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ABSTRACT This paper focuses on energy efficiency that is a key performance metric in heterogeneous
cellular networks to two key areas. First, based on the Poisson point process distributions of small-cell base
stations (SBSs) and macrocell base stations (MBSs), the energy-efficiency model is formulated, and the
effect of base stations’ distribution on energy efficiency is analyzed. For maximizing energy efficiency,
the joint optimal densities of SBSs and MBSs are deduced under the constraint of quality of service. Second,
according to this, we propose a joint sleep strategy of MBSs and that of SBSs. We deduce the optimal
threshold of traffic load according to the joint optimal densities. If the traffic load of SBSs (or MBSs) is
less than the optimal threshold of traffic load, these SBSs (or MBSs) go to sleep; otherwise, it is activated.
This makes the SBSs and MBSs adaptively and distributively sleep according to their own traffic loads. The
simulation results verify that the deduced joint optimal densities of the SBS and the MBS are accurate, and
energy efficiency is improved when SBSs and MBSs adaptively sleep.

INDEX TERMS Heterogeneous cellular network, energy efficiency, optimal distribution density, adaptive
sleeping.

I. INTRODUCTION
Energy consumption of cellular networks is growing rapidly
in order to meet the demand of the exponential increase
in mobile traffic loads. The Fifth Generation (5G) cellu-
lar network faces the issues of increasing the capacity and
decreasing the energy consumption [1], [2]. Small cells, such
as femtocells, picocells and microcells, are used to improve
the coverage and increase the capacity of cellular networks.
This is a promising technique for the 5G cellular network,
where the network architecture is a heterogeneous network
(HetNet) with both small cells and macrocells [3], [4]. In a
HetNet, macrocells are overlaid with small cells deployed
randomly or deterministically. The distribution of macrocell
base stations (MBSs) and that of small cells base stations
(SBSs) significantly affects the capacity and energy con-
sumption of HetNets. It is key to investigate the influence of
the distribution ofMBSs and that of SBSs on the performance
of cellular networks.

Moreover, some related works have addressed the
MBSs sleeping problem previously. For instance, in [5],

when the MBS is selected to sleep, the selected MBS
would switch its severing users to nearby MBSs with
seamless handover before it goes to sleep. Reference [6]
investigates the grid energy minimization problem by opti-
mizing both the MBS active probability (MAP) and the
SBS transmit power (STP). In 3G cellular networks without
heterogeneous scenario, the MBS sleeping has been consid-
ered yet for energy saving. In contrast, in 4G or 5G with
heterogeneous scenario, the related work mainly address
the sleeping issue on SBS instead of MBS. Therefore,
these inspire us to do this work that it is beneficial if
the sleeping strategy decision could consider both the
MBS and SBS. To this end, we extend the analysis model
and jointly consider the density and sleeping strategy of
MBSs and SBSs. The main contributions of this paper
include:

1) Based on the PPP distributions of SBSs and that of
MBSs, energy efficiency model is formulated. Under
the constraint of quality of service, the joint optimiza-
tion problem of distribution densities of SBSs and
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TABLE 1. Basic notation.

that of MBSs is formulated to maximize the energy
efficiency.

2) Due to the dynamic changes of the traffic load, we fur-
ther propose a joint sleep strategy of MBSs and that
of SBSs. The optimal sleeping probabilities of MBSs
and that of SBSs and the optimal sleeping threshold of
traffic load (OTT) are proposed, whichmakeMBSs and
SBSs dynamic adaptive sleep to maximize the energy
efficiency.

3) Finally, the accuracy of deduced optimal densities of
MBSs and that of SBSs are validated and the energy
efficiency of sleeping strategy is evaluated.

The remainder of this paper is organized as follows. Section II
gives the system model of HetNets with MBSs and SBSs.
Section III calculates the energy efficiency and formulates
its optimization problem. Section IV deduces the optimal
sleeping probabilities and optimal sleeping threshold OTT,
and gives the sleeping strategy. The performance evalua-
tion is performed in Section V and the work is concluded
in Section VI.

II. RELATED WORK
A. POISSON POINT PROCESS (PPP) DISTRIBUTION
In recent years, there are a few works based on PPP distri-
butions to analysis the influence of BSs density on energy
efficiency. Xu et al. [7] analyze that the densities of BSs
in different areas are different, the distribution of BSs is
not uniform, and the existing analytical models based on
uniform point process are inaccurate. Through taking photos
(i.e., a technique of reading information quickly) of the
different position of HetNets, ElSawy et al. [8] find that
both the MBSs and SBSs are subject to Poisson Point
Process (PPP) distribution. According to these existing
works, since PPP distribution is widely used and regarded as
an accurate distribution inmost practical scenarios, we decide

to use PPP distribution as the basic assumption in our
work.

B. ENERGY EFFICIENCY
Several works have been done to analyze energy efficiency of
HetNets through deploying SBSs. Arshad et al. [5] analyze
the impact of SBSs deployed on hot spots on the energy effi-
ciency. The result shows that, in one day, the energy efficiency
can be improved by the introduction of SBSs is not obvious.
However, in busy period time of one day, energy efficiency
can be improved to a great extent through deploying SBS.
In [10], the impact of deploying a number of pico BSs on the
system performance of macrocellular network is investigated.
The result shows that the introduction of SBSs can improve
the throughput of cellular networks, and energy efficiency can
be improved if the number of deployed SBSs is reasonable.
In [11], the joint optimization of the positions and the serving
range of SBSs for maximum uplink energy efficiency based
on the uniform distribution of SBSs have been investigated.

BS density is an important technique to decrease energy
consumption in HetNet. The influence of SBS density on the
energy efficiency (EE) of cellular networks has also been
studied in [12] using the stochastic geometry theory. The
simulation validates the accuracy of the theoretical analysis,
and demonstrates that the energy efficiencymaximization can
be achieved by the optimized BS deployment. Quek et al. [13]
analyze the energy efficiency of downlink in HetNets. The
analysis shows that there is an optimal femto-macro density
ratio that maximizes the overall energy efficiency of het-
erogeneous networks. In [14], the optimal BS density for
minimizing the energy cost is analyzed for homogeneous
and heterogeneous cellular networks. The upper and lower
bounds of the optimal BS density are derived for homoge-
neous cellular networks. For HetNets, both capacity exten-
sion and energy saving problems are formulated and solved
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by generalizing them into an optimal BS density combination
problem. In [15], the optimal BS density is also investigated
in both one and two-tier cellular networks. Energy efficiency
optimization problem in two-tier scenario is formulated and
solved by jointly optimizing the ratio and weighted sum of
BS densities.

BS sleeping is also an important technique to decrease
energy consumption in HetNets [16]. Soh et al. [17] investi-
gate random sleeping strategy and dynamic sleeping strategy
of BSs. They show that the dynamic sleeping according to the
number of active users in the BSs is better than the random
sleeping to improve the energy efficiency. Reference [18]
proposes random and repulsive sleeping schemes in hyper-
cellular network (HCN), and adjusts the number of sleeping
small cells according to the traffic load to optimize energy
efficiency.

C. RELATED WORKS
As the most related work in the paper, Rao and Fapojuwo [19]
allow SBSs (which is mentioned as picocell BS in [19])
to sleep, and deduce an optimal load dependent pico tier
BS activity factor to maximize the 2-tier EE (Energy Effi-
ciency). In addition, themathematicalmodel in [19] considers
the impact of pico tier user density and pico tier activity
factor on energy efficiency. Compared with [19], we extend
this work to focus on the adaptive sleeping problem under
joint deployment of MBSs and SBSs, in which MBSs and
SBSs could sleep dynamically considering their joint optimal
densities. Moreover, as another related work, [20] studies
the spectrum efficiency (SE) and energy efficiency (EE) in
HetNets, in which the authors make SE and EE maximize
by adapting the density of femtocells. Compared with [20],
which only considers the femtocells sleep, our work mainly
studies the joint sleeping for both MBSs and SBSs based on
their densities.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a two-tier HetNet, i.e. a network of MBSs
and that of SBSs by randomly distributed. The location of
MBSs follows PPP distribution by 2m with the density λm,
and the maximum transmission radius of MBS is Rm. The
location of SBSs also follows PPP distribution by 2s with
the density λs, and the maximum transmission radius of
SBS is Rs. The distributions of MBSs and that of SBSs
are independent. The distribution of UE follows PPP with
density µt , which indicates that the mean arrival numbers
of active users per unit time per unit area in the HetNet.
The UE is that associated with MBS (or SBS) is called as
macro user (or small cell user), we assume that the average
traffic transmitted to a macro user and that to a small cell user
are εm and εs, respectively. The probability density function
of the distance rm between the macro user and its serving
MBS is p (rm) = 2rm

/
R2m, rm ≤ Rm, and the probability

density function of distance rs between the small cell user
and its serving SBS is p (rs) = 2rs

/
R2s , rs ≤ Rs.

FIGURE 1. Two-Tire heterogeneous network.

In this paper, MBSs and SBSs share spectrum, the band-
width is B, consisting of N sub-channels. In order to achieve
the better effect of energy saving, we take Fractional Power
Control (FPC) [21]. Let Pa,m and Pa,s be the required min-
imum received power of macro users and that of small cell
users, respectively. The average transmission power of MBSs
and that of SBSs are Pm = Pa,mR

α(1−κ)
m rακm and Ps =

Pa,sR
α(1−κ)
s rακs , respectively, where κ ∈ [0, 1] is the power

control factor, rm and rs are the distance between macro user
and MBS and that between small cell user SBS, respectively,
α is the path fading factor. In this paper, we adopt full path
loss inversion (FPI) [21] policy, where κ = 1. Based on [19],
the SINR for a macro user served by a MBS is:

SINRm =
Pm,ikhik,mr

−α
m,ik

Im + Is + No
, (1)

where Pm,ik is received power from MBS i to macro user k ,
hik,m is the fading factor between MBS i and macro user k ,
and r−αm,ik is the path loss between MBS i and macro
user k , rm,ik is the distance between MBS i and macro
user k , respectively. The interference from other MBSs to
macro user k is Im =

∑
g∈2m\iPgk,mhgk,mr

−α
m,gk , where

r−αm,gk is the path loss between the interfering MBS g and
macro user k . The interference from SBS to macro user k is
Is =

∑
j∈2sPs,jkhjk,sr

−α
s,jk . N0 is the Gaussian noise.

Similarly, we also can get SINR of small cell user k as
follows:

SINRs =
Ps,ikhik,sr

−α
s,ik

Im + Is + No
. (2)

B. PROBLEM FORMULATION
1) THE ENERGY EFFICIENCY DEFINITION
We define the energy efficiency of HetNet as the amount of
successfully transmitted traffic from BSs (MBSs and SBSs)

35840 VOLUME 7, 2019



Y. Li et al.: Energy-Efficient Deployment and Adaptive Sleeping in Heterogeneous Cellular Networks

to users (macro users and small cell users) per unit frequency
and per unit power (bps/W/Hz), which is shown in Eq. (3).

EE =
(λmCm + λsCs) /B
λmPtm + λsPts

, (3)

where B is system bandwidth, Cm and Cs are the successfully
transmitted traffic of MBS and that of SBS, respectively.
Ptm and Pts are average power consumption of MBS and that
of SBS. The numerator of Eq. (3) is the traffic load of per
unit bandwidth successfully transmitted of MBSs and that of
SBSs per unit time and per unit area, and the denominator
represents the total power consumption per unit area.

2) THE TRAFFIC RECEIVED BY USERS
As the traffic loads dynamically change over time in HetNet,
we can adjust the densities of MBSs and SBSs based on the
traffic loads. After deploying MBSs and SBSs, some of them
will sleep according to adjusting densities ofMBSs and SBSs.
Let Lm and Ls be the traffic load sent by MBS and that by
SBS, and the unit of Lm,Ls is bit/s. The successful transition
probability at macro users and that at small cell users are Qm
and Qs, respectively. Then

Cm = Lm · Qm, (4)

Cs = Ls · Qs. (5)

According to the mean user arrival rate µt and the traffic
load transmitted to a macro user and a small cell user( εm and
εs),

Lm = µt ·
(
E [S]− NsπR2s

)
· εm, (6)

Ls = µt · πR2s · εs, (7)

where E [S] =
∫
∞

0 Sf (S)dS represents the average
coverage area of MBS. Based on [22], the probabil-
ity density function of macro cell area S is f (S) =
343
15

√
7
2π (Sλm)

5
2 exp(− 7

2Sλm)λm. Ns = λsE[S] is the number
of SBSs within the average coverage of MBS.

Let βm and βs be the SINR thresholds of macro user and
small cell user, respectively. Under the condition of limited
interference and FPI strategy, N0 = 0, κ = 1, and the path
loss exponent α = 4, according to [19], we have

Qm = exp
(
−
π2

4
β1/2m

(
λmR2m + λsR

2
s θ

1/2
))
, (8)

where θ = Pa,s
/
Pa,m.

Similarly, the successful transition probability of SBS is

Qs = exp
(
−
π2

4
β1/2s

(
λsR2s + λmR

2
mθ
−1/2

))
. (9)

From (8) and (9), we can see that the successful transmis-
sion probability decreases with the increase of density of BSs,
this is because that given the distance between a user and BS,
increasing the density of BSs will strengthen the interference.

Inserting Eq. (6) and (8) into Eq. (4), and inserting Eq. (7)
and (9) into Eq. (5), we can get the successfully transmitted
traffic of MBS and that of SBS( Cm and Cs), respectively.

Cm = µt ·
(
E [S]− NsπR2s

)
· εm

· exp
(
−
π2

4
β1/2m

(
λmR2m + λsR

2
s θ

1/2
))
, (10)

Cs = µt · πR2s · εs · exp
(
−
π2

4
β1/2s

(
λsR2s + λmR

2
mθ
−1/2

))
.

(11)

3) POWER CONSUMPTION
Based on the power consumption model proposed in [18],
the average power consumption of BS can be expressed as:

Ptx = ax · Px ·
Lx
Tx
+ bx , (12)

where ax denotes the losses of the power amplifier and feeder,
bx is the static power consumption of BS, Px is the average
transmission power of BS, Lx and Tx are traffic load and
transmission rate of BS, respectively.

a: POWER CONSUMPTION OF MBS
According to Eq. (12), when m is x, respectively, the average
power consumption of MBS can be expressed as:

Ptm = am · Pm ·
Lm
Tm
+ bm. (13)

According to the Fractional Power Control (FPC) [21],
the average transmission power of MBS can be expressed as:

Pm = µt ·
(
E [S]− NsπR2s

)
·

∫ Rm

0
Pa,mRα(1−κ)m rακm

·
2rm
R2m

drm

= µt ·
(
E [S]− NsπR2s

)
·
2Pa,mRαm
2+ κα

. (14)

Under the conditions of limited interference and FPI strat-
egy, where N0 = 0, κ = 1, and the path loss exponent α = 4,
Eq. (14) can be simplified as follows:

Pm =
1
3
µt ·

(
E [S]− NsπR2s

)
· Pa,mR4m. (15)

The transmission rate Tm of MBS is MBS can achieve the
maximum average transfer rate, defined as the transmission
rate of Shannon limit:

Tm = E [B ln (1+ SINRm (rm))]. (16)

Under the conditions of limited interference and FPI strat-
egy, where N0 = 0, κ = 1, and the path loss exponent α = 4,
Eq. (16) can be expressed based on [19] which is shown as
follows:

Tm = B
∫
∞

0
exp

[
−
π2

4

(
et − 1

)1/2 (λmR2m+ λsR2s θ1/2)]dt
= −2BEi

[
−

(
π2
/
4
) (
λmR2m + λsR

2
s θ

1/2
)]
, (17)
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where Ei[·] is exponential integral function. Inserting Eq. (6),
(15) and (17) into Eq. (13), we can get the average power
consumption of MBS:

Ptm =
amPa,mR4m · µt

(
E [S]− NsπR2s

)
· εm

−6BEi
[
−
(
π2
/
4
) (
λmR2m + λsR2s θ1/2

)] + bm. (18)

b: POWER CONSUMPTION OF SBS
Similar to that of MBS, the average power consumption of
SBS can be expressed as:

Pts = as · Ps ·
Ls
Ts
+ bs. (19)

The average transmission power of SBS is

Ps = πR2s ·
∫ Rs

0
Pa,sRα(1−κ)s rακs ·

2rs
R2s

drs

= πR2s ·
2Pa,sRαs
2+ κα

. (20)

And the transmission rate of SBS is

Ts = −2BEi
[
−

(
π2
/
4
) (
λsR2s + λmR

2
mθ
−1/2

)]
. (21)

Similarly, bringing Eq. (7), (20) and (21) into the Eq. (19),
we can get the average power consumption of SBS:

Pts =
asPa,sR4s · µtπR

2
s · εs

−6BEi
[
−
(
π2
/
4
) (
λsR2s + λmR2mθ−1/2

)] + bs. (22)

IV. OPTIMAL ENERGY EFFICIENCY AND DYNAMIC
STRATEGY FOR SLEEPING
A. ENERGY EFFICIENCY OPTIMIZATION ANALYSIS
Inserting the formula of Cm, Cs, Ptm, Pts(Eq. (10), Eq. (11),
Eq. (18), and Eq. (22)), into Eq. (3), we can obtain the energy
efficiency as follows.
Lemma 1: Given µt > 0, Rm > 0, Rs > 0, Ptm > 0,

Pts > 0, the EE is strictly quasi-concave function of λm
and λs, where λm ∈ (0,∞) and λs ∈ (0,∞).

Proof: According to Eq. (23), as shown at the top of the
next page, the function of EE can be structured as follows,

f (x, y) =
a1xe−(b1x+c1y) + a2ye−(b2x+c2y)
a3x

Ei[−d3x−e3y]
+

a4y
Ei[−d4x−e4y]

+ bmx + bsy
. (24)

For any determined value x > 0, denoted as x ′, f (x, y) =
f
(
x ′, y

)
can be seen as a function of y, and f

(
x ′, y

)
can be

written as:

f
(
x ′, y

)
=

a′1e
−(b′1+c1y) + a2ye−(b

′

2+c2y)

a′3
Ei[−d ′3−e3y]

+
a4y

Ei[−d ′4−e4y]
+ b′m + bsy

. (25)

where a′1, a2, a
′

3, a4, b
′

1, b
′

2, c1, c2, d
′

3, d
′

4, e3, e4, x
′
∈ R+,

and Ei[·] is the exponential integral function given by Ei[z] =∫
∞

z
e−x
x dx. For any real number β, there exists certain value

xm and xn such that f (x ′, y) > β for all x ′ in the interval xm <
x ′ < xn. Thus, it follows that xm < qx ′1 + (1 − q)x ′2 < xn
and f (qx ′1 + (1− q)x ′2) > β for x ′1, x

′

2 ∈ X and 0 ≤ x ′1 < x ′2,
where q ∈ (0, 1). Since f (x ′, y) is quasi-concave.

Thus the projection of the corresponding function{
f (x, y)
y = kx + b

to the xoz coordinate plane is a convex arc.

Similarly, for any determined value y > 0, denoted as y′,
f (x, y) = f

(
x, y′

)
can be seen as a function of x, and this

function is also convex. According to the literature [23], for
the binary function f

(
x ′, y

)
, if the projection of the space

curve
{
z = f (x, y)
y = kx + b

to the xoz coordinate plane is a convex

arc and the projection of the space curve
{
z = f (x, y)
x = c

to the

yoz coordinate plane is also a convex arc, the binary function
z = f (x, y) is quasi-concave. So, f (x, y) is quasi-concave. �

As the EE is strictly quasi-concave function of λm and λs,
we can achieve the optimal densities λ∗m and λ∗s of MBSs and
that of SBSs by the following partial derivatives, respectively.{

∂EE
/
∂λ∗m = 0

∂EE
/
∂λ∗s = 0.

(26)

By Eq. (26), we can get Eq. (27), as shown at the top of the
next page.

According to Eq. (8), (9), (10), (11), (17), (18), (21), (22)
and (27), we can obtain λm∗ and λs∗. Here, a1, Z1

(
λ∗
m
, λ*

s

)
,

Z2
(
λ∗
m
, λ*

s

)
, Cc

m, C
c
s , C

cc
m , Ccc

s , Pctm, P
c
ts, P

cc
tm, P

cc
ts and the

detailed calculations of Eq. (27) are given in the Appendix.
According to Eq. (27), the optimal densities of MBSs and

that of SBSs are related to the traffic loads (Lm and Ls) in
HetNet. As the traffic loads in a HetNet are different over
time, we should adjust BSs densities according to Lm and Ls.
After MBSs and SBSs are deployed, a feasible method to
adjust the densities of MBSs and that of SBSs is to make
some of them sleep according to the traffic loads. Therefore,
we first deduce the optimal sleeping probabilities of MBSs
and that of SBSs according to the joint optimal densities
(JODs) of MBSs and that of SBSs ( λm∗ and λs∗), and then
further deduce the optimal threshold OTT according to JODS.
This makes SBSs and MBSs adaptively and distributively
sleep according to their own traffic loads.

B. THE OPTIMAL SLEEPING PROBABILITY
Let 1 − x (Ls) be the sleeping probability of SBS, which is
related to its traffic load Ls, then the density of SBSs is λ′s =
λsx (Ls). When SBS sleeps, its users should be served by a
MBS, so the traffic load of MBSs (Lmx) will change to Lmx =

µt ·
(
E[S]− N ′sπR

2
s
)
· εm. Here N ′s = λ

′
sE [S] is the number

of active SBSs. The transmission rate of MBS (Tmx) is Tmx =
B
∫
∞

0 exp
[
−
π2

4

(
et − 1

)1/2 (λmR2m + λ′sR2s θ1/2)]dt .
Let 1 − y (Lmx) be the sleeping probability of MBS, then

the density of active MBS will be λ′m = λmy (Lmx).
Since this has been well addressed in the related

work [30], [31], this manuscript does not study the specific
handover mechanism between the MBS and the SBS. More-
over, when the MBS is going to turn off, the active macro
users would be transferred to the neighboring active MBS,
and the continuity of network coverage between MBSs and
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E =
λmµtεm

(
E [S]− NsπR2s

)
· exp

(
−
π2

4 β
1/2
m
(
λmR2m + λsR

2
s θ

1/2
))
+ λsµtπR2sεs · exp

(
−
π2

4 β
1/2
s
(
λsR2s + λmR

2
mθ
−1/2

))
λm

amPa,mR4m
3 ·

µt(E[S]−NsπR2s )·εm
−2BEi

[
−
(
π2
/
4
)
(λmR2m+λsR2s θ1/2)

] + bmλm + λs µtπR2s ·εs
−2BEi

[
−
(
π2
/
4
)
(λsR2s+λmR2mθ−1/2)

] + bsλs .

(23)

[(
a1+Cc

mλ
∗

m

)
exp

(
−β

1
2
mZ1

(
λ∗
m
, λ∗

s

))
+ λsCc

s exp
(
−β

1
2
s Z2

(
λ∗
m
, λ∗

s

))]
·
(
λ∗
m
Ptm + λ∗s Pts

)
=

[
Ptm +

Pctm · λ
∗

m
exp

(
−Z1

(
λ∗
m
, λ∗

s

))
Z1
(
λ∗
m
, λ∗

s

)
E2
i

[
−Z1

(
λ∗
m
, λ∗

s

)] + Pcts · λ
∗

s
exp

(
−Z2

(
λ∗
m
, λ∗

s

))
Z2
(
λ∗
m
, λ∗

s

)
E2
i

[
−Z2

(
λ∗
m
, λ∗

s

)]] · (λ∗
m
Cm + λ∗s Cs

)
[
Cs + Ccc

m λ
∗

m
exp

(
−β

1
2
mZ1

(
λ∗
m
, λ∗

s

))
+ λ∗

s
Ccc
s exp
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)
=
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Pcctm · λ
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(
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∗

s
exp

(
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(
λ∗
m
, λ∗

s

))
Z2
(
λ∗
m
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s

)
E2
i

[
−Z2

(
λ∗
m
, λ∗

s

)]] · (λ∗
m
Cm + λ∗s Cs

)
.

(27)

SBSs would be ensured. Therefore, UE can be successfully
handed off between MBSs and SBSs itself.

When some SBSs and MBSs sleep, the densities of SBSs
and that of MBSs have been changed, so we should update
the successful transmission probabilities of MBSs and that
of SBSs (Q′m and Q′s), the traffic successfully transmitted by
MBS and that of SBS (C ′m and C ′s), the transmission rates
of MBS and that of SBS (T ′m and T ′s) according to Eq. (8),
(9), (10), (11), (17), (21) respectively. The average power
consumption of MBS and that of SBS (P′tm and P′ts) should
be recomputed according to updated densities of MBSs and
that of SBSs (λm′ and λs′). And the energy efficiency (EE ′)
is updated based on Eq. (28).

EE ′ =
λ′mC

′
m
/
B+ λ′sC

′
s
/
B

λ′mP
′
tm + λ

′
sP
′
ts

(28)

where

C ′m = µt
(
E [S]− N ′sπR

2
s

)
· εm

· exp
(
−
π2

4
β1/2m

(
λ′mR

2
m + λ

′
sR

2
s θ

1/2
))
, (29)

C ′s = µtπR
2
s · εs · exp

(
−
π2

4
β1/2s

(
λ′sR

2
s + λ

′
mR

2
mθ
−1/2

))
,

(30)

P′tm =
amPa,mR4m

3
·

µt
(
E [S]− N ′sπR

2
s
)
· εm

−2BEi
[
−
(
π2
/
4
) (
λ′mR2m + λ′sR2s θ1/2

)]
+ bm. (31)

P′ts =
asPa,sR4s

3
·

µtπR2s · εs
−2BEi

[
−
(
π2
/
4
) (
λ′sR2s + λ′mR2mθ−1/2

)]
+ bs. (32)

The EE ′ is also a strictly quasi-concave function of x (Ls)
and y (Lmx) when µt > 0, Rm > 0, Rs > 0, P′tm > 0, P′ts > 0
according to Lemma 1.

We define the optimal sleeping probabilities of MBSs and
that of SBSs on unconstrained conditions as follows:

(x(Ls), y(Lmx)) = argmax{EE ′} (33)

From Eq. (33), we can get the optimal value x(Ls), y(Lmx)
to let ∂EE ′

∂x(Ls)
= 0 and ∂EE ′

∂y(Lmx )
= 0, and the optimal sleeping

probability of MBS and that of SBS (x(Ls), y(Lmx)) can be
obtained by Eq. (34), as shown at the top of the next page.

Furthermore, considering various requirements and
resource limitation in practical wireless system, the out-
age probability-constrained and throughput-constrained opti-
mization problem can be formulated as in Eq. (35).

max
x(Ls),y(Lmx )

EE ′ (35)

s.t.
∫
∞

Rm
2πλ′mrm exp

(
−πλ′mr

2
m

)
drm ≤ v, (35.a)

T ′m ≥ δm, (35.b)

T ′s ≥ δs, (35.c)

Here, v is the required outage probability, which denotes
the coverage constraint. δm and δs are the required throughput
constraints.

Finally, the optimal sleeping probability (1− y∗ (Lmx))
of MBS under coverage and throughput constraint can be
obtained as follows. The optimal sleeping probability of
MBS (1 − y1 (Lmx)) without constraint can be obtained
by Eq. (34). In order to guarantee the network coverage,
the maximum sleeping probability of MBS is 1− y2 (Lmx) =
1+ ln(v)

/
πλmR2m according to Eq. (35). So the optimal sleep-

ing probability of MBS under the coverage constraint is
1 − y∗1 (Lmx) = min (1− y1 (Lmx) , 1− y2 (Lmx)). Consid-
ering the throughput constraint, the optimal sleeping prob-
ability of a MBS is 1 − y∗2 (Lmx) = max(1 − y3 (Lmx) ,
1−y4 (Lmx)), where 1−y3 (Lmx) and 1−y4 (Lmx) are obtained
from Eq. (35), respectively. Under both the coverage and the
throughput constraints, the optimal sleeping probability of
MBS is

1− y∗ (Lmx) = max(1− y∗1 (Lmx) , 1− y
∗

2 (Lmx)). (36)

Correspondingly, the optimal sleeping probabilities of SBS
(1 − x (Ls)) can be obtained as Eq. (37), where 1 − x1 (Ls),
1− x2 (Ls) and 1− x3 (Ls) are the optimal sleeping probabili-
ties of SBS without constraints, with coverage constraint and
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[(
a1 + Cc

mλmy (Lmx)
)
exp

(
−β

1
2
mZ1 (λmy (Lmx) , λsx (Ls))

)
+ λsx (Ls)Cc

s exp
(
−β

1
2
s Z2 (λmy (Lmx) , λsx (Ls))

)]
·
(
λmy (Lmx)P′tm + λsx (Ls)P

′
ts
)

=

[
P′tm +

Pctm · λmy (Lmx) exp (−Z1 (λmy (Lmx) , λsx (Ls)))

Z1 (λmy (Lmx) , λsx (Ls))E2
i [−Z1 (λmy (Lmx) , λsx (Ls))]

+
Pcts · λsx (Ls) exp (−Z2 (λmy (Lmx) , λsx (Ls)))

Z2 (λmy (Lmx) , λsx (Ls))E2
i [−Z2 (λmy (Lmx) , λsx (Ls))]

]
·
(
λmy (Lmx)C ′m + λsx (Ls)C

′
s
)

[
C ′s + C

cc
m λmy (Lmx) exp

(
−β

1
2
mZ1 (λmy (Lmx) , λsx (Ls))

)
+ λsx (Ls)Ccc

s exp
(
−β

1
2
s Z2 (λmy (Lmx) , λsx (Ls))

)]
·
(
λmy (Lmx)P′tm + λsx (Ls)P

′
ts
)

=

[
P′ts +

Pcctm · λmy (Lmx) exp (−Z1 (λmy (Lmx) , λsx (Ls)))

Z1 (λmy (Lmx) , λsx (Ls))E2
i [−Z1 (λmy (Lmx) , λsx (Ls))]

+
Pccts · λsx (Ls) exp (−Z2 (λmy (Lmx) , λsx (Ls)))

Z2 (λmy (Lmx) , λsx (Ls))E2
i [−Z2 (λmy (Lmx) , λsx (Ls))]

]
·
(
λmy (Lmx)C ′m + λsx (Ls)C

′
s
)
.

(34)

throughput constraint, respectively.

1− x∗ (Ls) = max (1− x1 (Ls) , 1− x2 (Ls) , 1− x3 (Ls))

(37)

Therefore, the joint optimal sleeping probabilities ofMBSs
and that of SBSs are {1− y∗ (Lmx) , 1− x∗ (Ls)}.

C. THE OPTIMAL THRESHOLD OTT FOR DYNAMICALLY
SLEEPING
In section III, we obtain the optimal densities and optimal
sleeping probabilities of MBSs and SBSs to maximize the
energy efficiency in HetNets, which are related to the traffic
load. In this section, according to the optimal sleeping proba-
bilities, we deduce the OTT if MBS and SBS will go to sleep
dynamically.

Let τm and τs be the OTTs of MBS and SBS, respectively.
When the traffic load of MBS is less than τm(Lm < τm),
the MBS goes to sleep. Similarly, SBS goes to sleep if its
traffic load is less than τs(Ls < τs). In the following, we calcu-
late τm and τs according to the optimal sleeping probabilities
({1− y∗ (Lmx) , 1− x∗ (Ls)}).

The optimal sleeping probability of MBS (1− y∗ (Lmx)) is
equal to the ratio of the number of optimal activeMBSs to the
total number ofMBSs in a HetNet. The total number ofMBSs
is Nm = Aλm and the number of the optimal active MBSs
is nm = Aλ′m. Since users’ distribution follows PPP with
average arrival rate µt , and the number of users čĺdenoted as
Xčľ in the coverage range of MBS follows PPP distribution
with µm =

(
E [S]− N ′sπR

2
s
)
· µt , the probability that the

number of the users in MBS is smaller than ξm is

pm = pm (X ≤ ξm) = 1−
∞∑

k=ξm+1

e−µmµkm
k!

. (38)

Assuming that MBS goes to sleep when users in the cover-
age are less than or equal to ξm, then the probability pm will

be equal to the optimal sleeping probability (1− y∗ (Lmx)).

pm = 1− y∗ (Lmx). (39)

ξm can be calculated by Eq. (38) and Eq. (39), so as to get
the OTT of MBS as follows:

τm = ξm · εm. (40)

When the traffic load of MBS is smaller than τm, it goes to
sleep and its traffic load is switched to adjacent MBSs.

Similarly, the number of users (denoted as Y ) in the cover-
age range of SBS follows PPP distribution withµs = πR2sµt .
The probability ps that Y is smaller than ξs is

ps = ps (Y ≤ ξs) = 1−
∞∑

k=ξs+1

e−µsµks
k!

. (41)

Assuming that SBS goes to sleep when users in the cov-
erage range of SBS are less than or equal to ξs, then the
probability ps is equal to the optimal sleeping probability of
SBS, which is

ps = 1− x∗ (Ls). (42)

ξs can be calculated by Eq. (41) and Eq. (42), so the OTT
of SBS is

τs = ξs · εs. (43)

When the traffic load of SBS is smaller than τs, SBS goes to
sleep, and its traffic load is switched to MBSs.

V. PERFORMANCE EVALUATION
A. SIMULATION SETTINGS AND PARAMETERS
In this section, we use simulation experiments based on
parameters presented in Table 2 to validate the rightness
and effectiveness of energy-efficient model and evaluate the
performance of dynamic sleeping strategy. In Section V-B,
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TABLE 2. Simulation parameters.

the performance evaluations are focus on energy efficiency,
the optimal sleeping probability, the normalized OTT, suc-
cessfully transmitted throughput, and transmission power per
unit, respectively.

As the most related work in the paper, the author allow
SBSs to sleep, and deduce an optimal load dependent pico
tier BS activity factor to maximize the 2-tierEE in [19]. Com-
pared with [19], we extend this work to focus on the adaptive
sleeping problem under joint deployment ofMBSs and SBSs,
in which MBSs and SBSs could sleep dynamically with con-
sidering their joint optimal densities. Therefore, to show the
effectiveness and improvement in our work, we will compare
the proposed jointly sleeping with SBSs sleeping in [19] in
terms of successfully transmitted throughput, transmission
power per unit, and energy efficiency in Section V-B.

B. NUMERICAL RESULTS AND DISCUSSIONS
As shown in Fig.2, the energy efficiency is HetNet has a trend
from rise to decline when the densities of MBSs and SBSs
increase. The energy efficiency reaches to the maximum
value when λm = 1.696 × 10−5 and λs = 4.566 × 10−4.
As densities of BSs increase from small value, the through-
put successfully transmitted of the BSs increases obviously,
so the energy efficiency increases. However, the energy con-
sumption and interference also increase with densities of BSs.
After the optimal values of densities of BSs, the speed growth
of energy consumption is bigger than that of the throughput,
so the system energy efficiency decreases with the increase
of the densities of the BSs.

The theoretical and simulated optimal sleeping probabili-
ties of MBSs and that of SBSs for different user arrival rates
are shown in Fig. 3. We can see that the theoretical results
are very close to the simulation results. With the increase
of user arrival rate, more BSs (including MBSs and SBSs)
should be activated to serve users, so the optimal sleep-
ing probabilities reduce. In Fig. 3, the optimal sleeping

FIGURE 2. Energy efficiency changes with the density of MBSs and that
of SBSs.

FIGURE 3. The optimal sleeping probability for different user arrival rates.

probability of MBSs is always about 0.4 when the user arrival
rate is small (less than 0.4 × 10−3m2

/
s), since some MBSs

should be activated to ensure the network coverage even the
user arrival rate is small. With the increase of the user arrival
rate, the change of the sleeping probabilities of BSs can be
divided into three stages: Stage 1: the user arrival rate is
less than 0.4 × 10−3m2

/
s. At this stage, with the increase

of the user arrival rate, the optimal sleeping probability of
MBSs does not change obviously, but the optimal sleeping
probability of SBSs decreases rapidly to satisfy the increasing
service requirement. Stage 2, the user arrival rate is more than
0.4×10−3m2

/
s but less than 1.2×10−3m2

/
s. At this stage,

when the user arrival rate increases, we should activate more
MBSs and SBSs to satisfy the service requirement. Stage 3,
the user arrival rate is more than 1.2 × 10−3m2

/
s. At this

stage, almost all BSs (including MBSs and SBSs) should be
awakened to serve the user.

Fig. 4 illustrates the relationship between the OTTs and
sleeping probabilities. Here we use normalized OTT, which
is defined as the ratio of OTT to the throughput of BS
(an MBS or an SBS). When the optimal sleeping proba-
bilities increase, more BSs go to sleep, so the normalized
OTT increases.

To show the improvement of proposed jointly sleeping
with considering constraints or not, SBSs sleeping with
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FIGURE 4. The normalized OTT for different user arrival rates.

FIGURE 5. The throughput for different user arrival rates.

FIGURE 6. The transmission power for different user arrival rates.

considering constraints or not in [19] are evaluated as the
benchmark in Figs. 5-7.

In Fig. 5, the throughput successfully transmitted increases
as the user arrival rate increases. For our strategy, the through-
put without constraints is higher than that with constraints
when the user arrival rate is low (less than 0.4× 10−3m2

/
s).

Since more MBSs have to be active under the coverage and
throughput constraints, which increases the system through-
put. However, after the user arrival rate being higher than
0.4 × 10−3m2

/
s, more SBSs are activated to satisfy the

increasing users’ data rate, which increases the interference
between different BSs, and in turn decreases the throughput
per BS (including MBS and SBS). As the strategy with

FIGURE 7. The energy efficiency for different user arrival rates.

constraints requires that the throughput perMBS and per SBS
must be higher than δm and δs, which will limit the number
of active MBSs and SBSs, the throughput of strategy with
constraints should be less than that without constraints.

As an other related work, [20] only allows femtocells
to sleep and make spectrum efficiency and energy effi-
ciency maximize by adapting the density of femtocells.
Therefore, we have compared transmission power per unit
and energy efficiency with related references [19], [20] in
Fig. 6 and Fig. 7.

In Fig. 6, the transmission power per unit area increases
when the user arrival rate increases. For our strategy, when the
user arrival rate is less than 0.6×10−3m2

/
s, the transmission

power with constraints is bigger than that without constraints
because more MBSs have to be activated to satisfy the cov-
erage constraint. However, after the user arrival rate being
higher than 0.6×10−3m2

/
s, increasing the number of active

SBSs will increase the interference between different BSs,
and in turn decrease the throughput per BS (including
MBS and SBS). In order to satisfy the throughput constraint
per BS, we have to limit the number of SBSs. Therefore,
the transmission power per unit with constraints is less than
that without constraints. The similar results can be observed
for the scheme in [19] and [20].

In Fig. 7, except the results of our strategy without
constrains, the energy efficiency firstly increases and then
decreases when the user arrival rate increases. For the scheme
in [19] and [20] and our strategy with constraints, there are
always some active MBSs to ensure the coverage even there
is no user arrives, which makes the energy efficiency low for
low user arrival rate. When the number of users gradually
increases from a small value, the energy efficiency increases.
With the increase of user arrival rate, more BSs are awakened,
the total throughput increases, but in turn the energy con-
sumption and interference also increase. After some point,
the grow speed of energy consumption is bigger than that
of the throughput, and in turn the system energy efficiency
decreases with the increase of the user arrival rate. For our
strategy without constraints, as there are no needs to make
MBSs be active to ensure coverage, so the energy efficiency
is big even the number of users is small.
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FIGURE 8. The energy efficiency for different coverage range of SBSs.

FIGURE 9. The energy efficiency for different user arrival rates.

In addition, in Fig. 7, it is easy to see that when the user
arrival rate is less than 1.6×10−3m2

/
s, the energy efficiency

of joint MBSs and SBSs sleeping strategy is always better
than the SBSs sleeping strategy in [19] and [20]. Therefore,
it is possible to increase the energy efficiency considering the
sleeping of the MBSs.

Given the user arrival rate to 0.8 users/(m2
· s), we also

evaluate influence of the coverage range of the SBSs on the
energy efficiency, which is shown in Fig. 8. The energy effi-
ciency increases firstly and then decreases with the increase
of the coverage range of the SBSs. Because the throughput
successfully transmitted by the BSs increases obviously as the
increase of the coverage range of the SBSs, the energy effi-
ciency increases. As the coverage range of the SBSs increases
gradually to some degree, the power consumption of the SBSs
increases significantly, so the energy efficiency declines.

In Fig. 9, we evaluate the impact of full path loss inver-
sion approach (FPI) and fixed transmit power approach
(FTP) on the energy efficiency. Obviously, we can see that
FPI outperforms than FTP, the reason is that for FPI approach,
when the user arrival rate is small, the average transmission
power of MBS and that of SBS will decline to save energy
which result in the energy efficiency higher. In contrast, using
FTP approach, the average transmission power is always
fixed even it is not necessary in this case. Meanwhile, with
the increase of user arrival rate, more BSs become active,
the interference becomes greater, and the overall energy

consumption increases faster than the total throughput. As a
result, the energy efficiency declines in this case. Finally,
the energy efficiency goes flat.

VI. CONCLUSION
This work investigates the energy efficiency of HetNets with
macrocells and small cells. Using PPP distributions of MBSs
and that of SBSs, the energy efficiency model in Bit/s/Hz/m2

is proposed. We formulate the EE maximization problem
with considering constraints or not. The JODs of MBSs and
that of SBSs are deduced, which can be used to guide the
deployment of MBSs and that of SBSs in the planning stage
of HetNets. As the optimal densities of MBSs and that of
SBSs are related to the traffic load in HetNets, a feasible
approach to keep densities of MBSs and that of SBSs in
optimal values is to dynamically make MBSs and SBSs go to
sleep according to the traffic load. Therefore, we can further-
more deduce the optimal sleeping probabilities of MBSs and
that of SBSs, and the optimal threshold OTT at which MBSs
and SBSs can dynamically sleep to maximize the energy
efficiency of HetNet. The simulations validate our model and
evaluate the performance of our dynamic sleeping strategy.

APPENDIX
DETAILED CALCULATIONS OF EQ. (27)
According to Eq. (23), we know that:

EE =
(λmCm + λsCs)

/
B

λmPtm + λsPts
, (44)

where

Cm = µt
(
E [S]− NsπR2s

)
· εm

· exp
(
−
π2

4
β1/2m

(
λmR2m + λsR

2
s θ

1/2
))
, (45)

Cs = µtπR2s · εs · exp
(
−
π2

4
β1/2s

(
λsR2s + λmR

2
mθ
−1/2

))
,

(46)

Ptm =
amPa,mR4m

3
·

µt
(
E [S]− NsπR2s

)
· εm

−2BEi
[
−
(
π2
/
4
) (
λmR2m + λsR2s θ1/2

)]
+ bm, (47)

Pts =
asPa,sR4s

3
·

µtπR2s · εs
−2BEi

[
−
(
π2
/
4
) (
λsR2s + λmR2mθ−1/2

)]
+ bs, (48)

Cm, Cs, Ptm and Pts are the functions of λm and λs. In order
to obtain the optimal values of λm and λs, denoted as λ∗m
and λ∗s , respectively, we take the partial derivatives of EE to
λm and λs.

For simplification, we introduce the following functions.

a1 = µt
(
E[S]− NsπR2s

)
· εm, (49)

Z1 (λm, λs) =
π2

4

(
λmR2m + λsR

2
s θ

1
2

)
, (50)

Z2 (λm, λs) =
π2

4

(
λsR2s + λmR

2
mθ
−

1
2

)
. (51)
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A. TAKE THE PARTIAL DERIVATIVE OF EE TO λm

According to Eq. (44), we calculate the partial derivativesCm,
Cs, Ptm and Pts to λm, that is

∂Cm
∂λm

= −
π2

4
a1β

1
2
mR2m exp

[
−β

1
2
mZ1 (λm, λs)

]
= Cc

m exp
[
−β

1
2
mZ1 (λm, λs)

]
, (52)

where

Cc
m = −

π2

4
a1β

1
2
mR2m. (53)

∂Cs
∂λm
= −

π2

4
β

1
2
s R2mθ

−
1
2µtπR2sεs exp

[
−β

1
2
s Z2 (λm, λs)

]
= Cc

s exp
[
−β

1
2
s Z2 (λm, λs)

]
, (54)

where

Cc
s = −

π2

4
β

1
2
s R2mθ

−
1
2µtπR2sεs. (55)

∂Ptm
∂λm

=

π2

4 amPa,mR
6
ma1 · exp(−Z1 (λm, λs))

6BZ1 (λm, λs) · E2
i [−Z1 (λm, λs)]

=
Pctm · exp(−Z1 (λm, λs))

Z1 (λm, λs) · E2
i [−Z1 (λm, λs)]

, (56)

where

Pctm =
π2

4 amPa,mR
6
ma1

6B
. (57)

∂Pts
∂λm
=

π2

4 asPa,sR
6
sµtπεsR

2
mθ
−1
2 · exp(−Z2 (λm, λs))

6BZ2 (λm, λs) · E2
i [−Z2 (λm, λs)]

=
Pcts · exp(−Z2 (λm, λs))

Z2 (λm, λs) · E2
i [−Z2 (λm, λs)]

, (58)

where

Pcts =
π2

4 asPa,sR
6
sµtπεsR

2
mθ
−1
2

6B
. (59)

According to the partial derivatives of Cm, Cs, Ptm and Pts
to λm, we can have the partial derivative EE to λm.

Inserting the formula of Eq. (52), Eq. (54), Eq. (56), and
Eq. (58) into Eq. (60), as shown at the bottom of this page,
and assuming that ∂EE

∂λm
= 0, we can have Eq. (61), as shown

at the bottom of this page, as follows.

B. TAKE THE PARTIAL DERIVATIVE OF EE TO λs

Similar to the process in A, we firstly calculate the partial
derivatives Cm, Cs, Ptm and Pts to λs:

∂Cm
∂λs
= −

π2

4
a1β

1
2
mR2s θ

1
2 exp
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1
2
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]
, (62)

∂EE
∂λm
=

∂(λmCm+λsCs)
∂λm

(λmPtm + λsPts)−
∂(λmPtm+λsPts)

∂λm
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. (60)
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=
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)
+ λsCcc

s exp
(
−β

1
2
s Z2 (λm, λs)

)]
· (λmPtm + λsPts)

=

[
Pts +

Pcctm · λm exp (−Z1 (λm, λs))

Z1 (λm, λs)E2
i [−Z1 (λm, λs)]

+
Pccts · λs exp (−Z2 (λm, λs))

Z2 (λm, λs)E2
i [−Z2 (λm, λs)]

]
· (λmCm + λsCs). (71)

[(
a1 + Cc

mλm
)
exp

(
−β

1
2
mZ1 (λm, λs)

)
+ λsCc

s exp
(
−β

1
2
s Z2 (λm, λs)

)]
· (λmPtm + λsPts)

=

[
Ptm +

Pctm · λm exp (−Z1 (λm, λs))

Z1 (λm, λs)E2
i [−Z1 (λm, λs)]

+
Pcts · λs exp (−Z2 (λm, λs))

Z2 (λm, λs)E2
i [−Z2 (λm, λs)]

]
· (λmCm + λsCs)[

Cs + Ccc
m λm exp

(
−β

1
2
mZ1 (λm, λs)

)
+ λsCcc

s exp
(
−β

1
2
s Z2 (λm, λs)

)]
· (λmPtm + λsPts)

=

[
Pts +

Pcctm · λm exp (−Z1 (λm, λs))

Z1 (λm, λs)E2
i [−Z1 (λm, λs)]

+
Pccts · λs exp (−Z2 (λm, λs))

Z2 (λm, λs)E2
i [−Z2 (λm, λs)]

]
· (λmCm + λsCs).

(72)
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where

Ccc
m = −

π2

4
a1β

1
2
mR2s θ

1
2 . (63)

∂Cs
∂λs
= −

π2

4
β

1
2
s R2sµtπR

2
sεs exp

[
−β

1
2
s Z2 (λm, λs)

]
= Ccc

s exp
[
−β

1
2
s Z2 (λm, λs)

]
, (64)

where

Ccc
s = −

π2

4
β

1
2
s R2sµtπR

2
sεs. (65)

∂Ptm
∂λm

=

π2

4 amPa,mR
4
mR

2
sa1θ

1
2 · exp(−Z1 (λm, λs))

6BZ1 (λm, λs) · E2
i [−Z1 (λm, λs)]

=
Pcctm · exp(−Z1 (λm, λs))

Z1 (λm, λs) · E2
i [−Z1 (λm, λs)]

, (66)

where

Pcctm =
π2

4 amPa,mR
4
mR

2
sa1θ

1
2

6B
. (67)

∂Pts
∂λm
=

π2

4 asPa,sR
6
sµtπεsR

2
s · exp(−Z2 (λm, λs))

6BZ2 (λm, λs) · E2
i [−Z2 (λm, λs)]

=
Pccts · exp(−Z2 (λm, λs))

Z2 (λm, λs) · E2
i [−Z2 (λm, λs)]

, (68)

where

Pccts =
π2

4 asPa,sR
6
sµtπεsR

2
s

6B
. (69)

According to the partial derivatives of Cm, Cs, Ptm and Pts
to λs, we have the partial derivative EE to λs.
Inserting the formula of Eq. (62), Eq. (64), Eq. (66), and

Eq. (68) into Eq. (70), as shown at the bottom of the previous
page, and assuming that ∂EE

∂λm
= 0, we can have Eq. (71), as

shown at the bottom of the previous page.
So we can get the Eq. (72), as shown at the bottom of the

previous page, by Eq. (61) and (71) as follows, which is the
same as Eq. (27).
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