feature reflected in these figures is that the
ranking of the alternatives differs if the parameters change.
Any intersection of these curves indicates the change in the
ranking of any two alternatives. The rankings of the alter-
natives are slightly different in most cases. At some points,
however, the scores for the alternatives change considerably.
Therefore, the decision results often fluctuate under these
situations. In fact, the parameters can be determined accord-
ing to the subjective preferences of the DMs, and changes
in the rankings of the alternatives can reflect the DMs’ risk
preferences.

B. SENSITIVITY ANALYSIS
In this subsection, we conduct a sensitivity analysis to explore
how adjustments to the criterion weights influence the final
ranking of alternatives. In Case 1, we firstly increase and
decrease the weight of each criterion by 30% and 60%,
respectively. The weights of other criteria are then adjusted
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TABLE 5. The collective evaluation values of each EP on each criterion obtained by using the WIFBM.

TABLE 6. The collective evaluation values of each EP on each criterion obtained by using the WIFGBM.

TABLE 7. The overall preferences and the corresponding scores of each alternative for Case 1 and Case 2.

FIGURE 9. WIFBM scores for the EPs.

accordingly to ensure that the sum of all the criterion weights
is equal to 1. Thus, we acquire four new groups of weights for
each criterion, which would take 24 experiments to conduct

the sensitivity analysis. We fix other parameters including
the weights of DMs and the criterion values, apply each new
group of criterionweights to the proposedmodel, and arrive at
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FIGURE 10. WIFGBM scores for the EPs.

FIGURE 11. The results of sensitivity analysis in Case 1.

24 new rankings of alternatives, which are depicted in Fig. 11.
We conduct the same experiments for Case 2 and the results
are shown in Fig. 12. From Figs. 11 and 12, we arrive at the
following two conclusions:

(i) The change of criterion weights has a notable influence
on the final ranking of alternatives, necessitating the
input of precise criterion weights during the applica-
tion of the proposed MCGDM model, and motivating
an adjustment of the criterion weights to mitigate the
influence of the interactions among DMs.

FIGURE 12. The results of sensitivity analysis in Case 2.

(ii) The results obtained by SAW based on WIFGBM
are more robust than the results from SAW based
on WIFBM, indicating that WIFGBM performs better
thanWIFBM in modeling the interrelationships among
the decision information.

C. COMPARISON ANALYSIS
1) Comparison analysis to demonstrate the necessity of fac-
toring in the interactions among DMs.
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TABLE 8. The collective evaluation values of each EP on each criterion obtained by using the WIFAM.

To achieve the goal of validating the necessity of fac-
toring the interactions among DMs into the structure of
the MCGDM model, we conduct a comparison of the pro-
posed MCGDM model with the traditional MCGDM model
which is constructed on the hypothesis that the DMs are
independent.

Firstly, we structure a traditional MCGDM model within
the domain of our research topic. This is achieved by the
following procedure.
Step 1: Each DM is asked to provide the evaluation infor-

mation
{
R
′k
=

(
r
′k
ij

)
m×n
|k ∈ T

}
in which r

′k
ij =

(
µ
′k
ij , υ

′k
ij

)
is an IFN. The decision matrices

{
R′k =

(
r
′k
ij

)
m×n
|k ∈ T

}
are then normalized to ensure that all the evaluation values
are of the same type.
Step 2: We determine the weights of the criteria ω′k =(
ω
′k
1 , ω

′k
2 , · · · , ω

′k
n

)T
based on the entropy-based method in

which the proposed IFE measure is also applied. The weights
of the DMs are assigned directly by a supervisor familiar
with all the DMs and represented as ζ ′ =

(
ζ ′1, ζ

′

2, · · · , ζ
′
t
)T .

We can then acquire the collective weights of the criteria
ω′ =

(
ω′1, ω

′

2, · · · , ω
′
n
)T by the formula ω′j =

∑t
k=1 δ

′
kω
′k
j .

Step 3: The weighted intuitionistic fuzzy arithmetic mean
(WIFAM) [80] is introduced to fuse the individual decision
matrices into a collective decision matrix denoted by R′ =(
r ′ij
)
m×n

in which the r ′ij =
(
µ′ij, υ

′
ij

)
is also an IFN.

Step 4: The final ranking of alternatives is determined by
the SAW method based on WIFAM.

Subsequently, we apply the traditional MCGDM model to
the EP decision-making problem described above. The input
decision information for this traditional MCGDM model{
R′k =

(
r
′k
ij

)
6×6
|k = 1, 2, 3, 4

}
remains the same and is

depicted in Table 2. By the entropy-based method presented
in Eq. (21), we obtain the individual criteria weights with the
results

{
ω′
k
= ωk |k = 1, 2, 3, 4

}
. Given the DM weights

ζ ′ = (0.4, 0.25, 0.15, 0.2)T , we obtain the collective weights
of the criteria as:

ω = (0.1638, 0.1849, 0.1548, 0.1769, 0.1601, 0.1595) .

Using the WIFAM, we can obtain the collective decision
matrix depicted in Table 8. Subsequently, we use the SAW
method based on WIFAM to obtain the final ranking of EPs
A3 � A5 � A4 � A6 � A2 � A1 with the EP A3 ranking
first. We can easily find a considerable difference between

FIGURE 13. The results of sensitivity analysis using the traditional
MCGDM model.

the result obtained by the traditionalMCGDMmodel and that
obtained by the proposed MCGDM model. The main reason
for the difference is that the proposed model factors in the
interactions among DMs whereas the traditional MCGDM
model does not take into account these interactions. In order
to further verify the superiority of the proposed MCGDM
model over the traditional MCGDM model, we conduct a
sensitivity analysis on the traditional MCGDM model based
on the WIFAM by following the same procedure as that
carried out on the proposed model. The results are shown
in Fig. 13. Comparing Fig. 11 or Fig. 12 with Fig. 13,
we can easily see that the proposed MCGDM model based
on WIFBM or WIFGBM is more robust and performs better
than the traditional MCGDM model based on WIFAM.
2) Comparison analysis to demonstrate the feasibility of

the proposed ranking method.
In order to verify the feasibility of the proposed ranking

method (i.e., the SAWmethod based onWIFBMorWIFGBM),
we conduct a comparison with other popular MCDM meth-
ods, namely SAW based on WIFAM, TOPSIS [7], and
VIKOR [75]. Before carrying out the comparison process,
we should ensure that the input information for these MCDM
methods remains the same.

The input information is deemed to be the collective evalu-
ation values of each EP on each criterion shown in Table 5 for
Case 1 and in Table 6 for Case 2, and the collective criterion
weights are as follows:

ω = (0.163, 0.183, 0.162, 0.176, 0.159, 0.158) .
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TABLE 9. Comparison analysis to demonstrate the feasibility of the proposed ranking method.

Additionally, the normalized Euclidean distance of an IFS,
as coined by Szmidt and Kacprzyk [71], is introduced for
the implementation of TOPSIS and VIKOR. The rankings of
alternatives are then obtained for Case 1 using SAW method
based on WIFBM, SAW based on WIFAM, TOPSIS, and
VIKOR. The results are presented in Table 9. The rank-
ing of alternatives for Case 2 using SAW method based on
WIFGBM, SAWbased onWIFAM, TOPSIS, and VIKOR are
also presented in Table 9. From Table 9, we find that although
the results from SAW based on WIFBM for Case 1 or on
WIFGBM for Case 2 are slightly different from the results
derived from SAW based on WIFAM, TOPSIS, and VIKOR,
the alternativeA6 remains the optimal alternative when adopt-
ing different ranking methods. Thus, the SAW method based
on WIFBM or WIFGBM is feasible, and the results obtained
by this ranking method are reliable.

To conclude the above analysis, in order to address the
problem of the interactions among DMs when a number of
DMs share a similar background, we require an MCGDM
model that is capable of modeling the various impacts result-
ing from these interactions. Analysis shows the proposed
model to be feasible and applicable to this type of MCGDM
problem, and the results of the proposed model to be reliable
and robust. In addition, implementing the proposedMCGDM
model only requires the input of decision information, includ-
ing firstly the evaluation values of alternatives on criteria
provided by DMs, and secondly the degree of resemblance
between the knowledge levels of any two DMs provided by a
supervisor.

VII. CONCLUSION
In this paper, with the aim of addressing the impact of
the interactions among DMs when a number of DMs share
a similar background, we have developed a consolidated
MCGDM model within the IFNs context. Firstly, we put
forward a new axiomatic definition for the construction of
an IFE measure and produced a new IFE measure on the
basis of this definition. Additionally, we validated its advan-
tages over existing IFE measures by comparison analysis.
Secondly, we presented an integrated method of obtaining the
weights of DMs and criteria based on the new IFEmeasure, 2-
additive fuzzy measure, and Choquet integral. Subsequently,
we introduced WIFBM and WIFGBM for synthesizing the
individual evaluation values, and the SAW method based
on WIFBM or WIFGBM for ranking alternatives. Finally,
the proposed MCGDMmodel was applied to an EP decision-
making problem to exemplify its feasibility and effectiveness.

The main advantages of the proposed model can be summa-
rized as follows:

(i) The novel IFE measure for obtaining objective indi-
vidual criterion weights factors in simultaneously the
fuzziness and intuitionism of IFS and performs bet-
ter than existing IFE measures in its consistency with
human intuition and its precision in measuring the
uncertainty of IFSs.

(ii) The integrated method for determining the weights
of DMs and criteria can tackle effectively the
impact of the interactions among DMs on the spec-
ifications of the collective criterion weights and
DM weights.

(iii) The WIFBM and WIFGBM introduced for the aggre-
gation of individual evaluation information and the
ranking of alternatives can model effectively the inter-
relationships among arguments induced by the interac-
tions among DMs.

Thus, the proposed model avoids the impacts resulting from
the interactions among DMs on the specifications of collec-
tive criterion weights and DM weights, and on the fusion
of individual evaluation values. The analysis has shown that
it can model MCGDM problems effectively and can help
groups of DMs to make specific decisions. In addition,
the proposed MCGDM model can be extended to support
situations where the information is in other forms, such as
interval-valued IFNs, linguistic variables, or type-2 fuzzy
numbers.

However, the proposed model does have some limitations.
The model does not include the impact of interactions among
DMs on the consensus-reaching problems inMCGDM, or the
impact of interdependence among criteria. Those omissions
indicate the main directions for future research.

APPENDIX A
PROOF OF PROPOSITION 1
Proof: Following Definition 11, we obtain the following

for all xi ∈ X :
a)µA (xi) ≤ µB (xi) ≤ υB (xi) ≤ υA (xi) ⇔ φA (xi) ≥

φB (xi) when µA (xi) ≤ µB (xi) and υA (xi) ≥ υB (xi) for
µB (xi) ≤ υB (xi); that is, E (A) ≤ E (B).
b) υA (xi) ≤ υB (xi) ≤ µB (xi) ≤ µA (xi) ⇔ φA (xi) ≥

φB (xi) when µA (xi) ≥ µB (xi) and υA (xi) ≤ υB (xi) for
µB (xi) ≥ υB (xi); that is, E (A) ≤ E (B).
As φ′A (xi) ≥ φB (xi) for xi ∈ Y , combining the analyses in

a) and b) yields E (A) ≤ E (B).
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APPENDIX B
PROOF OF PROPOSITION 2
Proof: For xi ∈ Y , we have π ′A (xi) = π

′
B (xi). Then,

µ
′2
A (xi)+ υ

′2
A (xi)+ 2µ′A (xi) υ

′
A (xi)

= µ2
B (xi)+ υ

2
B (xi)+ 2µB (xi) υB (xi).

Following the condition thatµ′A (xi) υ
′
A (xi) < µB (xi) υB (xi),

we have

µ
′2
A (xi)+ υ

′2
A (xi)+ 2µ′A (xi) υ

′
A (xi)− 4µ′A (xi) υ

′
A (xi)

> µ2
B (xi)+ υ

2
B (xi)+ 2µB (xi) υB (xi)− 4µB (xi) υB (xi) .

Thus, we have(
µ′A (xi)− υ

′
A (xi)

)2
> (µB (xi)− υB (xi))2 .

Therefore,

φ′A (xi) > φB (xi) .

Following Definition 11, we finally obtain E (A) ≤ E (B).

APPENDIX C
PROOF OF THEOREM 2
Proof: From 0 ≤ µA (xi) , υA (xi) ≤ 1 and µA (xi) +

υA (xi) ≤ 1, we obtain

(µA (xi)− υA (xi))2 ≤ |µA (xi)− υA (xi)| .

Then,

0 ≤ (1− |µA (xi)− υA (xi)|)

×

[
1+ (1− µA (xi)− υA (xi)) (µA (xi)− υA (xi))2

]
≤ (1− |µA (xi)− υA (xi)|)

× [1+ (1− µA (xi)− υA (xi)) |µA (xi)− υA (xi)|]

≤ (1− |µA (xi)− υA (xi)|) (1+ |µA (xi)− υA (xi)|)

= 1− |µA (xi)− υA (xi)|2 ≤ 1.

Thus, we have 0 ≤ E (A) ≤ 1. Next, we prove
that E (A) satisfies the following axiomatic principles
in Definition 11.
(E1) When A is a crisp set, µA (xi) = 1 and υA (xi) =

0 for all xi ∈ X . We then have φA (xi) = 1 and
πA (xi) = 0. E (A) = 0 can then be verified. Simi-
larly, if µA (xi) = 0 and υA (xi) = 1 for all xi ∈ X ,
we also obtain E (A) = 0. Conversely, suppose E (A) = 0.
This value holds only when 1 − |µA (xi)− υA (xi)| = 0
or when 1 + πA (xi) (µA (xi)− υA (xi))2 = 0. Obviously,
1 + πA (xi) (µA (xi)− υA (xi))2 ≥ 1. Hence, φA (xi) = 1
holds; that is, {µA (xi) = 1 and υA (xi) = 0} or {µA (xi) = 1
and υA (xi) = 0}. A is therefore a crisp set.
(E2) If πA (xi) = 1or φA (xi) = 0 for all xi ∈ X , then

we have E (A) = 1 from Eq. (12). Conversely, if E (A) =
1 for all xi ∈ X , then 1 − |µA (xi)− υA (xi)| = 1 and
1 + πÃ (xi)

(
µÃ (xi)− νÃ (xi)

)2
= 1 should both hold. Thus,

we have µA (xi) = υA (xi), which means φA (xi) = 0 and
πA (xi) = 1.

(E3) It is trivial.
(E4) First, situation a) is proven.
a.1) For all xi ∈ X , if µA (xi) ≥ µB (xi) and υA (xi) ≤

υB (xi) for µB (xi) ≥ υB (xi), then υA (xi) ≤ υB (xi) ≤
µB (xi) ≤ µA (xi). Thus, we have:

µA (xi)− υA (xi) ≥ µB (xi)− υB (xi) (31)

and

|µA (xi)− υA (xi)| ≥ |µB (xi)− υB (xi)| . (32)

Let:

f (α, β) = (1− α)
[
1+ βα2

]
, (33)

where α, β ∈ [0, 1]. We then have:

fα (α, β) = −3β
(
α −

1
3

)2

+
β

3
− 1. (34)

Because fα (α, β) obtains the maximum value at α = 1
/
3,

then fα (α, β) ≤ fα
(
1
/
3, β

)
= β

/
3 − 1 < 0 for all α, β ∈

[0, 1]. Thus, f (α, β) is decreasingwithα. Following Eq. (32),
we have:

(1− |µA (xi)− υA (xi)|)

×

[
1+ (1− µA (xi)− υA (xi)) (µA (xi)− υA (xi))2

]
≤ (1− |µB (xi)− υB (xi)|)

×

[
1+ (1− µB (xi)− υB (xi)) (µB (xi)− υB (xi))2

]
.

(35)

Therefore, E (A) ≤ E (B).
a.2) For all xi ∈ X , if µA (xi) ≤ µB (xi) and υA (xi) ≥

υB (xi) for µB (xi) ≤ υB (xi), then µA (xi) ≤ µB (xi) ≤
υB (xi) ≤ υA (xi). Thus, we have:

υA (xi)− µA (xi) ≥ υB (xi)− µB (xi) (36)

and

|µA (xi)− υA (xi)| ≥ |µB (xi)− υB (xi)| . (37)

Similarly, we have:

(1− |µA (xi)− υA (xi)|)

×

[
1+ (1− µA (xi)− υA (xi)) (µA (xi)− υA (xi))2

]
≤ (1− |µB (xi)− υB (xi)|)

×

[
1+ (1− µB (xi)− υB (xi)) (µB (xi)− υB (xi))2

]
.

(38)

Therefore, combining a.1) and a.2) above yields
E (A) ≤ E (B).
Second, we prove situation b).
b.1) If µA (xi) = υA (xi) and µB (xi) = υB (xi), then

E1 (A) = E1 (B) = 1.
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b.2) If φA (xi) = φB (xi) and πA (xi) < πB (xi), then:

(1− φA (xi))
(
1+ πA (xi) φ2A (xi)

)
< (1− φB (xi))

(
1+ πB (xi) φ2B (xi)

)
(39)

Thus, E (A) ≤ E (B).
Therefore, combining a) and b) yields E (A) ≤ E (B).
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