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ABSTRACT In many real-world applications, data are represented by high-dimensional features. Despite
the simplicity, existing K-means subspace clustering algorithms often employ eigenvalue decomposition
to generate an approximate solution, which makes the model less efficiency. Besides, their loss functions
are either sensitive to outliers or small loss errors. In this paper, we propose a fast adaptive K-means
(FAKM) type subspace clustering model, where an adaptive loss function is designed to provide a flexible
cluster indicator calculation mechanism, thereby suitable for datasets under different distributions. To find
the optimal feature subset, FAKM performs clustering and feature selection simultaneously without the
eigenvalue decomposition, therefore efficient for real-world applications. We exploit an efficient alternative
optimization algorithm to solve the proposed model, together with theoretical analyses on its convergence
and computational complexity. Finally, extensive experiments on several benchmark datasets demonstrate
the advantages of FAKM compared to state-of-the-art clustering algorithms.

INDEX TERMS Dimension reduction, feature selection, K-means, discriminative embedded clustering,
adaptive learning.

I. INTRODUCTION
Clustering has been widely used as one of the most funda-
mental techniques in machine learning [1], [2]. Over the past
decades, we have witnessed its significant effectiveness in
many applications, such as multimedia annotation [3], [4],
remote sensing [5], gene expression analysis [6], [7],
and so on.

K-means clustering (KM) is a frequently used cluster-
ing method [8] and has been extensively applied in many
applications for its efficiency and simplicity. Typically,
KM iteratively determines the assignment of each data point
to the cluster centroids according to certain similarity mea-
surements and updates the cluster centroids subsequently.
However, as illustrated in Fig.1, KM is known to be sensitive
to the noises and outliers by minimizing the squared l2-norm
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based loss function. For instance, in Fig.1(a), the outliers
(dotted blue circles) will be assigned larger weight value
(thick line) and lead to a strong bias when updating the clus-
ter centroids, resulting in a misclassified point (red circle).
To overcome this problem, a robust KM (RKM) with the
l2,1-norm was proposed in [9] and was proven its effective-
ness in multi-view applications. Du et al. [10] also extended
KM with multiple kernels based on the l2,1-norm error mea-
surement. Nevertheless, these extensions of KM tend to over-
penalize for small loss error. Take the Fig.1(b) for example,
RKM assigns larger weight value to data points in high-
density regions and smaller weight value to those in low-
density regions. Although such a strategy can properly handle
the outliers in Fig.1(a), the weight value of the data points
in high-density regions are easily gotten over-overestimated,
resulting in a misclassified point (blue square).

Driven by the rapid development of multimedia
technologies, we have witnessed a boosting growth of
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FIGURE 1. Two toy examples of KM and RKM. (a) KM suffers from
outliers, (b)RKM suffers from over-penalizing.

high-dimensional data. As demonstrated in previous
works [11]–[13], it is impractical to directly cope with these
high-dimensional data for unnecessary noises and relevant
features they contain. This problem also frequently occurs
in KM and its extensions, and thus degrades their clustering
performance. One direct way to solve this problem is to
map the high-dimensional data into the low-dimensional
one by dimension reduction approaches, such as Locally
Linear Embedding (LLE) [14] and Principle Component
Analysis (PCA) [15]–[17], followed by KM subsequently.
For instance, a clustering algorithm based on PCA and KM,
named PCAKM, was introduced in [18]. To better utilize the
manifold information, Yin et al. [19] applied LLE to select
the feature subspace and performed KM on the projected
data. Nevertheless, a major drawback of these algorithms is
that they perform subspace learning and clustering separately,
where the obtained subspace may not be optimal for subse-
quent clustering tasks.

To efficiently improve the accuracy of subspace cluster-
ing, researchers found that it is beneficial to perform sub-
space learning and clustering jointly [20]–[23]. For instance,
the Linear Discriminant Analysis (LDA) and KMwere adap-
tively employed into a joint framework (LDAKM) in [20].
In this model, clustering is adaptively cooperated with sub-
space learning, making it more effective to handle relevant
features. However, the LDA component in LDAKM fails
when the number of data samples is smaller than that of fea-
tures. To fix this problem, several extensions of LDA, includ-
ing Maximum Margin Criterion (MMC) [21], Orthogonal
Centroid Method (OCM) [22], and Orthogonal Least Squares
Discriminant Analysis (OLSDA) [23] were proposed. Com-
pared with the LDAKM, these extensions of LDA achieve
many successes in various applications when cooperating
with KM [24]. To better explore discriminative informa-
tion among high-dimensional data, Hou et al. [24] proposed
a general framework to perform PCA and KM simultane-
ously called Discriminative Embedded Clustering (DEC).
Xu et al. [25] proposed a multi-view Re-weighted Dis-
criminatively Embedded K-means (RDEKM), which can
iteratively control the distribution of different views in low-
dimensional feature space. Nonetheless, there are several lim-
itations of these KM type discriminative subspace learning
methods. On the one hand, all of these methods attempt

to find the optimal subspace using the orthogonal linear
transformation. In this way, one needs to employ eigenvalue
decomposition to compute an approximate solution. Such
imposed eigenvalue decomposition will result in a heavy
computational burden, making it inapplicable to extremely
high-dimensional data. What is worse, it is also difficult to
understand the relationship between the transformed low-
dimensional feature space and the original one.

Feature selection is another powerful subspace learning
method to find the most representative feature subset and
preserve the original data structure simultaneously [26], [27].
Boutsidis et al. [28] selected features by constructing a prob-
ability distribution for feature space, and later described a
method where one could select features using determinis-
tic technique [29]. However, they are two-stage approaches,
which means they need to find feature subset first and per-
form clustering concerning the selected features. In addition,
they also neglect the discriminative information among data.
Wang et al. [30] implemented a one-stage KM type subspace
clustering with trace ratio LDA and feature learning. Never-
theless, it also depends on the eigenvalue decomposition.

To address the above challenges, in this paper, a novel
fast adaptive K-means subspace clustering (named FAKM)
is introduced. Inspired by DEC and prevalent success of
adaptive learning [31]–[33], we intend to design a robust and
elastic discriminative subspace clustering. Compared with
most of KM type subspace clustering, FAKM is capable of
handling the outliers and the over-penalizing problem by an
adaptive loss function. Meanwhile, to efficiently preserve the
information in the original feature space, we construct a spe-
cial feature selection matrix. With such a matrix, FAKM can
efficiently select the most representative subspace without
the help of eigenvalue decomposition and thus is suitable for
real-world applications. To efficiently optimize the proposed
objective function, we also develop an iterative algorithm and
prove its convergence.

The main contributions of this paper are listed as follows.
1.FAKM combines the feature selection and clustering

into a coherent framework, which exploits the reduced
dimensional subspace by a special selection matrix instead
of eigenvalue decomposition, making it applicable for very
high-dimensional data.

2.For real-world applications, we introduce an adaptive
loss function to measure the fitness over dimensionally
reduced data and the cluster centroids, which enhances the
robustness of FAKM to noises and redundant features.

3.We proposed an efficient iterative approach to optimize
FAKM with theoretical analysis on its convergence and the
computational complexity.

The rest of this paper is organized as follows. The related
works are first reviewed in Section II. Then, we elabo-
rate the framework of our FAKM algorithm and provide an
iterative optimization approach in Section III. Section IV
reports and analyzes comparison results on various kinds of
datasets. Finally, we show the conclusion and future works
in Section V.
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TABLE 1. Important notations.

II. RELATED WORKS
In this section, we mainly focus on robust KM and KM type
discriminative subspace learning, which are closely related
to FAKM. Before going into the details, let us introduce some
important notations.

A. NOTATIONS
Given a dataset X = {xi ∈ RD

|i = 1, 2, · · · , n} with
D features, the main task of subspace clustering is to parti-
tion X into c clusters in the embedded feature space {yi ∈
Rd
|i = 1, 2, · · · , n} by a linear transformation matrix Q ∈

RD×d (d � D). For simplicity, we assume X is centered,
i.e.,

∑
i xi/n = 0, and denote Y = [y1, y2, · · · , yn]T ∈ Rn×d ,

Tr(.) is the trace operator. Xi: stands for the i-th row of
matrix X . Table 1 summarizes the other notations, of which
the meanings will be explained when they are first used.

B. ROBUST K-MEANS CLUSTERING
KM aims at grouping given dataset X into c disjoint clusters
{C1, C1, · · · , Cc}. It tries to find the optimal solution accord-
ing to the clustering fitness using squared Euclidean distance
measurement. Let Ind denote the cluster indicator matrix
set, that is, Ind = {F̃ |F̃ ∈ {0, 1}n×c,

∑c
j=1 F̃ij = 1,∀i =

1, 2, · · · , n}. The objective function of KM can be formulated
as

min
F∈Ind

n∑
i=1

c∑
k=1

Fik‖xi − x̄k‖22, (1)

where F = [f1, f2, · · · , fn]T ∈ Ind is the cluster indicator
matrix. Fik = 1 if xi belongs to the k-th cluster, and Fik = 0
otherwise; x̄k is the centroid of k-th cluster.

Although KM is simple and can be solved efficiently,
the squared l2-norm loss imposed in Eq.(1) is very sensi-
tive to outliers. With the development of l2,1-norm tech-
nologies [26], [34], [35], amount of robust loss functions
are designed and shown their empirical successes in various
applications. For instance, Cai et al. [9] and Du et al. [10]
designed an l2,1-norm fitness function for robust clustering

as follows:

min
F∈Ind

n∑
i=1

√√√√ c∑
k=1

Fik‖xi − x̄k‖22. (2)

By introducing such an l2,1-norm, the impact of outliers
in KM can be reduced. However, due to the non-smoothness
of the l2,1-norm, Eq.(2) is hard to be directly optimized.
Although the re-weighted optimization approach is efficient
to solve this problem [36], it is sensitive to small loss [37].

C. K-MEANS WITH DISCRIMINATIVE SUBSPACE
LEARNING
The primary principle of LDAKM is to generate labels for
LDA by KM and to perform KM in the low-dimensional
feature space obtained by LDA in a joint manner. Particularly,
it tries to minimize the following objective function:

min
F∈Ind

n∑
i=1

c∑
k=1

Fik‖yi − gk‖22, (3)

where gk is the cluster centroid of k-th class in the embedded
feature space.

To make use of discriminative information among data,
LDAKM also computes the total scatter matrix St , within
class scatter matrix Sw and between class scatter matrix Sb
as

St =
n∑
i=1

xixTi

Sb =
c∑

k=1

nk x̄k x̄Tk

Sw =
c∑

k=1

∑
i∈Ck

(xi − x̄k )(xi − x̄k )T . (4)

Assuming that the transformation is linear, i.e., Y = XTQ,
LDAKM is able to find the optimal transformation matrix Q
by maximizing the following objective function:

max
QTQ=I

Tr((QT SbQ)(QT SwQ)−1), (5)

where the orthogonal constraintQTQ = I is imposed to avoid
a trivial solution.

As discussed in previous section, LDAKM is difficult to
handle the ‘‘small-sample-size’’ problem, where the number
of features is smaller than that of instances. In such a scenario,
the objective function of LDA in Eq.(5) fails as Sw tends to
be singular. To cope with this problem, Orthogonal Centroid
Method K-means (OCMKM) subspace learning was pro-
posed [22], [24], which is tomaximize the following objective
function:

max
QTQ=I

Tr(QT SbQ). (6)

Maximum Margin Criterion K-means (MMCKM) is
another extension of LDAKM. It tries to maximize the aver-
age margin among classes [21], [24], which has the following
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objective function:

max
QTQ=I

Tr(QT (Sb − Sw)Q). (7)

Another way of solving the trivial solution problem of
LDA is to reform its fitness function [23], [24]. For instance,
Orthogonal Least Squares Discriminant Analysis based
K-means clustering (OLSDAKM) transforms LDAKM to the
least squares problem under the orthogonal constraint [23].
OLSDAKM tries to optimize the objective function
as follows:

min
QTQ=I

Tr(QT SwQ). (8)

DEC is another school of discriminative subspace learning
approaches, which performs PCA and KM simultaneously.
Its objective function can be defined as

max
QTQ=I

Tr(QT (St − λSw)Q), (9)

where λ is a balance parameter.
Different from LDAKM, the problems in Eq.(6), Eq.(7),

Eq.(8), and Eq.(9) can be solved by general eigenvalue
decomposition of Sb, Sb− Sw, Sw, and St − λSw respectively,
without the inverse operation of Sw. Therefore, these methods
are more suitable for the real-word applications.

Though these discriminative subspace clustering algo-
rithms have been demonstrated their effectiveness in many
applications, they can be hardly applied to extremely high-
dimensional data due to their dependence on eigenvalue
decomposition.What is more, it is hard to directly explore the
relationship between the newly transformed low-dimensional
data and the original one.

To preserve the original features in the low-dimensional
feature space, Wang et al. [30] proposed a discrimina-
tive learning method with Trace Ratio Formulation and
K-means Clustering (TRACK), which jointly unifies trace
ratio LDA, K-means, and regularization feature learning into
a single objective function. However, similar to LDAKM,
TRACK still suffers from ‘‘small-sample-size’’ problem and
high computational complexity problem.

III. THE PROPOSED METHOD
In this section, we first conduct the formulation of FAKM
and design an efficient iterative algorithm to optimize it.
After that, the computational complexity of FAKM is also
discussed.

A. SELECTION MATRIX FOR CLUSTERING
To effectively select features, we first introduce a column
vector wi that has the following form:

wi = [0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
D−i

]T .

Then we define a special selection matrix W as

W = [wI (1),wI (2), · · · ,wI (d)], (10)

where the vector I is a permutation of {1, 2, · · · ,D}.

From Eq.(10), one can observe thatW is extremely sparse
and is indeed a column-full-rank transformation matrix.
Then, with this selection matrix, one can transform the
D-dimensional data xi into d-dimensional data yi ( d � D)
as follows:

yi = W T xi. (11)

Considering the difficulty of dealingwith high-dimensional
data, we aim to partition them in the low-dimensional feature
space. Thereafter, we integrate Eq.(11) into KM and arrive at

min
F∈Ind,W ,G

n∑
i=1

c∑
k=1

Fik‖W T xi − gk‖22

= min
F∈Ind,W ,G

n∑
i=1

‖W T xi − Gfi‖22

= min
F∈Ind,W ,G

‖XTW − FGT ‖2F , (12)

where G = [g1, g2, · · · , gc] ∈ Rd×c is the cluster centroid
matrix and gk (1 ≤ k ≤ c) is the centroid of k-th cluster.

Notably, thanks to the special structure of the feature selec-
tion W in Eq.(10), compared with the KM type subspace
clustering, the framework in Eq.(12) has the following three
advantages:

(1) The embedding clustering algorithm is computationally
efficient due to the extreme sparsity of W (detailed analysis
can be found in Section III-C);

(2) The selection matrixW leads to an easy original feature
preservation when performing dimension reduction;

(3) The particular structure of W makes the eigenvalue
decomposition operation used in the KM type subspace clus-
tering unnecessarily. Thus, it is easy to tackle extremely high-
dimensional data.

B. ADAPTIVE DISCRIMINATIVE CLUSTERING WITH
FEATURE SELECTION
To explore discriminative information among clusters,
we want to preserve the representative features on which the
data points within the same group are close to each other
while the data points of different groups are far from each
other. Inspired by the recent developments on discriminative
subspace clustering [24], we propose the following objective
function:

max
F∈Ind,W ,G

Tr(W T StW )− λ‖XTW − FGT ‖2F . (13)

Similar to Eq.(1), the second term in Eq.(13) involves the
squared Frobenius norm, which is easily affected by the data
noises or outliers. To improve the robustness of clustering,
following the previous works [31], [32], we impose an adap-
tive loss function into our objective function. For arbitrary
matrix A = [a1, a2, · · · , an] ∈ Rm×n, the adaptive loss
function of matrix A is defined as

‖A‖σ =
∑
i

(1+ σ )‖ai‖22
‖ai‖2 + σ

, (14)

where σ > 0 is an adaptive parameter.

42642 VOLUME 7, 2019
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One can easily verify that ‖A‖σ is nonnegative, convex,
and twice differentiable, thus is desirable for loss function and
optimization. Additionally, when σ → ∞, ‖A‖σ is actually
the Frobenius norm;When σ → 0, ‖A‖σ tends to become the
group sparsity l2,1-norm ‖A‖2,1, which has been proven its
robustness to outliers in previous works [26], [38], [39]. Thus,
the loss function in Eq.(14) is definitely an elastic function
with an adaptive parameter σ . After imposing the adaptive
loss function Eq.(14) into Eq.(13), our objective function
becomes

max
F∈Ind,W ,G

Tr(W T StW )− λ‖XTW − FGT ‖σ . (15)

C. OPTIMIZATION
In this section, a simple and efficient iterative algorithm is
presented to solve problem (15). More specifically, we alter-
natively update onewhile keeping the others fixed. According
to the theory in [31], the problem in Eq.(15) can be trans-
formed into the following problem:

max
F∈Ind,W ,G,τi

Tr(W T StW )− λ
n∑
i=1

τi‖W T xi−Gfi‖22, (16)

where τi = (1+ σ ) ‖W
T xi−Gfi‖2+2σ

2(‖W T xi−Gfi‖2+σ )2
.

Denote 1 as a diagonal matrix with its i-th diagonal
element as τi and U = [u1, u2, · · · , un]T = XTW − FGT ,
where ui ∈ Rd×1(1 ≤ i ≤ n) is the i-th column vector of U .
We have

max
F∈Ind,W ,G,1

Tr(W T StW )− λTr(UT1U ). (17)

Note that the objective function in Eq.(17) is not jointly
convex with the variables F and G. Besides, 1 is dependent
on W , G, and F , and each entry of F is a discrete inte-
ger value. We propose the following optimization steps to
solve it.
Step 1: Solving F while fixing W , 1 and G
When W , 1, and G are fixed, the optimization problem

in Eq.(17) becomes

min
F∈Ind

n∑
i=1

τi‖W T xi − Gfi‖22

= min
F∈Ind

n∑
i=1

τi

c∑
k=1

‖W T xi − gk‖22Fik . (18)

The minimization of the objective function in Eq.(18) with
respect to F can be decomposed into solving n independent
sub-problems. Considering the discrete structure ofF , we can
find its optimal cluster indicator for each data points as
follows:

Fij =

{
1, j = argmink ‖W T xi − gk‖22
0, Otherwise.

(19)

Step 2: Solving G, W while fixing 1 and F
To optimize W , one needs to find the optimal per-

mutation of {1, 2, · · · ,D} in Eq.(10). It is unrealistic to

estimate W using the method of exhaustion for the high-
dimensional data. Conversely, we determineW iteratively by
the cluster structure fitness and discriminative power of the
embedded data.

When the variables 1 and F are given, we can derive
the optimal solution of G in a closed form. By setting the
derivative of Eq. (17) with respect to G to zero, we obtain

G = W TX1F(FT1F)−1. (20)

Substituting G into (17), we arrive at

max
W

Tr(W T (St−λ̃Sw)W ) = max
W

Tr(W TMW )

= max
W

d∑
i=1

Tr(wTi Mwi), (21)

where M = St − λ̃Sw, S̃w = XNXT and N = 1 −

1F(FT1F)−1FT11.
Recalling the particular structure of W in Eq.(10), we can

effectively obtain the optimal solution of the problem in
Eq.(21) by locating the first d largest diagonal elements
of matrix M . Unfortunately, in practice, storing matrix M
requires O(D2) memory cost and is extremely expensive for
high-dimensional data. Noticing the sparsity of matrix N ,
we can calculate the diagonal elements of matrix M effi-
ciently as follows:

Mii = ‖Xi:‖22 − λ‖(XN
1
2 )i:‖22. (22)

Step 3: Updating 1 by calculating its i-th element
as: τi = (1+ σ ) ‖ui‖2+2σ

2(‖ui‖2+σ )2
.

Following the proof given in IV-E, we can easily verify
that the above solving strategy will converge. Nevertheless,
as the solution of F in Eq.(19) is sensitive to the initialization,
the final solution of FAKM is not adequate. Specifically, we
first get the optimal solution of F and use it to solveW andG
accordingly. But when F needs to be updated next, its initial
cluster centroids are derived from the previous F , resulting in
an unstable solution. To address this problem, following [24],
when updating F , we randomly initialize it several times
and select the one with the smallest objective function value
in Eq.(19).Mathematically, in the k-th iteration, we derive the
optimal F∗k , G

∗
k and W

∗
k . In the (k + 1)-th iteration, the ran-

dom initializations are {F1
k+1,F

2
k+1, · · · ,F

l
k+1, }, where l is

the number of random initializations and is empirically set
to 20 in our experiment. We update F by the following rule:

F∗k+1 =


F jk+1, ‖X

T (W ∗k )
T
− F jk+1(G

∗
k )
T
‖σ <

‖XT (W ∗k )
T
− F∗k (G

∗
k )
T
‖σ

F∗k , Otherwise,

(23)

where F∗ is calculated by Eq.(19) with W ∗i and G∗i .
We summarize the iterative optimization process

in Algorithm 1.

1In practice, to ensure that FT1F is invertible, we will add it with a small
constant ε, that is FT1F + ε.
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Algorithm 1 The algorithm to Solve the Problem (17).
Input:

The input data X ∈ RD×n

The reduced dimension number d , the number of clusters
c, regularization parameter λ, and adaptive parameter σ

Output:
Selection matrix W
Cluster indicator matrix F
Cluster centroid matrix G

1: Initialize 1 as an identity matrix, randomly initialize W
and G

2: repeat
3: Update the F using Eq.(19) by Eq.(23)
4: Update G by Eq.(20)
5: Update W by finding the d largest diagonal elements

of M in Eq.(22)
6: Update 1 by calculating its i-th element as τi = (1 +

σ ) ‖ui‖2+2σ
2(‖ui‖2+σ )2

7: until Convergence
8: Return W , F , and G

D. COMPLEXITY ANALYSIS
The most computational cost of Algorithm 1 involves three
components. The first component is traditional KM in
embedded feature space and has a computational complexity
O(dcn). The second component is the calculation ofG, which
has computational complexity O(dcn + c2 n). The third one
is optimization for W in the problem (21), we consider
the sparsity of N and calculate the diagonal elements of M
with complexity O(Dn). Moreover, to find the optimal W ,
we need to seek the d largest diagonal elements with com-
plexityO(D+dlogd). Thus, suppose the number of iterations
for embedded K-means clustering in Eq.(19) is Tk , and the
number of iterations for the whole algorithm is Tt . For high-
dimensional data c � D and d � D, the computational
complexity of FAKM is O(Tt (Tk (dcn) + dcn + c2n + Dn +
dlogd)) ∼ O(Dn). Besides, FAKM involves the storage of
several matrices, i.e., X , F and G, requiring O(Dn+ cn+ dc)
memory cost. Therefore, the computational cost of the pro-
posed algorithm is linear with respect to the dimensional-
ity of data points. According to the analyses above, our
algorithm is capable of handling high-dimensional data. The
complexity of FAKM and the other related algorithms are
listed in Table 2, where SRDEKM stands for the single-view
version of RDEKM.

E. CONNECTION WITH PREVIOUS METHODS
Proposition 1: DEC is a special case of the proposed FAKM
clustering method, when σ →∞.

Proof: As seeing from Eq.(21), when σ →∞ , we have
1 → I and S̃w → Sw. Considering the objective func-
tion of DEC in Eq.(9), we can confirm that DEC is a spe-
cial case of FAKM with a different transformation matrix
when σ →∞.

TABLE 2. Complexity of the compared algorithms.

FIGURE 2. Connections of FAKM and other related methods.

Proposition 2: OCMKM, MMCKM, and OLSDAKM are
special cases of FAKM, when σ → ∞ and λ → 1, λ → 2,
λ→∞ respectively.

Proof: Similar to the proof of proposition 1, when
σ →∞ , we have1→ I and S̃w→ Sw. Since St = Sw+Sb,
the objective function of FAKM in Eq.(21) is reduced to the
objective function of OCMKM, MMCKM, and OLSDAKM,
when λ→ 1, λ→ 2, λ→∞ respectively. The relations of
FAKM and other related methods are illustrated in Fig.2.

IV. EXPERIMENTS
A. EXPERIMENT SETUP
We have conducted analytical experiments on a diversity of
seven public datasets to evaluate the performance. For each
dataset, we normalize all the values in the range of [−1, 1].
These datasets include: two face image datasets (Yale2, and
Umist3), three UCI datasets4 ( Glass, Breast andVehicle), one
text dataset (WebKB [40]), one document dataset (TDT25).
For TDT2, it consists of 11201 on-topic documents collected
from 96 semantic categories. In this dataset, following [41],
we removed those documents belong to more than two cat-
egories and used the top 10 categories. Detailed information
of the these datasets is summarized in Table 3.

To test the efficiency of the compared algorithms for
high-dimensional data, we also generate two groups of
synthetic datasets with increasing feature size based on
TDT2 and WebKB. Concretely, we randomly select p fea-
tures from the original datasets, where p is a scalar in

2http://www.cvc.yale.edu/projects/yalefaces/yalefaces.html
3http://images.ee.umist.ac.uk/danny/database.html
4http://archive.ics.uci.edu/ml/
5http://www.nist.gov/speech/tests/tdt/tdt98/index.html
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FIGURE 3. Clustering results of DEC and FAKM on iris dataset with reduced dimensionality as 2. (a) Original data with ground truth labels.
(b) Clustering result of DEC. (c) Clustering result of FAKM.

TABLE 3. A brief description of the selected datasets.

the range of {400, 800, · · · , 3800, 4000} for WebKB and
{2000, 4000, · · · , 34000, 36000} for TDT2. Note that the
generated synthetic datasets may be less practical for real-
world applications due to the randomly selective strategy.
However, by using these synthetic datasets, we can bet-
ter understand algorithm behaviors with different scales of
dimensionality.

We compare FAKM with other state-of-the-art KM type
subspace clustering algorithms, of which the brief descrip-
tions are listed as follows:

• KM is the traditional K-means algorithm and is used as
the baseline in this experiment.

• LDAKM combines LDA and KM in a joint framework,
which could utilize the discriminative power among
embedded data [20].

• OCMKM is an OCM-based subspace clustering algo-
rithm [22]. It achieves the optimal dimensionality reduc-
tion transformation matrix by preserving the clustering
information among data.

• MMCKM is a MMC type subspace clustering algo-
rithm [21], which imposes a maximum margin criterion
to address the ‘‘small-sample-size’’ problem.

• OLSDAKM reformulates the objective function of tra-
ditional LDA into an orthogonal least squares prob-
lem [23], thereby easier to be applied to real-world
applications.

• TRACK accommodates trace ratio LDA and K-means
clustering procedure, and selects the discriminative fea-
tures using structured sparsity-inducing norms regular-
ization technique.

• SRDEKM is a single-view version of re-weighted dis-
criminatively embedded K-means (RDEKM) in [25],

which is designed to reduce the influence of noises by
imposing a non-squared least-absolute criteria.

• DEC is a general discriminative subspace learning
framework, where it simultaneously optimizes PCA and
KM. Besides, it imposes a balance parameter to control
the contributions of within scatter matrix and between
scatter matrix [24].

Following the previous works [24], [30], to achieve a
fair comparison, all the parameters (if any) of the com-
pared algorithms are tuned by a ‘‘grid-search’’ strategy from
{10−6, 10−4, 10−2, · · · , 102, 104, 106}, and the best clus-
tering results are recorded with the optimal parameters.
We repeat the experiment 50 times independently and report
the average results together with the variance.

Two evaluation metrics, i.e., Accuracy (ACC) and Nor-
malized Mutual Information (NMI), are used to measure the
clustering performance. Detailed explanations of ACC and
NMI can be found in [42] and [43] respectively. For these
metrics, higher value indicates better performance.

B. TOY EXAMPLE
We first evaluate FAKM on a 4-dimensional iris dataset.
This dataset consists of three groups (i.e., setosa, versicolor,
and virginica). Original data with ground truth labels are
illustrated in Fig.3(a), where two kinds of features (i.e., the
width of petal and the length of petal) are selected for
visualization.

We choose DEC and FAKM for comparison. The reduced
dimension is set to 2. We first use DEC and FAKM to cluster
the original 4-dimensional data separately, and then project
the original data to two 2-dimensional data using the obtained
optimal transformation matrices. The clustering results of
DEC and FAKM are illustrated in Fig.3(b) and Fig.3(c)
respectively. The miss-classified data points are marked with
the red cross. The results show that FAKM outperforms DEC
by generating lessmiss-classified points. Besides, in Fig.3(b),
it is clear that the projected data of DEC show a different
cluster structure from the original data in Fig.3(a). In contrast,
Fig.3(c) shows that FAKM is more capable of preserving
the original data structure by selecting the most represen-
tative features, that is, the width of petal and the length of
petal.
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TABLE 4. Clustering results of compared algorithms (ACC%).

TABLE 5. Clustering results of compared algorithms (NMI%).

C. CLUSTERING PERFORMANCE COMPARISON
To demonstrate the effectiveness of adaptive learning, we set
σ = ∞ of FAKM, which is then reduced to the optimization
problem in Eq.(13).

Table 4-5 show the results of clustering, where
‘‘-’’ means ‘‘out of memory error’’ while running the experi-
ment. We have the following observations:
• Most of the KM type subspace clustering algorithms
usually outperform KM on each dataset, except that
MMCKM, OLSDAKM, and OCMKM fail KM in
terms of ACC on some datasets, e.g., WebKB and
Glass. However, as shown in Fig.4, the dimension-
ality can be selectively reduced, making the com-
putation cost of subsequent learning tasks much
lower.

• Compared with LDAKM, most of the other subspace
clustering algorithms obtain better results on the rel-
atively high-dimensional dataset, that is Umist and
Yale. The reason may be that these subspace clustering
algorithms improve LDAKM by implementing several
flexible fitness functions, which are appropriate for
high-dimensional data.

• In most cases, DEC outperforms MMCKM, OCMKM,
and OLSDAKM by constructing a more generic dis-
criminative clustering framework.

• Comparedwith the clusteringmethodwith feature learn-
ing, i.e., TRACK, FAKM obtains better results on all
the benchmark datasets except Umist. The key reason
lies in that FAKM is capable of balancing the power of
different kinds of scattermatrices, which ismore flexible
than TRACK.

• FAKM consistently outperforms FAKM (σ = ∞)
and DEC. This observation shows that it is beneficial to
incorporate the adaptive learning with clustering.

D. INFLUENCE OF DIMENSION REDUCTION
The following two experiments aim to study the influence of
dimension reduction imposed in FAKM.

The first experiment is to verify the effectiveness of fea-
ture learning in FAKM. To achieve this goal, we simply set
the selection matrix in Eq.(15) as a D-dimensional identity
matrix, and generate the following equation:

min
F∈Ind,G

‖XT − FGT ‖σ . (24)

Obviously, without feature learning, FAKM reduced to
KM with an adaptive loss function, we name it FAKM-ND.
The performance comparison results in terms of ACC are
shown in Fig.5. The results show that by imposing the
adaptive loss function, FAKM-ND gets better results than
KM. FAKM achieves the best results on all the benchmark
datasets. Therefore, we argue that the adaptive clustering and
feature learning are beneficial for clustering.

Our second experiment is to test the impact of reduced
dimensionality variety. The parameter setting is following
the strategy in Section IV-A. Similarly, for each reduced
dimensionality, we repeat the experiment 50 times and report
the average results. Fig. 4 shows the clustering results on
several datasets with respect to the reduced dimensionality.
We can conclude that:
• Not all of the methods achieve a constant higher
ACC consistently when the reduced dimensionality
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FIGURE 4. (a) Breast. (b) Glass. (c) WebKB. (d) Umist. (e) Vehicle. (f) Yale. Clustering performance on various datasets w.r.t. different number of reduced
dimensionality.

FIGURE 5. Influence of dimension reduction in FAKM.

increases. Therefore, we can assert that dimension
reduction benefits clustering.

• When only few dimensionalities preserved, the perfor-
mance of the compared subspace clustering degrades
due to too much information loss. For example, when
d ≤ 6 for DEC on Glass dataset and d ≤ 5 for FAKM
on Breast dataset, the performance of these algorithms
is poorer than that of the benchmark algorithm KM.

• Compared with other clustering algorithms, FAKM is
more capable of locating the optimal reduced dimen-
sionality. Take the Yale dataset for example, ACC curve
of FAKM reaches its peak when the reduced dimension-
ality is set to 800.

• Of all the different algorithms and datasets, FAKM
achieves the best clustering accuracy in most cases.

For example, the performance of FAKM improves
the second best performance of TRACK by 6.32%
on WebKB dataset, which shows a better property
of FAKM.

E. CONVERGENCE ANALYSIS
To proof the convergence of the Algorithm 1, we need the
following lemma:
Lemma 1 For arbitrary vectors p, q with the same size,

the following inequality holds:

‖q‖22
‖q‖2 + σ

−
‖q‖2 + 2σ

2(‖q‖2 + σ )2
‖q‖22

≥
‖p‖22
‖p‖2 + σ

−
‖q‖2 + 2σ

2(‖q‖2 + σ )2
‖p‖22.

(25)

The proof of Lemma 1 can be found in [31].
Theorem 1 The iterative approach in Algorithm 1 mono-

tonically increases the objective function value of optimiza-
tion problem (15) in each iteration until convergence.

Proof: Suppose that we have updated Wt , Gt in the
t-th iteration. In the (t + 1)-th iteration, we fixWt ,1t and Gt
to optimize Ft+1 using Eq.(19). Recalling the updating rule
in Eq.(23), we have the following inequality:

Tr(W T
t StWt )− λ‖XTWt − FtGTt ‖σ

≤ Tr(W T
t StWt )− λ‖XTWt − Ft+1GTt ‖σ .

(26)
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TABLE 6. Computation time comparison on different datasets with fixed reduced dimensionality.

Next, we utilize 1t and Ft+1 to update G and W using
Eq.(21). Let f (W ) = Tr(W T StW ), uti = W T

t xi − Gt (fi)t+1,
and ut+1i = W T

t+1xi − Gt+1(fi)t+1, we get

f (Wt )− λ
∑
i

d ti ‖u
t
i‖

2
2

≤ f (Wt+1)− λ
∑
i

d ti ‖u
t+1
i ‖

2
2. (27)

Note that d ti = (1+ σ )
‖uti‖2+2σ

2(‖uti‖2+σ )
2 , so we arrive at

f (Wt )− λ(1+ σ )
∑
i

‖uti‖2 + 2σ

2(‖uti‖2 + σ )
2 ‖u

t
i‖

2
2

≤ f (Wt+1)− λ(1+ σ )
∑
i

‖uti‖2 + 2σ

2(‖uti‖2 + σ )
2 ‖u

t+1
i ‖

2
2.

(28)

According to Lemma 1, we have

−λ(1+ σ )
∑
i

(
‖uti‖

2
2

‖uti‖2 + σ
−
‖uti‖2 + 2σ

2(‖uti‖2 + σ )
2 ‖u

t
i‖

2
2)

≤ −λ(1+ σ )
∑
i

(
‖ut+1i ‖

2
2

‖ut+1i ‖2 + σ
−
‖uti‖2 + 2σ

2(‖uti‖2 + σ )
2 ‖u

t+1
i ‖

2
2).

(29)

Summing Eq.(28) and Eq.(29) in two sides, and combining
the results with Eq.(26), we obtain

Tr(W T
t StWt )− λ‖XTWt − FtGTt ‖σ
≤ Tr(W T

t+1StWt+1)− λ‖XTWt+1 − Ft+1GTt+1‖σ .

(30)

Since Eq.(15) has an obvious upper bound Tr(XXT ), there-
fore, the iterative steps in Algorithm 1 will monotonically
increase the objective value in Eq.(15) until it converges.

To evaluate the convergence of the objective function of
FAKM, we plot the objective function value on each iteration
on six datasets. The parameters λ and σ are set to 1, which
are the median values of the tuned range of parameters. The
results are illustrated in Fig.6. We can observe that FAKM is
efficient and converges quickly within 10 iterations on these
datasets.

FIGURE 6. Convergence analysis of FAKM on 6 datasets. (a) Breast.
(b) Glass. (c) Umist. (d) WebKB. (e) TDT2. (f) Yale.

F. PARAMETER SENSITIVITY
FAKM contains two parameters denoted as λ and σ in
Eq.(15). To learn how they affect the clustering performance,
we constructed an experiment on the parameter sensitivity.

We show the results on six datasets in Fig.7. In this experi-
ment, we set the reduced dimensionality as the median value
of its tuned range for each dataset. From the results, we notice
that the performance is sensitive to λ on the selected datasets.
If λ is properly selected, the performance of FAKM will
be significantly improved. Besides, if we select the param-
eter λ near its optimal value, the performance of FAKM
varies within a small range in most cases. This observation
is very helpful for us to determine λ. As to the impact of σ ,
the performance of FAKM varies with different σ on each
dataset. For example, the best performance is achieved when
σ is smaller than 10−4 on Breast and is larger than 104 on
TDT2 dataset.

G. COMPUTATION TIME COMPARISON
For the computation time investigation, we recorded the
clustering time of all the algorithms on each dataset. All
algorithms were implemented inMatlab 2015b on an Intel(R)
Xeon(R) CPU E5-2630 v4 2.2GHz PC with 16G memory
and Ubuntu 16.04 operating system. For the selected datasets,
we fixed their reduced dimensionality as c. The computation
time (in seconds) comparison results on seven datasets are
illustrated in Table 6, where ‘‘-’’ means ‘‘out of memory
error’’ while running the experiment. We have the following
observations:

• When clustering data with few features, such as Breast,
Vehicle and Glass, KM spends the least time. Besides,
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FIGURE 7. Parameter sensitivity analysis of FAKM on 6 datasets. (a) Glass. (b) TDT2. (c) Vehicle. (d) Breast. (e) WebKB. (f) Yale.

FIGURE 8. Computational time analysis on the synthetic datasets for the algorithms compared. (a) Synthetic dataset on WebKB. (b) Synthetic dataset
on TDT2.

the other subspace learning algorithms achieve the
comparable computational time on these datasets.
Nonetheless, when handling data with a relative larger
dimensionality, for example, Umist and Yale, FAKM
and KM is able to avoid the intensive computation of
eigenvalue decomposition and thus perform more effi-
ciently than the other compared algorithms.

• Although FAKM has the linear complexity with KM
with respect to D and n, the time cost is practically

different, the elementary reason lies in that their conver-
gence iterations vary on distinct datasets.

• When handling datawith extremely high dimensionality,
for example, WebKB and TDT2, FAKM is faster than
KM. The primary reason is that KM iteratively optimizes
cluster indicator labels in the original feature space,
while FAKM performs in the reduced feature space,
which is quite suitable for extremely high-dimensional
data.
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The results of computational time with increasing feature
sizes on the synthetic datasets are shown in Fig.8. From
Fig.8(a), we can see that both FAKM and KM have the
linear computation complexity with respect to dimensional-
ity, and are much faster than the other subspace clustering
algorithms. For the extremely high-dimensional data, that
is, TDT2, we only report the results of KM and FAKM on
this dataset, because of the ‘‘out of memory error’’ problem
of the other subspace clustering algorithms. From Fig.8(b),
we can observe that FAKM has an obvious advancement of
saving the computation over KMwhen the number of features
increasing.

V. CONCLUSION
In this paper, we proposed a novel fast adaptive K-means
clustering model, namely FAKM, to cope with the chal-
lenges of existing KM type subspace clustering algorithms.
We jointly integrated KM and feature selection into a single
framework according to the basic assumption that actual clus-
ter structure can be well extracted in the embedded feature
space. Additionally, to ease the impact of redundant features
and outliers, we also imposed an adaptive loss function to
elastically calculate the cluster indicator matrix. Furthermore,
an efficient alternative optimization algorithm is designed to
solve the proposed method, together with theoretical analysis
on its convergence and computational complexity. Extensive
experiments on several benchmark datasets demonstrated the
advantage of FAKM. In the future work, we will extend it to
multi-view clustering.
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