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ABSTRACT As stress is related to many mental and physical health problems, monitoring stress and its
management is getting increasingly important inmodern societies. Because of the advantage of convolutional
neural network (CNN) in automatic feature learning, this study is proposed to use CNN to achieve accurate
and fast detection of acute cognitive stress from heart rate variability (HRV). The traditional mental
arithmetic calculation was adopted as the stressor for a total of twenty participants, during which one-lead
electrocardiogram (ECG) was acquired. Six conventional HRV methods for inferring cognitive stress were
extracted from the ECG signals, and their performance in identifying acute cognitive stress was compared
with the proposed CNN-based method. The experimental results showed that with a super-short (10 s) time
window, the detection error rate of CNNwas 17.3%, which is significantly better than the performance of all
six conventional HRVmethods (> 7.2%, p < 0.01). Further analysis showed that the improvement achieved
by the proposed CNN methods mainly came from the decrease in false stress sample detection. This study
demonstrated the possibility of super-short windows and the advantage of CNN on acute cognitive stress
detection. Its outcome would benefit practical applications of real-time stress detection via HRV.

INDEX TERMS Cognitive stress, electrocardiogram (ECG), heart rate variability (HRV), convolutional
neural network (CNN).

I. INTRODUCTION
Stress is normally presented when the mental and physio-
logical resources available could not meet the corresponding
demands of an individual [1], such as a person is questioned
over the area he/she is not familiar with, or a student still has
several problems unsolved with a few minutes left in a final
exam. In modern societies, stress is prevalent among ordinary
people and its consequences can severely affect their daily
living, as well as their health. According to the statistics from
American Physiological Association and American Institute
of Stress, in 2014, there were 77% of US people regularly
experiencing physical symptoms, and 73% of US people reg-
ularly experiencing psychological symptoms, both of which
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were caused by stress [2]. Further, 33% of people felt that
they lived with extreme stress, and 48% of people confirmed
that stress had a negative impact on both their personal and
professional life. The scenario in the EU was similar, more
than 22% of employees thought that their health was at risk
because of their intense work [3]. The subsequent cost for
stress caused health care and missed work was countless.
In the US, it reached up to 300 billion dollars per year [2].
In the UK, 13 million working days were lost every year
with a cost of 12 billion pounds [4]. Consequently, to get
rid of stress and keep a healthy lifestyle, stress detection and
management was necessary and essential for ordinary people.

The physiological response to stress would be initially
reflected on the activities of the autonomic nervous sys-
tem (ANS) [5]. ANS consists of two branches, the sympa-
thetic and parasympathetic. The exposure to stress events
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would break the balance between the two branches. The
parasympathetic branch would be suppressed, while the sym-
pathetic branch would be hyper-activated. This information
would be transmitted to the cardiac activity, which could
be measured by electrocardiogram (ECG) signals. As such,
ECG signal is usually adopted as a source signal for stress
measurement.

Heart rate variability (HRV) is the variation between the
interval of two consecutive R peaks (heartbeats) of ECG
signals [6]. As only R peaks are required for calculation, HRV
is robust to noise and disturbances because R peaks have the
highest amplitude in ECG. As such, HRV is commonly used
as an investigation tool for stress detection. To obtain HRV
measurement, normally three ECG electrodes are needed,
attached on the right leg (RL), right arm (RA) and left leg
(LL), to collect the standard Lead II ECG signal [7]. Once
all the R peaks are detected, HRV features can be extracted
for stress detection [8]. Normally a selected time window is
chosen, and the features are calculated within the window.
In the HRV based stress detection literatures, the window
length was usually adopted in minutes [9], [10]. As such,
inferences of cognitive stress could only be made with at least
a minute delay, not possible for real-time stress detection.
For feature extraction, many methods were proposed based
on the physiological symptoms of stress, which induced the
increase of heart rate beats [9], balance change between
the sympathetic and parasympathetic branch of ANS [6],
chaotics of heart rate rhythm [11], etc. The common features
of stress detection included heart rate (HR), the power ratio
of the low-frequency band (0.04 - 0.15 Hz) to the high-
frequency band (0.15 – 0.4 Hz), etc. However, there were
studies found that the performance of a single feature was not
consistent due to large inter-participant variabilities, and the
combination of several features provided better performance
in stress detection [10]. This indicated that the response of
people to stress might vary and had multiple manifestations
in HRV. The extracted features were then sent to the classifier
for detection. Traditional classifiers, such as support vector
machine (SVM) [12], linear discriminant analysis (LDA).
[13], were commonly used in the literature.

Convolutional neural network (CNN) is a class of arti-
ficial neural network (ANN), typically containing convolu-
tional layer in its hidden layers [14]. It was initially applied
in computer vision tasks, and gradually attracted interests
across a variety of domains, including biosignal classifi-
cation [15], [16], such as electromyogram (EMG) signal
classification for gesture recognition [17], electroencephalo-
gram (EEG) pattern identification for assistive machine con-
trol [15]. Specifically, in ECG signal classification, CNN
was successfully applied in arrhythmia detection [18], signal
component identification [19], biometric recognition [20],
etc. These studies demonstrated the power of CNN in biosig-
nal classification, implying the potential of CNN in ECG
based stress detection. However, to the best knowledge of
the authors, this is the first study employing CNN in real-
time mental stress detection with ECG signals, i.e., inferring

mental stress only from a super-short (10 s) segment of ECG
signals. Real-time stress detection was the demand of some
practical applications, especially in the scenario of acute
cognitive stress detection, which required decisions generated
in a super short window. However, with the super-short win-
dows, the performance of conventional HRV features might
be limited due to the decrease of window length [21]. The fun-
damental advantage of CNN was its ability to learn features
of the given task, i.e. it could capture the information relevant
to the task automatically from the input. As such, for stress
detection, with CNN, it was not necessary to take feature
extraction from HRV measurement, which might explore
more information for performance improvement in the super-
short window scenario.

This study focused on acute cognitive stress detection
within a 10 s window. The acute cognitive stress was induced
by a well-established method, mental arithmetic calcula-
tion [22], [23].We compared the performance of the proposed
CNN with traditional HRV based stress estimation methods
and explored the information CNN used for stress detection.
The goal of this studywas to promote the practical application
of HRV based stress estimation by providing faster, more
reliable and real-time results.

II. METHOD
A. EXPERIMENTAL PROTOCOL AND DATA
PREPROCESSING
Twenty healthy subjects, eight females and twelve males,
aging from 18 to 35, participated in this study. The inclusion
criteria were: 1) no history of neurological and heart disease;
2) no allergy to adhesive or rubbing alcohol; 3) receiving
secondary school education or higher, capable of performing
two-digit arithmetic calculation mentally. Written informed
consent was obtained before the experiment. The experi-
mental protocol was in accordance with the Declaration of
Helsinki and approved by the Research Ethics Committee of
the University of Waterloo (#22188).

Mental calculation method was adopted in this study
to induce the acute cognitive stress for the participants.
Before the experiment, three ECG electrodes were separately
attached on the LA, RA, and RL of each participant (Fig. 1),
for the collection of standard lead II ECG signal. The raw data
was acquired by a custom-made biomedical signal collection
device with a sampling frequency at 500 Hz. The chip of
analog to digital converter (ADC) is ADS1298IPAG (Texas
Instruments Inc., USA), which are mainly applied in medical
instrumentation, such as EEG, EMG and ECG measurement.
Its common mode rejection ration (CMRR) is−115 dB. Dur-
ing the experiment, the participants were seated in a height
adjustable chair with a headset, around 1 m away from the
monitor. There were five sessions for each participant. The
first, third and fifth session was the rest session, in which the
participant was asked to sit still and relax. Meanwhile, the
headset would play comfortablemusic to help the participants
loosen up as much as possible. The duration of the three
sessions was 120 s, 60 s and 120 s, respectively. The middle
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FIGURE 1. Experimental setup. The electrodes were positioned on the
right arm, right leg and left leg, respectively. To avoid introducing the
noise from activities of muscles, only left hand was allowed to press the
keys of the keyboard.

rest session was added to avoid mental fatigue from mental
tasks.

The second and fourth session was the mental task session.
The participants were asked to mentally perform a series
of mathematical calculations, which were displayed in the
front monitor. In the second session (the first mental task
session), the question consisted of two operations, the mul-
tiplication of a one-digit and two-digit number, and the addi-
tion/subtraction of the product and a one-digit number. There
were 10 questions. For each question, the participant had
10 s to input the answer. In the fourth session (the second
mental task session), the question difficulty was increased.
The addition/subtraction operation was conducted between
the product of a one-digit and two-digit number and a two-
digit number, instead of a one-digit number in the second
session. There were 30 questions, and the time limit for each
question was increased to 20 s. As there was no electrode
attached on the left hand, to avoid the interference from
muscle contractions, it was the only hand allowed to press the
keys for submitting the answers. There were several settings
added to increase the mental stimulation level and engage
the participants in the calculations. During the question and
answer period, the headset would play road noise, such as
the footsteps from the pedestrians, engine sound from the
vehicles, to interference with the participants. Meanwhile,
a stopwatch was positioned below the mathematical ques-
tion, displaying the remaining time, along with the beeping
sound. The pitch of the beeping sound would increase as the
time went by. In addition, two or three people would stand
behind the participant, of which he/she was aware. Once the
answer was submitted, or time run out, the feedback, ‘correct’
or ‘incorrect’, would be given immediately. For the correct
answers, the sound of doorbell would play, while for the

incorrect answers, a loud beep would play. The image of the
result would be kept for 5 s. All the participants reported
that the stress level of these two sessions evaluated by their
subjective experiencewas higher than that of the rest sessions.

This study mainly focused on the binary classification
between stress and rest status. The second rest session and the
first 30 s of the last session were abandoned to avoid the effect
of residual stress. As such, the data of rest status consisted of
the first session and the last 90 s of the last session. To make
the data volume even between two classes, the data of stress
status consisted of half of the fourth session, which was
around 210 s. Before classification, the ECG signals were
first band-pass filtered between 1 and 50 Hz to remove the
noise from the respiration and muscle contractions. Then the
signal was windowed within 10 s for feature extraction. The
step size between two consecutive windows was 0.1 s (the
overlap was 9.9 s).

B. CNN CLASSIFICATION
To increase the robustness of the system against noise,
the spectrum derived from the positions of R peaks was
used for the input of CNN. For ECG signal within each
window, the R peaks were first extracted with the classic
QRS detection algorithm [24], and visual inspection was
performed to correct the false acceptance and false rejection
of R peaks. Next, the abnormal RR interval was removed
based on the criteria in [10]. The remaining interval was
termed as normal-to-normal (NN) interval, which was used
to construct the zero-one sequence, where the positions of R
peakswere set to one, and the others were set to zero. Then the
Lomb Periodogram was employed to obtain the spectrum for
its simplicity and common in spectral density estimation of
HRV data [9], [10], [25] and no tuning parameters compared
to parametric methods. The band from 0.04 to 20 Hz was
adopted as the input of CNN. The procedures are illustrated
in Fig. 2.

A simple CNN structure with ten layers was used in this
study. The first layer was an image input layer. Its size was
799×1×1, which was equal to the size of the input frequency
band. The second layer was a convolutional layer, which
consisted of six filters of 4×1×1with the stride 1-by-1. It was
followed by a batch normalization layer, a ReLU layer, and a
dropout layer with a probability of 0.5. The next three layers
were two fully connected layers and a batch normalization
layer between them. The number of units for the two fully
connected layers was ten and two, respectively. The last two
layers were a softmax layer and a classification output layer,
which both had two units.

For the training options of CNN, the stochastic gradient
descent with momentum (SGDM) optimizer was used. The
maximum number of epochs was set to 30. The learning rate
started at 0.001 and was reduced by a factor of 0.1 every
10 epochs. To assess the model performance accurately,
a four-fold cross-validation scheme, which was a common
method to test the ability of model prediction in machine
learning [15], [26], [27], was adopted in this study. The
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FIGURE 2. Signal transformation from time domain to spectral domain.
The frequency band between 0.04 and 20 Hz is used as the input of CNN.
The vertical axe of spectrum plot is in log scale.

dataset was divided into four partitions, three of which were
used for training and the remaining one was for testing, i.e.
the samples used for training and testing of each class were
1278 and 426, respectively. This process was repeated four
times, so each partition was used the testing set once. The
average accuracies of the four folds was used to quantify
algorithm performance.

C. CONVENTIONAL CLASSIFICATION
In this study, four types of features based on HRV, plus HR,
were investigated. One HRV feature was the standard devi-
ation of NN intervals, termed as SDNN. Two HRV features
were derived from the Poincare plot [28], where the interval
of two R peaks was plotted against its following. Poincare
plot measured the change of NN interval, which was one of
the symptoms caused by stress. To quantify the geometry of
the Poincare plot, an ellipse was used to fit the plot shape.
Two descriptors, termed as SD1 and SD2, were extracted,
representing the minor and major semi-axis of the fitted
ellipse, respectively. The two HRV features were SD2 and
pQ, which was the ratio of SD1 to SD2. Another HRV fea-
tures were derived from the frequency domain. The spectrum
was calculated from the zeros-and-ones sequence, the same in
CNN classification. Two frequency bands were identified for
their relation to cognitive stress: 1) low-frequency band from
0.04 to 0.15 Hz, and 2) high-frequency band from 0.15 to
0.4 Hz. The ratio of the power of the two bands (LH) [10]

was reported to reflect the balance change between the sym-
pathetic and parasympathetic branch of ANS.

As the validity of HRV features with super-short (10 s)
windows is still controversial for different statistical methods
and stress protocols in literatures [29], [30], SD2, SDNN
and pQ were chosen for their good performance with ultra-
short windows (usually in minutes) [10]. The selection of,
HR and LH was for their prevalence in HRV based stress
detection [8], [10], [21]. In addition, the combination of
these five features (Comb) were also investigated in this
study.

The extracted features were then fed into a classifier to
discriminate stress status from rest status. Two common clas-
sifiers, LDA and SVM, were separately tested with each
feature set. For the setting of SVM, the dot product (linear
kernel) was adopted to map the data into kernel space. To help
converge in SVM, 0.5% of the variables were allowed to
violate the Karush-Kuhn-Tucker (KKT) conditions. Same as
the CNN classification, a four-fold cross-validation scheme
was adopted. In each run, 75% of the data was used for
training and the remaining 25% of the data for testing in four
runs. All the data processing was performed on the platform
of Matlab R2018b (The Mathworks, Inc., Natick, MA).

D. PERFORMANCE EVALUATION AND STATISTICAL
ANALYSIS
For performance evaluation, three metrics were used in this
study: error rate (ER), false acceptance rate (FAR), and false
rejection rate (FRR). ER quantified the overall performance,
which was the ratio between the incorrectly classified sam-
ples and the total number of samples. FAR quantified the
performance of rest status classification, which was the ratio
between the incorrectly classified rest class samples and
the total number of the rest class samples. FRR quantified
the performance of stress status classification, which was the
ratio between the incorrectly classified stress class samples
and the total number of the stress class samples. It could be
induced that ER, FAR, and FRR was equal to the difference
between one and accuracy, sensitivity and specificity [21],
respectively.

To compare the performance of detecting stress using var-
ious methods, one-way analysis of variance (ANOVA) was
used in this study. Each of the three metrics, ER, FRR and
FAR was the response variable, respectively. The main factor
was the Methods, including the six feature sets (HR, LH, pQ,
SD2, SDNN, Comb) with LDA and SVM, respectively, and
CNN. In addition, to illustrate the performance improvement
from CNN, the activation difference between rest and stress
samples of the first five layers, image input, convolution,
batch normalization, ReLU, and dropout, was calculated.
A student t-test was implemented on the difference of each
unit. Further, to investigate the effect of frequency bands on
stress detection, a one-way ANOVAwas employed on the ER
values of CNN with the inputs of different frequency bands.
The main factor was the higher limit of the frequency band
used: 0.4, 1, 2, 6, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 Hz.
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FIGURE 3. Comparison of classification performance in overall error rate
between CNN and the conventional methods, which includes six feature
sets, heart rate (HR), power ration of low frequency to high frequency
(LH), standard deviation of NN intervals (SDNN), minor axis and major to
minor axis ratio from Poincare Plot (SD2, pQ), and their combinations,
separately being classified by linear discriminant analysis (LDA) and
support vector machine (SVM). CNN significantly outperforms the
conventional methods.

TABLE 1. Error rate (ER) of the three classifiers for each subject (%).

The lower bound of the frequency band remained at 0.04Hz.
If the significant difference was indicated, a post hoc analysis
with Bonferroni correction was conducted. The significance
level of all the tests was set to 0.05.

III. RESULTS
A. PERFORMANCE COMPARISON
In general, CNN outperformed all the conventional
methods (Fig. 3), among which the combination of all the

FIGURE 4. The comparison of classification performance in (a) false
acceptance rate (FAR), and (b) and false rejection rate (FRR) between CNN
and the conventional methods. The conventional methods were the
combination of six feature sets (HR, LH, SDNN, pQ, SD2 and Comb) and
two classifiers (LDA and SVM). CNN significantly outperforms the
conventional methods on FAR (note the average FAR value of CNN is
0.1%, almost invisible in (a)). For FRR, there was no significant difference
between CNN and the best conventional method, Comb with SVM.

features (Comb) achieved the best performance. Specifically,
CNN achieved the lowest ER at 17.3%, which was 7.2%
and 32.6% lower than the best and worst performance of
the conventional methods, Comb with SVM and LH with
SVM, respectively. For each subject, the ER value with three
methods, CNN and two best conventional methods, Comb
with SVM and LDA, respectively, was listed in Table 1. CNN
reduced ER for most subjects. The reduction even reached
25.2% for S5, making the ER value below 10% for this
participant.

When dividing the ER into FAR and FRR, it indicated
that the ER reduction in CNN was mainly due to the drastic
reduction of FAR (Fig. 4). The FAR value of CNNwas below
0.1%, close to zero. while the lowest of the conventional
methods was 6.2% (HR with SVM), and the FAR value of
Comb with SVM, which had the best ER among the conven-
tional methods, was 23.7%. The FRR of CNN was 32.1%,
and the range of the conventional methods were between
24.9% (Comb with SVM) and 69.2% (HR with SVM). For
the results of statistical analysis, the performance of CNNwas
significantly better than the performance of the conventional
methods in ER (p < 0.01) and FAR (p < 0.001). In terms of
FRR, there was no significant difference between the values
of CNN and the best conventional method, Comb with SVM.

B. ACTIVATION DIFFERENCE BETWEEN REST AND STRESS
To investigate the information CNN extracted for stress detec-
tion, the activation difference of each layer, i.e. the output
difference of each layer with respective to rest and stress
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FIGURE 5. Activation difference between rest and stress for first five layer of CNN. The data is normalized by the maximum value of each feature map
and averaged across the subjects. For the Convolution to Dropout layer, their activations of each feature map are resized with cubic interpolation to the
dimension of image input layer. It indicated that the difference between rest and stress detected by CNN existed in the entire frequency band.

classes, was displayed in Fig. 5. The values were normalized
within each layer and averaged across all the subjects. For
the last four layers, cubic interpolation was adopted to resize
the length of each feature map to fit the dimension of the
first layer, image input. The biggest activation difference
mainly located around 1.5 Hz, which was expected for it
was corresponding to the frequency of R peaks, the main
power of ECG signals. However, the differences were also
observed in high frequency band. In the results of statistical
analysis, it indicated that the significant difference between
rest and stress was not only limited to the frequency band
< 2Hz, of which the information was usually used for feature
extraction in conventional methods, such as HR and LH, but
also existed in the range > 2 Hz, which might contribute to
the improvement from CNN.

C. EFFECTS OF THE FREQUENCY BAND
The results of section B indicated that the information
extracted from higher frequency content beyond 2 Hz might
be the reason for the low ER value of CNN on acute stress
detection. To further investigate this point, the CNN was
tested with the inputs of different frequency bands. The start-
ing frequency points of these bands were the same, which
was 0.04 Hz, while the ending frequency point was different,
ranging from 0.4 to 100 Hz. As displayed in Fig. 6, the ER
value decreased with the increase of the higher end of the
frequency band from 0.4 to 6 Hz and plateaued from there
on. The statistical analysis showed that there was a significant
difference among the ER values of 0.4, 1 and 2 Hz, but the
difference between the ER values of 2 Hz and 6 Hz, as well
as the other bands, was not significant.

IV. DISCUSSION
This study demonstrated that CNN can significantly improve
the real-time detection of acute cognitive stress compared
to the conventional HRV based methods (p < 0.01).

To investigate the information CNN exploited for stress esti-
mation, the activation differences between the stress state and
the rest state of the first five layers were presented (Fig. 5),
and the classification performance with the input of differ-
ent frequency bands was calculated (Fig. 6). The activation
difference map showed that there was significant difference
between stress and rest in the output corresponding to the
frequency band above 2 Hz (p < 0.05). The performance
comparison showed that there were differences when the
upper bound of the frequency band was higher than 2 Hz
and above. However, the differences were not significant
(p > 0.05). This indicated that the information in frequencies
higher than 2 Hz might play a role in stress estimation of
the CNN used in this study, but it was not critical. The
main information CNN captured was still mainly from the
frequency band below 2 Hz. Though frequency band above
2 Hz was not emphasized in traditional methods, based on
the results of this study, its importance in stress estimation
still needed to be further explored.

In order to help the participants relax themselves in the rest
session, listening to music was adopted for the strong effect
on increasing relaxation [31], [32]. The quick relaxation
before and after the experiment would reduce the bias of the
data in rest sessions, and hence increased the reliability of the
results in this study. The employment of CNN also provided
a new way to learn the characteristics of stress. For the con-
ventional methods, the features used mainly depended on the
well-established physiological theory of the effect of stress,
such as the balance between sympathetic and parasympa-
thetic nervous systems. Because CNN has the automatic fea-
ture learning ability, it enabled the researchers to explore the
characteristics of stress from the information CNN captured,
which may conversely help the researchers, such as biologists
and physiologists to acquire more insights the physiological
effect of stress. In addition, the CNN structure used in this
study was simple, only containing one convolutional layer,
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FIGURE 6. Error rate of CNN with different frequency bands as the input.
The lower bound of the bands was fixed at 0.04 Hz. The higher bound of
the frequency band was 0.4, 1 ,2, 6, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100 Hz, respectively. The error rate of 0.4 Hz was significantly higher than
that of 1 Hz, and they were both significantly higher than that of 2 Hz,
indicating discriminative information exists between 0.4 and 2 Hz.
Though the error rate of 2 Hz was higher than that of 6 Hz, there was no
significant difference between them, as well as among the values from
6 to 100 Hz.

for consideration of computation load and the training time.
However, as the structure would also affect the classification
performance, complex structures could be explored in future
to improve its detection performance further.

Through breaking down the ER into FAR and FRR,
it showed that the main improvement from CNN lied on
the reduction of FAR, while FRR of CNN was still com-
parable to the conventional methods. This means that many
stress data were incorrectly classified into rest class. The
imbalance between FRR and FAR could be remedied by
adjusting the probability threshold. The softmax layer of
CNN provided the probability of the sample assigned to each
class. By default, the threshold of the probability was set
to 0.5. Through optimizing the probability threshold in the
training phase, the classification performance of stress data,
consequently the overall stress detection performance, could
further be improved.

The spectrum derived from the positions of R peaks was
used for the input of CNN. As the high amplitude of R
peaks, its position detection would be hard to be disrupted
by noise from the muscles. On the other hand, the R peaks
could also be captured in some non-standard ECG settings,
such as arm and ear ECG [27]. These two points made
the method robust and applicable in non-ideal conditions.
On the other hand, in addition to ECG, there were two
other signal modalities, photoplethysmography (PPG) and
photoplethysmographic imagining (PPGI), which could also
be used for HRV measurement, both of which were non-
invasive. PPG was light-based, and the sensor was usu-
ally mounted on the mounted on the finger, ear or toe
[33]. PPGI was a non-contact measure, collecting signals
with a light source and a light detector [34]. The broad
spectrum of HRV measurement expanded its application
on stress detection. The sensors could be integrated with
intelligent mobile devices, such as the smartphone, to make
stress estimation available with little limitation of time and
place.

V. CONCLUSION
This study compared the performance of CNN with six
conventional HRV-based methods in acute cognitive stress
detection, using only 10s of ECG data. Stress was induced
by mental calculation for twenty participants. Different from
previous studies with minutes long windows, super-short
temporal windows were used for it was highly desirable
in many practical applications, where the real-time stress
monitoring was an important feature. The results showed
that the performance of CNN was significantly better than
the conventional methods (p < 0.01), and the improvement
was at least 7.2%. The activation map of each layer showed
the discriminative information regarding stress versus rest
existed in the frequency range higher than the conventional
0.4 Hz, and highly concentrated between 0.4 and 2 Hz. The
outcome of this study demonstrated that it was possible to
perform real-time detection of acute cognitive stress from
HRV, and CNN had potential in practical applications of HRV
based stress detection.
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