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ABSTRACT The long short-term memory (LSTM) model is one of the most commonly used vehicle
trajectory predicting models. In this paper, we study two problems of the existing LSTM models for
long-term trajectory prediction in dense traffic. First, the existing LSTM models cannot simultaneously
describe the spatial interactions between different vehicles and the temporal relations between the trajectory
time series. Thus, the existing models cannot accurately estimate the influence of the interactions in dense
traffic. Second, the basic LSTM models often suffer from vanishing gradient problem and are, thus, hard to
train for long time series. These two problems sometimes lead to large prediction errors in vehicle trajectory
predicting. In this paper, we proposed a spatio-temporal LSTM-based trajectory prediction model (ST-
LSTM) which includes two modifications. We embed spatial interactions into LSTM models to implicitly
measure the interactions between neighboring vehicles. We also introduce shortcut connections between the
inputs and the outputs of two consecutive LSTM layers to handle gradient vanishment. The proposed new
model is evaluated on the I-80 and US-101 datasets. Results show that our new model has a higher trajectory
predicting accuracy than one state-of-the-art model [maneuver-LSTM (M-LSTM)].

INDEX TERMS Trajectory prediction, vehicle interactions, shortcut connection, long short-term
memory (LSTM).

I. INTRODUCTION
Autonomous vehicles sense static traffic facilities and move-
ments of surrounding vehicles and pedestrians by various
sensors all the time to predict their trajectories for future
motion planning. The input of a vehicle trajectory prediction
model is the historical trajectory of the object vehicle during
the last few seconds and the output is the predicted trajectory
in the next few seconds.

According to the detailed predicting process, the predicting
models used in previous work could be roughly divided into
two types: maneuver-based models and end-to-end models.

A. MANEUVER-BASED MODELS
As shown in Fig. 1(a), a maneuver-based trajectory prediction
model contains two sequential steps: maneuver recognition
step and prediction step [1]–[4]. The maneuver recognition
step outputs an intermediate result indicating the motion
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FIGURE 1. Two kinds of trajectory prediction model: (a) Maneuver-based
model, (b) End-to-end model.

maneuver of the vehicle of interest whose types are pre-
defined. For example, in the scenario of a straight road,
the motion of vehicles can be divided into two types: go
straight and lane change.
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In the maneuver recognition step, conventional approaches
use SVM [5], [6] or probabilistic graphical models, such
as HMM [3], [5], [7], Bayesian Network [4], random forest
classifiers [8]. Some recent work also uses RNN [9], [10] to
improve recognition accuracy. In the prediction step, conven-
tional approaches use prototype trajectories method [2], [11],
cluster-based models [3], kinetic models [12], polynomial
models [13]–[15], Gaussian process [16], [17], RRT [18],
Gaussian mixture models [1], [19], and so on. However,
many previous approaches are not competent for long-
term [4], [20] prediction, since the vehicle trajectories are
nonlinear [9] and the features of motion models are complex.
Therefore, some recent work starts to use RNN for long-term
maneuver-based trajectory prediction [9].

The maneuver-based models have two advantages. First,
the vehicle movements can be decomposed into several con-
cise maneuvers that are relatively easy to recognize [2]. Sec-
ond, the pre-defined maneuver categories are in agreement
with human drivers’ intuitions. So, maneuver-based models
are usually interpretable.

However, maneuver-based models have two shortcomings
that may lead to large prediction errors. First, when scenarios
or vehicle motions become complex, it is hard to naturally
divide the movement of a vehicle into several categories rea-
sonably. For example, some distinctly dissimilar trajectories
may be classified as the same maneuver, but they cannot be
modeled by one simple trajectory model. Second, we have
to label the maneuver of the trajectories for the training
process manually; while labeling tasks are time-consuming
and expensive. The labeling errors may increase the error of
the trained model, too.

B. END-TO-END MODELS
As shown in Fig. 1(b), end-to-end models attempt to skip
the maneuver recognition process and perform a trajectory
prediction directly. Some studies prove that LSTM model is
capable ofmodeling complexmovement of vehicles or pedes-
trians, even without the maneuver recognition step [21]–[23].
Moreover, using end-to-end models can avoid errors caused
by incorrect maneuver division.

However, two problems of end-to-end LSTM models still
exist. First, the basic LSTM models cannot simultaneously
model the spatial interactions between vehicles and trajectory
sequences. Second, the basic LSTM models are hard to train
when training long-term trajectory prediction models. When
modeling long time series, such LSTM models are equiva-
lent to a very deep neural network in the time dimension.
Therefore, such LSTMmodels may suffer from the vanishing
gradient problem [24] in the back-propagation.

To solve the two problems above, we propose a new model
called ST-LSTM with two structural modifications to the
basic LSTM models for trajectory prediction in this paper.

The first modification is that we adopt the idea of
Structural-RNN (S-RNN) [25] and model all vehicle trajec-
tories and interactions between vehicles by a new LSTM
model. Specially, we construct the temporal relations and

spatial interactions as different time series and handle them
separately by LSTMmodels. The newmodel is more suitable
for traffic scenarios than those models (e.g. S-RNN) that
have no clear division between temporal relations and spatial
interactions.

The second modification is to introduce shortcut connec-
tions between the input and output of every LSTM layer,
aiming to directly pass the prior information of historical tra-
jectories to the subsequent layers. This structure can alleviate
the gradient vanishment in the back-propagation [26].

We train and evaluate ST-LSTM on the NGSIM I-80 and
US-101 datasets. The obtained prediction results yield higher
accuracy than the result of one the-state-of-the-art model (i.e.,
the M-LSTM in [9]), which proves the effectiveness of our
modifications.

To better present our findings, the rest of this paper is
arranged as follows. Section II presents the problemwe study,
declares the notations of this paper and lists the prediction
steps of ST-LSTM. Section III introduces the structure of
ST-LSTM in detail. Section IV presents the detailed training
process, presents the results of the experiments and discusses
the effectiveness of ST-LSTM. Finally, Section V concludes
the paper.

II. PROBLEM PRESENTATION AND THE MODEL
A. THE FRAMEWORK OF ST-LSTM
1) RESEARCH SCENARIO
In this paper, we study the end-to-end long-term trajectory
prediction in dense traffic. The ‘‘long-term’’ here means
that the model is capable to predict the trajectories of the
entire process of nontrivial movements (movements except
going straight) while keeping a low prediction error. The
‘‘dense traffic’’ here means that every vehicle can influence
trajectories of its surrounding vehicles, but the road is not
fully blocked. In such scenarios, the motion of the vehicle
is complicated due to the influence of surrounding vehicles.

We denote the object vehicle of trajectory prediction as Vs.
We assume that one surrounding vehicle Vi can affect the
future motion of Vs, if and only if it is close to the vehicle
of interest. If the longitudinal (along with the lane) distance
between Vi and Vs is greater than 80 m, we will ignore the
impact of Vi on Vs. We only pay attention to the six closest
surrounding vehicles in six directions (left-front, front, right-
front, right-rear, rear, left-rear), which are denoted as V1 ∼
V6; see Fig. 2.

2) INPUT AND OUTPUT
We denote the historical trajectories of Vs and V1 ∼ V6 as xts
and xti (i = 1, 2, . . . , 6). As shown in Fig. 2, the input of our
end-to-end model is xt =

[
xts, x

t
1, x

t
2, . . . , x

t
6

]
. The output yts

is the predicted trajectory of Vs
We express vehicle trajectories as sequences of position

displacements [1X , 1Y ]. X and Y are the coordinates in
the lateral and longitudinal directions respectively. That is,
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FIGURE 2. The overall structure and calculation process of ST-LSTM.

the inputs and the output are:x
t
s =

[
1X (t−th+1t)s ,1Y (t−th+1t)s , . . . ,1X ts ,1Y

t
s

]
xti =

[
1X (t−th+1t)i ,1Y (t−th+1t)i , . . . ,1X ti ,1Y

t
i

]
(1)

yts = [1X (t+1t)
s , 1Y (t+1t)

s , · · · , 1X
(t+tp)
s ,1Y

(t+tp)
s ] (2)

where t is the current time. th defines the historical time
horizon. tp defines the prediction time horizon. 1t defines
the prediction step size. [1X ts , 1Y

t
s ] and [1X

t
i , 1Y

t
i ] define

the position displacements of Vs and Vi from the time (t−1t)
to t . The number of prediction time np = tp/1t . The number
of historical time nh = th/1t .

3) THE STRUCTURE OF ST-LSTM
We model all vehicle trajectories and all interactions by
LSTMmodels1 and integrate them into a high-level structure.
As shown in Fig. 2, the LSTM model of the trajectory of Vi
(Vs) is denoted asCi (Cs). The LSTMmodel of the interaction
between Vi and Vs is denoted as Ii. For simplicity, only part
of the LSTM models are displayed in the figure.

B. A THREE-STEP TRAJECTORY PREDICTION
As shown in Fig. 2, we divide the overall trajectory prediction
process into three steps:

1If not specified, the LSTM model in the rest of this paper represents the
modified LSTM model proposed in Section III-B

Step 1: preliminarily predict the trajectories of Vi (Vs) by
Ci (Cs).
The input of Ci (Cs) is the historical trajectory xti (x

t
s). The

output is denoted as hti (h
t
s), which is a preliminary predicted

trajectory of Vi (Vs):h
t
i =

[
1X (t+1t)

i ,1Y (t+1t)
i , . . . ,1X(

t+tp)
i ,1Y (

t+tp)
i

]
hts =

[
1X (t+1t)

s ,1Y (t+1t)
s , . . . ,1X(

t+tp)
s ,1Y (

t+tp)
s

] (3)

Step 2: evaluate the spatial interactions by Ii and outputs
trajectory correction sequences of Vs.
The inputs of Ii are hts and h

t
i . The output h

t
i,s is a trajectory

correction sequence of hts, which considers the impact of
spatial interaction between Vi and Vs on the movement of Vs.
The length of hti,s, h

t
s and h

t
i are all equal to 2np.

Step 3: correct the predicted trajectory of Vs and output the
final predicted trajectory.

The inputs of this step are hts and all the h
t
i,s, the final output

prediction sequence yts is calculated by the weighted sum of
the inputs:

yts = hts +
∑
i

wihti,s = hts + (W t )TH t (4)

whereW t
= [w1, w2, · · · , w6]T and H t

= [ht1,s, h
t
2,s, · · · ,

ht6,s]
T .

The weight wi reflects the degree of the influence of Ii
on the future trajectory of Vs. We can estimate wi from
the perspective of safe distance, since every vehicle actively
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keeps maintaining safe distances from surrounding vehicles
and thus generates spatial interactions.

In this paper, we measure the safe distance by the formula
of safe gap proposed in [27], [28]. Let Vl (Vf ) be the lead-
ing (following) vehicle between Vi and Vs. The safe distance
between the two vehicles is:

Di,s = vf ρ+

(
vf
)2
− (vl)2

2abrake
+L =

v1v
abrake

+
(
vf ρ+L

)
(5)

where vl (vf ) is the longitudinal velocity of Vl (Vf ). L is the
average length of the two vehicles. ρ is the mean response
time of drivers. abrake is the brake deceleration of the two
vehicles. The average velocity v̄ = (vf + vl)/2. The relative
velocity 1v = vf − vl .

This safe distance imagines a car-following scenario,
the leading vehicle brakes by abrake until a full stop, and the
following vehicle keeps uniform during the response time ρ,
and then brakes by abrake until a full stop. This formula can be
considered as (a lower bound of) safe distance because when
two vehicles are closer than Di,s, the following vehicle may
not be able to avoid collision by braking.

We suppose α = 1/abrake and β = v2ρ + L, and furtherly
simplify β as a constant. We consider a kind of a priori
knowledge of weight as follows:

wi ∝
Di,s
1di,s

=
αv̄1v+ β
1di,s

(6)

where1di,s defines the longitudinal distance between Vi and
Vs. The constant terms α and β need to be determined during
the training process. All the wi should be normalized before
performing Step 3.
In Eq.(6), the increase of v̄ or1v and the decrease of1di,s

will lead to an increase of wi. It indicates that Vi will have
a stronger influence on Vs, which is in agreement with our
intuitions.

If Vi does not exist or 1di,s is too large, we could directly
set wi = 0 so that the lack of Vi will not affect the prediction
process. Therefore, ST-LSTM can be applied to vehicles with
an arbitrary number of surrounding vehicles, which reflects
the flexibility of ST-LSTM.

III. MODEL DESIGN
A. THE STRUCTURE AND FEATURES OF ST-LSTM
To enable the LSTM models simultaneously model spatial
interactions between vehicles and temporal relations between
trajectories series, Jain et al. proposed in [25] a high-level
spatio-temporal model, which is called Structural-RNN (S-
RNN). The key idea is to consider the spatial interactions as
time series which can be handled by LSTM models.

As shown in Fig. 2, we adopt the idea of S-RNN and
construct a spatio-temporal model similarly. However, there
are two main differences between ST-LSTM and S-RNN:

The first difference is the definitions of the outputs of
Ci and Ii (hti and hti,s). In S-RNN, the outputs of Ci and
Ii are not specified. In contrast, ST-LSTM clearly distin-
guish hti (temporal relations) and hti,s (spatial interactions) to

highlight their different roles on trajectory prediction. This
is because temporal relations usually dominate the overall
driving actions rather spatial interactions.

The second difference is the weight W t in Step 3. In S-
RNN, the outputs of all the Ii are integrated by the weighted
sum that are directly learned during training. Differently,
we evaluate wi based on our prior knowledge of the influence
degree of interactions shown in Eq.(4)-(6). The introduction
of this prior knowledge will also help to accelerate learning.

According to the comparison, ST-LSTM is more suitable
for characterizing traffic scenarios than S-RNN.

B. THE SHORTCUT CONNECTIONS FOR LSTM MODELS
Since the basic LSTM model is hard to train in long-term
trajectory prediction, we perform some modifications to the
structure of basic LSTM models, as shown in Fig. 3.

FIGURE 3. The structure of modified LSTM models with shortcut
connections.

Inspired by ResNet [26], we introduce shortcut connec-
tions to solve the vanishing gradient problem. The informa-
tion of the input sequence can be transmitted to subsequent
layers directly, thus the modified LSTM model can alleviate
the gradient vanishment when performing back-propagation.
In other words, the learning object of the modified LSTM
model becomes a residual-like sequence instead of a tra-
jectory sequence. We will prove that this change can make
LSTM easier to train in Section IV-D.
In order to construct shortcut connections, the length of

input and output sequences should be equal (n = 2nh). The
number of LSTM layers (m in Fig. 3) and the number of
LSTM cells in each layer (n in Fig. 3) are two main structure
parameters of the modified LSTM model.

C. NETWORK PARAMETER SELECTION
Now we focus on the detailed network structure of each
LSTM (Ci and Ii). Specifically, we need to set the historical
time horizon th (n = 2nh = 2th/1t) and the number of
hidden LSTM layers Nhidden (m = Nhidden).
The values of th and Nhidden can directly affect the per-

formance of the modified LSTM model. In general, when th
is too small, it is unable to provide enough valid historical
information for trajectory prediction; when th is too large,
redundant historical information may be harmful to predic-
tion accuracy. When Nhidden is too small, the LSTM model
may be incapable of modeling the complex vehicle trajectory;
when Nhidden is too large, the network may be too deep and
converge slower.
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The detailed network parameter selection of all the Ci and
Ii is shown in Appendix A. The selection result is shown in
Section IV-B.

IV. TRAINING RESULTS AND DISCUSSIONS
A. DATASET
The research scenario in this paper is a straight road with
multiple lanes. We can divide the vehicle motions in this
scenario into two types: go straight and lane change.

We use the NGSIM I-80 and US-101 trajectory datasets to
train and evaluate ST-LSTM.

The I-80 dataset was collected on the eastbound direc-
tion of Interstate 80 in Emeryville, California on April 13,
2005, containing data from 4:00 p.m. to 4:15 p.m., 5:00 p.m.
to 5:15 p.m. and 5:15 p.m. to 5:30 p.m. The US-101 dataset
was collected on the southbound direction of U.S. Highway
101 in Los Angeles, California on June 15, 2005, containing
data from 7:50 a.m. to 8:05 a.m., 8:05 a.m. to 8:20 a.m.,
8:20 a.m. to 8:35 a.m. The experimental scenes of the two
datasets are both straight roads with dense traffic flow, includ-
ing a large number of lane changes and car-following move-
ments. Therefore, the datasets fit well with the scenario we
study in this paper.

In the I-80 dataset, 2052, 1836, 1790 trajectories are col-
lected respectively in the three periods of time. The three
datasets respectively contain 1025, 913, 945 successful lane
change. In the US-101 dataset, 2169, 2017, 1915 trajectories
are collected in the three periods of time, containing 1006,
660, 657 successful lane change respectively. Each data frame
includes the vehicle’s position, velocity, yaw angle, size, etc.
The sampling frequency of the dataset is 10 Hz, thus we set
1t = 0.1s in this paper.

TABLE 1. Statistics of different types of trajectories in I-80.

However, as shown in TABLE 1 and TABLE 2, both of the
datasets are seriously unbalanced. Therefore, we downsample
the sequences of left only and no lane change and oversam-
ple the sequences of right only to ensure the proportions of
different kinds of trajectories are roughly equal [29].

To facilitate the learning of the characteristics of lane
change, we trim every trajectory with lane change and only
reserve part of the data that contains lane change.We also ran-
domly trim the trajectories without lane change to guarantee
the balance of different types of trajectories.

We randomly sample N trajectories from the balanced
datasets (shown in TABLE 1 and TABLE 2) for training,
leaving the remaining trajectories for testing. We will discuss

TABLE 2. Statistics of different types of trajectories in US-101.

the selection of training set scale N in Appendix B. The
selection result is shown in Section IV-B.

B. TRAINING DETAILS
According to the parameter selection in Appendix A, we set
Nhidden = 3 and th = 3 s for all the Ci and Ii. That is, all
the Ci and Ii have three hidden layers and each layer has
60 LSTM cells. According to the training set scale selection
in Appendix B, we repectively adopt the critical scale (with
580 trajectories) and a bigger scale (with 1350 trajectories)
to train ST-LSTM models.

Since most vehicles have similar trajectory characteristics,
all the Ci in ST-LSTM share a public LSTM model. In con-
trast, Since the impacts of surrounding vehicles in different
directions on Vs are different, each Ii is trained independently
and does not share network parameters with each other.

ST-LSTM is trained in a step-by-step process using Ten-
sorflow. We first pre-train Ci, then we pre-train Ii based on
Ci. All the pre-train LSTM models are trained with an initial
learning rate of 0.001 for about 20k iterations. Finally, all the
pre-train LSTM models are united and trained for about 5k
iteration to train the constant terms α and β of Eq.(6).
During training, the batch size Nb of each training step is

set as 50 × 50, that is, each batch has 50 trajectories and the
length of each trajectory sequence is 50 (that is, 5 s). All the
network parameters are randomly initialized. Different from
other parameters, α and β have specific physical meanings,
but we have tested that the initialization values of α and β
have little impact on the overall training result. We use 50%
dropout in the training process. The optimizers adopt ADAM
optimizer. The loss function of the training process adopts
MSE (mean square error) between the predicted displacement
sequence yts and the ground truth displacement sequence yt .

yt = [1X̂ (t+1t), 1Ŷ (t+1t), · · · , 1X̂ (t+tp),1Ŷ (t+tp)] (7)

The MSE loss function of each single trajectory is:

loss =
np∑
i=1

(δti )
T
δti (8)

where δti =

[
a(1X (t+i1t)

−1X̂ (t+i1t)), 1Y (t+i1t)
−

1Ŷ (t+i1t)
]T

. We set the constant a = 10 in this paper to
magnify the impact of the lateral error on the loss function.
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The overall MSE loss function is:

Loss =
1
Nb

∑
loss (9)

where Nb is the total number of trajectories in the training
dataset.

C. TESTING RESULTS
We compare the RMS prediction error between the follow-
ing models: Maneuver-LSTM (M-LSTM, proposed in [9]),
ST-LSTM trained by 580 trajectories (denoted as ST-LSTM-
580) and ST-LSTM trained by 1350 trajectories (denoted
as ST-LSTM-1350). According to our statistics, the average
time of lane change processes is 4 ∼ 5s, thus we set the
prediction horizon tp = 6s. Since tp > th, we should repeat
the prediction process for several times to perform a larger
horizon trajectory prediction.

Here, the RMS prediction error is calculated from the
predicted trajectory and the ground truth trajectory. Thus we
need to accumulate the displacement sequence yts and y

t to
get trajectory representations zts and z

t :

zts = [X (t+1t), Y (t+1t), · · · , X (t+tp),Y (t+tp)] (10)

zt = [X̂ (t+1t), Ŷ (t+1t), · · · , X̂ (t+tp), Ŷ (t+tp)] (11)

X (t+i1t)
=

i∑
j=1

1X (t+j1t)

Y (t+i1t)
=

i∑
j=1

1(t+j1t)

X̂ (t+i1t)
=

i∑
j=1

1X̂ (t+j1t)

Ŷ (t+i1t)
=

i∑
j=1

1Ŷ (t+j1t)

(12)

Therefore, the RMS prediction error of each single trajec-
tory given prediction horizon P is:

rmsP =

(
1
P

P∑
i=1

(σ ti )
T
σ ti

) 1
2

(13)

RMSP =
1
Nt

∑
rmsP (14)

where σ ti = [X (t+i1t)
− X̂ (t+i1t), Y (t+i1t)

− Ŷ (t+i1t)]
T
. Nt

is the total number of trajectories in the testing dataset.
The RMS values are shown in TABLE 3, which illustrates

that both ST-LSTM-580 and ST-LSTM-1350 outperform M-
LSTM. From the comparison between ST-LSTM-580 and
ST-LSTM-1350, we can find that the latter model uses amuch
larger training set but only gets a slight improvement in pre-
diction accuracy. This phenomenon proves the effectiveness
of ‘‘critical point’’, which can guide us to properly reduce the
training set, losing a little prediction accuracy in exchange for
a significant increase in training speed.

TABLE 3. RMS value of prediction error.

To analyze the main source of the trajectory prediction
error, we calculate the mean and standard deviation of veloc-
ity deviation (denoted as VDi) in different prediction hori-
zons, as shown in Fig. 4. And we plot the mean absolute
deviation of position deviation (denoted as PDi) of different
prediction horizons in Fig. 5. The definitions of VDi and PDi
are:

VDi=
1
1t

[
1X (t+i1t)

−1X̂ (t+i1t),1Y (t+i1t)
−1Ŷ (t+i1t)

]T
(15)

PDi = σ it (16)

FIGURE 4. Statistics of mean and standard deviation of velocity deviation
(ST-LSTM-1350 on I-80 dataset).

FIGURE 5. Mean absolute deviation of position deviation
(ST-LSTM-1350 on I-80 dataset).

Fig. 4 shows that the distributions of VDi in different
prediction horizons are roughly the same. The accumulation
of velocity error dominates the total long-term prediction
error. This is the reason that we use RMS of position error
to evaluate ST-LSTM.

When the prediction horizon becomes too large, the mean
absolute deviation increases and the prediction is severely
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FIGURE 6. The illustration of predicted trajectory and ground truth trajectory of several snapshots of one typical case: (a) T =0 s, (b) T = 0.5 s, (c) T =1 s,
(d) T = 1.5 s, (e) T =2 s, (f) T = 4 s.

unstable due to the error accumulation. From another per-
spective, historical trajectories are not sufficient to pro-
vide effective information for the prediction of a large time
interval. Therefore, the prediction horizon selected in this
paper (6 s) is already large enough.

Tomore intuitively display the trajectory prediction results,
we randomly select a lane change trajectory and observe
the prediction results during the whole lane change process.
We took six snapshots in this time interval, as shown in Fig. 6.
Fig. 6 (a)(b) illustrate that the predicted trajectories do not yet
present characteristics of lane change at the very beginning
of the lane change process. The predicted trajectories in
Fig. 6 (c)-(e) show typical characteristics of lane changes.
Fig. 6 (f) illustrate that the predicted trajectory changes back
to straight at the end of the lane change.

D. THE ROLE OF SHORTCUT CONNECTIONS
During the training process, we find that the modified LSTM
model is easier to train and could reduce the RMS error to a
low value.

In one experiment, we train another Cs by the basic LSTM
model and compare it to the Cs in Section IV-C). Besides
shortcut connections, everything of the two models is identi-
cal, such as input and output, Nhidden, th, the training process,
etc. There was no manual intervention during the training

FIGURE 7. The loss variation of the two models during the training
process.

process. The values of loss function are plotted in Fig. 7,
indicating the modified LSTMmodel converge faster than the
basic LSTM model.

V. CONCLUSION
In this paper, we propose a novel end-to-end long-term tra-
jectory prediction model for dense traffic. To solve the two
problems of long-term prediction in dense traffic, we modify
the classical LSTM model by adding shortcut connections
and model all the spatial interactions and temporal rela-
tions by the modified LSTM model. Finally, we construct a
spatio-temporal trajectory predictionmodel. The experiments
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FIGURE 8. RMS error compare between modified LSTM models with different Nhidden and th: (a) Nhidden = 2, (b) Nhidden = 3, (c) Nhidden = 4.

on NGSIM I-80 and US-101 prove that ST-LSTM can per-
form more precise trajectory prediction than one state-of-the-
art model (M-LSTM).

However, we only test ST-LSTM on NGSIM I-80 and
US-101, which are relatively small datasets in single simple
scenario. In the future work, we will collect more data and
evaluate ST-LSTM in more complex scenarios.

APPENDIX A
NETWORK PARAMETER SELECTION
We train Ci by several groups of Nhidden ∈ {2, 3, 4} and
th ∈ {2 s, 3 s, 4 s, 5 s}. In this experiment, we randomly
select a training set with N = 1200 trajectories on the
I-80 dataset. The detailed training process is the same
as what is described in Section IV-B). We adopt 10-fold
cross-validation on the training set to calculate mean RMS
errors in different prediction horizons.

As shown in Fig. 8, we compare the RMS error of these
models in different prediction horizons. We select the best
group (th = 3 s and Nhidden = 3) as the parameters of
Ci because the RMS error of the model with this group of
parameters is almost always the lowest (the second lowest
when tp = 2s). We also test deeper networks and larger th, but
those models do not perform better than the selected model.

Due to the limits of the model structure, the th of Ii should
be equal to the th of Ci. We repeat the previous steps and find
that Nhidden = 3 is also a good value for Ii.
Similarly, we try different training set scales and different

dataset (i.e., US-101), and find that the above values of th
and Nhidden are also relatively suitable for those training sets.

Therefore, we set th = 3 s and Nhidden = 3 for all the Ci and
Ii in ST-LSTM.

APPENDIX B
OVERFITTING ANALYSIS AND TRAINING
SET SCALE SELECTION
Deep learning models (including ST-LSTM) require a large
amount of data for training. Insufficient training data can lead
to overfitting (low generalization capability), but excessive
data also cannot infinitely improve the model generalization
capability. In particular, it is often hard to obtain large-scale
datasets for deep learning, so we need to find a ‘‘critical
point’’ for data volume to reach a compromise between
improving model generalization capability and reducing the
need of training data. This critical point can also be consid-
ered as the minimum size of an effective training set.

In this paper, we respectively use training sets of different
sizes to train ST-LSTM models and calculate their training
and testing error (of different prediction horizons) to observe
if the models are over-fitted.

We take the US-101 dataset as an example. Accord-
ing to Section IV-A), the balanced dataset includes a total
of 1919 effective trajectories. We respectively randomly sam-
ple 40, 95, 190, 380, 580, 960, 1350, 1540 trajectories (about
2%, 5%, 10%, 20%, 30%, 50%, 70%, 80%of the total dataset)
for training and plot the training and testing errors in Fig.9.
The network parameters follow the results of Appendix-A.
The detailed training process follows Section IV-B)

Fig.9 illustrates that the trained ST-LSTM occurs serious
overfitting when the training set is too small. The overfitting

38294 VOLUME 7, 2019



S. Dai et al.: Modeling Vehicle Interactions via Modified LSTM Models

FIGURE 9. The comparison of training and testing error (of different
prediction horizons) between ST-LSTM models trained by different sizes
of training sets: (a) prediction horizon tp = 1s, (b) tp = 2s, (c) tp = 3s,
(d) tp = 4s, (e) tp = 5s, (f) tp = 6s.

phenomenon is weakened as the number of trajectories
increases, and it is almost eliminated when the training set
contains more than 580 trajectories. After that, the model
generalization capability only has slight improvement despite
the large increase in training set volume. Therefore, we think
that 580 trajectories are a suitable amount of training set
for our ST-LSTM model. When training ST-LSTM model
on other dataset, such as I-80, we built a training set with
580 random trajectories and could also get a well-trained
model.

The above method explores the ‘‘marginal’’ performance
of the model, that is, for a certain model, the ‘‘critical point’’
represents how much training data at least should we use for
training. We believe that the method we proposed above is
worth promoting. Base on ‘‘critical point’’, we can directly
compare the demands for training data of different deep net-
work models. When we only have a limited scale of training
data, we can select a model that has stronger generalization
capability (and cannot over-fit) under that condition based on
this index and achieve better performance. When the model
is determined, we can also set a reasonable training set scale
according to this index, so as to avoid the waste of computing
resources caused by training data redundancy.
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