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ABSTRACT In this paper, a novel swarm intelligent algorithm is proposed, known as the fitness dependent
optimizer (FDO). The bee swarming the reproductive process and their collective decision-making have
inspired this algorithm; it has no algorithmic connection with the honey bee algorithm or the artificial
bee colony algorithm. It is worth mentioning that the FDO is considered a particle swarm optimization
(PSO)-based algorithm that updates the search agent position by adding velocity (pace). However, the FDO
calculates velocity differently; it uses the problem fitness function value to produce weights, and these
weights guide the search agents during both the exploration and exploitation phases. Throughout this paper,
the FDO algorithm is presented, and the motivation behind the idea is explained. Moreover, the FDO
is tested on a group of 19 classical benchmark test functions, and the results are compared with three
well-known algorithms: PSO, the genetic algorithm (GA), and the dragonfly algorithm (DA); in addition,
the FDO is tested on the IEEE Congress of Evolutionary Computation Benchmark Test Functions (CEC-
C06, 2019 Competition) [1]. The results are compared with three modern algorithms: (DA), the whale
optimization algorithm (WOA), and the salp swarm algorithm (SSA). The FDO results show better per-
formance in most cases and comparative results in other cases. Furthermore, the results are statistically
tested with the Wilcoxon rank-sum test to show the significance of the results. Likewise, the FDO stability
in both the exploration and exploitation phases is verified and performance-proofed using different standard
measurements. Finally, the FDO is applied to real-world applications as evidence of its feasibility.

INDEX TERMS Optimization, swarm intelligence, evolutionary computation, metaheuristic algorithms,

fitness dependent optimizer, FDO.

I. INTRODUCTION

From the time when computers were invented, searching for
the unknown and looking for the best solution were points
of focus. As early as 1945, Alan Turing used a type of search
algorithm for breaking German Enigma ciphers during World
War II [2]. To date, hundreds of types of algorithms have been
developed for various purposes, including optimization prob-
lems. Optimization algorithms are used to find suitable solu-
tions for a problem. There might be many different solutions
for a single problem, but the optimum solution is preferable.
Usually, optimization problems are nonlinear with a complex
landscape. Generally, optimization algorithms can be classi-
fied into traditional and evolutionary algorithms. Traditional
algorithms include gradient-based algorithms and quadratic
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programming. Evolutionary algorithms include heuristic or
metaheuristic algorithms and many hybrid techniques.
Traditional algorithms are efficient in their work; however,
several facts can be discussed about them. They are mostly
deterministic; for example, a given input will always obtain
the same output (except hill climbing when using random
restart). Moreover, they perform local searches, which is why
there is no guarantee that global optimality will be reached
for most of the optimization problems. Consequently, they
have limited diversity in the obtained solutions. Additionally,
they use some information about the problems, and therefore,
they tend to be problem-specific. Furthermore, these tradi-
tional algorithms cannot effectively solve multimodal prob-
lems because they do not work on highly nonlinear problems.
Evolutionary algorithms could be the correct answer to
previous limitations as they have stochastic behaviors. They
come in two forms: heuristic and meta-heuristic algorithms.
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Heuristic algorithms search for a solution by trial and error;
they hope that a quality solution will be found in a reasonable
amount of time. Similarly, they tend to use specific random-
ization mechanisms and local searches in various ways. More
studies and developments have been conducted on heuristic
algorithms to make what is known as metaheuristic algo-
rithms. Metaheuristic algorithms have better performance
than heuristics algorithms, which is why the “meta” prefix
was added, which means “higher” or “beyond”. However,
researchers currently use these two terms (heuristic and meta-
heuristic) interchangeably, as there is little difference in their
definitions [3]-[5].

The complexity of real-world problems that exist around us
makes it impossible to search every possible solution simply
because of time, space, and cost considerations. As a result,
low cost, fast, and more intelligent mechanisms are required.
Therefore, researchers have studied the behaviors of animals
and natural phenomena to understand how they solve their
problems. For example, how ants find their path, how a group
of fish, birds or flies avoid the enemy or hunt their prey,
and how gravity works. Thus, these algorithms, which are
inspired by nature, are known as nature-inspired algorithms.

Development in nature-inspired metaheuristic algorithms
began in the 1960s at the University of Michigan. John
Holland and his colleagues published their genetic algo-
rithm (GA) book in 1960 and republished it in 1970 and
1983 [6]. An algorithm that is inspired by the annealing
process of metal, known as simulated annealing (SA), was
developed by Kirkpatrick et al. [7]. Nevertheless, in the past
two decades, this field has witnessed many major signs of
progress. For instance, particle swarm optimization, which
was proposed by James Kennedy and Russel C. Eberhart,
has been used for many real-world applications [8]. PSO was
inspired by the swarm intelligence of fish and birds while the
authors were studying a flock of birds. They found that they
could apply these behaviors to optimization problems; later,
PSO became a base algorithm for other algorithms, including
our algorithm. R. Storn and K. Price developed differential
evolution (DE) in 1997. It is a vector-based algorithm that
outperforms GA in many applications [9]. After that, in 2001,
Zong WooGeem et al. developed the harmony search (HS),
which was applied in many optimization problems such as
transport modeling and water distribution [10]. Then, in 2004,
C. Tovey and S. Nakrani developed the honey bee algorithm.
They used it for Internet hosting center optimization [11].
This was followed by the development of a novel bee algo-
rithm proposed by Pham et al. [12], and one year later,
D. Karaboga et al. created the artificial bee colony (ABC)
algorithm in 2005. In 2009, Xin-She Yang developed the
firefly algorithm (FA) [13]; and then, the cuckoo search
(CS) algorithm was proposed by the same author [14]. Addi-
tionally, Xin-She Yang proposed a bat-inspired algorithm
in 2010 [15]. Then, in 2015, Mirjalili A. S. proposed the
dragonfly algorithm (DA) [16], which is a PSO-based algo-
rithm inspired by the dragonfly swarm behavior of attrac-
tion to food and distraction by the enemy, then the whale
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optimization algorithm (WOA) in 2016 [17], and the salp
swarm algorithm (SSA) in 2017 were proposed by the same
author [18]. Two new variants of the ABC are proposed by
Laizhong et al, the authors showed that they managed to
enhance the exploitations of the novel ABC algorithm, as it is
well known that the novel ABC has a good exploration ability,
however, it suffers from slow exploitations. In their first work,
they employed an adaptive method for the population size
(AMPS) [19]. In the second paper, they proposed a ranking-
based adaptive ABC algorithm (ARABC) [20], the atten-
tion on both works was to improve exploitations ability of
the novel ABC. Nonetheless, two more improvements were
suggested on the novel ABC in 2018, firstly, by propos-
ing the distance-fitness-based neighbor search mechanism
(DFnABC), which is a new variant of the ABC [21], and sec-
ondly, by proposing the dual-population framework (DPF),
again to enhance ABC convergence speed [22]. Additionally,
in 2018, a new algorithm which inspired by vapour-liquid
equilibrium (VLE) was proposed by Enrique M. Cortés-Toro
and his colleagues, the authors claim that their algorithm can
solve highly nonlinear optimization problems in continuous
domains [23].

Various research has been conducted in the field of
nature-inspired metaheuristic algorithms; additionally, many
efficient algorithms have been proposed in the literature.
Alternatively, there is always room for new algorithms,
as long as the proposed algorithm provides better or com-
parative performances, as explained by David H. Wolpert
and William G. Macready in their work titled “No Free
Lunch Theorems for Optimization™ in 1997. Thus, there is no
single global algorithm that can provide the optimum solution
for every optimization problem. For example, if algorithm
“A” works better than algorithm “B”’ on optimization prob-
lem X, then there is a high chance that there is an optimization
problem Y, that works better on algorithm “B’’ than on algo-
rithm “A” [24]. For these reasons, a new algorithm (FDO)
is proposed in this paper. This algorithm is inspired by the
swarming behavior of bees during the reproductive process
when they search for new hives. This algorithm has nothing in
common with the ABC algorithm (except both algorithms are
inspired by bee behavior, and both are nature-inspired meta-
heuristic algorithms).

The major contributions of this paper are summarized as
follows:

1- A new novel swarm intelligent algorithm is pro-
posed, which is using certain characteristics of the bee
swarms. For example, it uses a fitness function for
generating suitable weights that help the algorithm in
both exploration and exploitation phases, as it provides
fast convergence towards global optimality with respect
to fair coverage of the search landscape.

2- One more unique feature of FDO is that it stores the
past search agent pace (velocity) for potential reuse in
future steps (more on this is discussed in section IV).

3- FDO can be considered a PSO-based algorithm since
it uses a similar mechanism for updating agents’
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FIGURE 1. Honey bee anatomy [27].

positions; however, FDO does itin a very different way,
and it is statistically proven in this paper that FDO
outperforms PSO, DA, GA, WOA, and SSA in many
benchmark test functions and has comparative results
on others.

The remainder of the paper is organized as follows.
It begins by explaining the motivation behind the FDO
algorithm and then debates the unique aspects that show
the novelty of FDO algorithm. Then, the bee swarm fea-
tures that inspired the FDO algorithm are presented. After
that, the FDO algorithm is introduced by showing the pseu-
docode, equations, and rules. Furthermore, FDO for the sin-
gle objective problem is described. Moreover, in the results
and discussion section, detailed information is provided about
FDO performance against other algorithms. In addition,
FDO is applied to two real-world case scenarios. Finally,
the main points about FDO, its limitation, and future works
are described.

Il. BEE SWARMING

Since ancient times, this remarkable social insect has
been one of the most famous creatures on the planet.
Honeybees have been the subject of scientific observations.
Likewise, considerable research and many books have been
published about them, for example, ‘“Behavior and the Social
Life of Honeybees” by Ribbands in 1953. Snodgrass wrote
“Anatomy of the Honey Bee in 1956, also ‘“‘the wisdom
of hive” by Thomas D. Seeley was written in 1995, and
many other great works. Figure (1) shows the anatomy of
a bee. Presenting the colony structure of bees and their bio-
logical details are beyond the scope of this paper. However,
the swarming behavior of the bee life cycle will be discussed
shortly since it is related to FDO.

As widely known, bees live and work in groups inside a
colony called a hive (nest site). In brief, there are several types
of bees: queen bees, worker bees, and scout bees. As their
names suggest, the queen bee is responsible for making deci-
sions and producing the next generation of bees. Worker bees
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FIGURE 2. Bee swarming process cycle [28].

work under the command of queen bees; they also create
queen cells throughout the year. Finally, scout bees explore
the environment and exploit the preferable targets, which is
the most important feature of this work. Usually, when the
number of bees in the hive increases and the inside colony
conditions and outside weather conditions are suitable, then
the queen lays eggs into the queen cells, and the bee colony
starts the reproductive processes by swarming [25], [26].

Swarming is mostly a late spring phenomenon; it is the
process by which a new honeybee colony is formed. The
queen bee leaves the old colony with a group of worker bees
and some scout bees; Figure (2) shows the swarming cycle.
A swarm typically consists of thousands to tens of thousands
of bees. They settle 20-30 meters away from the natal hive
temporarily for a few hours to a few days. They may gather
in a tree or on a branch where they cluster around their queen,
and then, they send 20-50 scout bees out to find suitable new
hives, usually after several tries, which might take several
hours or up to three days. Eventually, with the guidance from
the scouts, the rest of the bees flying overhead in the proper
direction.

A swarm may fly a kilometer or more to the scouted
location. Through direct observation, it can be said that
the scout bee has several criteria for a suitable hive. For
instance, a suitable hive has to be large enough to accom-
modate the whole swarm (minimum of 15 liters, prefer-
ably 40 liters in volume). It should have a small entrance
(approximately 12.5 cm2), as well as being located at the
lowest point of the hive, and obtain a certain amount of
warmth from sunlight [26], [29].

What inspired us were the scouts’ collective decision-
making processes. When a number of scout bees discover
some suitable hives, they will choose the most suitable hive,
and they keep the swarm intact. Typically, scout bees com-
municate through moving their legs and wings, which is
known as a bee dance. Usually, a decision will be made when
approximately 80% of the scouts have agreed upon a certain
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TABLE 1. FDO-related Bee biological entities.

Nature Algorithm
Scout bee Search agent
Hive Solution discovered
Hive specification Fitness function
Scout collective decision Fitness Weight

Selected hive Optimum Solution

hive location or when there is a quorum of 20-30 scout bees
present at a potential hive [26], [29].

Algorithmically speaking, each hive that a scout bee
exploits, represents a possible solution exploited by an arti-
ficial search agent, and the best hive represents the global
optimum solution, as shown in Table (1). The hive specifi-
cations, such as its volume, entrance size, entrance location,
and amount of sunlight, can also be considered as fitness
functions of the solution. The scout’s collective decision-
making process, represented by fitness weight (fiw) in the
algorithm, fiv is discussed further in the next section.

IIl. FITNESS DEPENDENT OPTIMIZER ALGORITHM

This algorithm replicates what a swarm of bees is doing
during reproduction. The main part of this algorithm is taken
from the process of scout bees searching for a new suit-
able hive among many potential hives. Every scout bee that
searches for new hives represents a potential solution in this
algorithm; furthermore, selecting the best hive among several
good hives is considered as converging to the optimality.

The algorithm begins by randomly initializing an artifi-
cial scout population in the search space X;(i= 1,2, ...n);
each scout bee position represents a newly discovered hive
(solution). Scout bees try to find better hives by randomly
searching more positions; each time a better hive is found,
the previously discovered hive is ignored; thus, each time the
algorithm identifies a new, better solution, then the previously
discovered solution will be ignored. In addition, if the current
move is not leading the artificial scout bee to a better solution
(hive), it will continue in its previous direction, hoping that
the previous direction takes the scout to a better solution.
However, if the previous direction does not lead to a better
solution, it will then continue to the current solution, which
is the best solution that has been found to that point.

In nature, scout bees search for hives randomly. In this
algorithm, artificial scouts initially search the landscape ran-
domly using a combination of a random walk and fitness
weight mechanism. Accordingly, every time an artificial
scout bee moves by adding pace to the current position,
the scout hopes to explore a better solution. The movement

of artificial scout bees is expressed as follows:
Xi 41 = Xi+pace (H

where i represents the current search agent, ¢ represents
the current iteration, x represents an artificial scout bee
(search agent), and pace, is the movement rate and direction
of the artificial scout bee. pace is mostly dependent on the
fitness weight fiv. However, the direction of pace is com-
pletely dependent on a random mechanism. Thus, the fw for
minimization problems can be calculated as:

x'*t fit
I, iness
——|wf (2)

Xi,t fitnees

The x:tﬂm os5» 18 a fitness function value of the best global
solution that has been discovered thus far. x; ; fimess 1S a value
of the fitness function of the current solution, wf is a weight
factor, and its value is either O or 1, which is used for control-
ling the fw. If it is equal to 1, then it represents a high level
of convergence and a low chance of coverage. Nonetheless,
if wf = 0, then it is not affecting the Equation (2), thus it
can be neglected, setting wf = 0 provides a more stable
search. However, this is not always the case; sometimes,
the opposite occurs because the fitness function value is
completely optimization problem dependent. Nevertheless,
the fw value should be in the [0, 1] range; however, there are
some cases where fw = 1, for example, when the current
solution is the global best, or when the current and global
best solutions are identical or have the same fitness value.
Additionally, there is a chance that fw = 0, which occurs
when x;, fitness 0. Finally, division by zero should be
avoided when X;; fimess = 0. Therefore, the following rules
should be used (3)—(6), shown at the bottom of the next page.

Here, r is a random number in the [—1, 1] range. There
are different implementations of the random walk; however,
Levy flight has been chosen because it provides more stable
movements because of its good distribution curve [3].

Regarding FDO mathematical complexity: For each itera-
tion, it has an O (p#n + p*CF) time complexity, where p is
the population size, n is the dimension of the problem, and
CF is the cost of the objective function. Whereas, for all
iterations, it has an O (pxCF +p=* pace) space complexity,
where the pace is the best previous paces stored. From here,
FDO time complexity is proportional to the number of itera-
tions. However, its space complexity will be the same during
the course of iterations.

FDO has a simple calculation mechanism in terms of
objective value calculations, it has only (fitness weight and
one random number) to be calculated for each agent, whereas,

fw="Torfw=0or Xit fitness = 0, pace = xj; xr 3)

fw>0and fw <1
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in PSO for calculating each solution, there are global best,
agent best, search factors C/ and C2, and random numbers
(RI and R2 parameters) to be calculated [8]. Also, in the DA,
there are five different parameter weights to be calculated
(separation, alignment, cohesion, attraction, distraction, and
some random values), and most of these parameters have
accumulative nature (summation and multiplication), and
their values depend on all other agents’ value, resulting in
even more complex calculations [16].

IV. FDO WITH SINGLE OBJECTIVE OPTIMIZATION
PROBLEMS

The FDO with single objective optimization problems
(FDOSOOP) begins by initializing artificial scouts at random
locations on the search landscape, using upper and lower
boundaries. For every iteration, the global best solution is
selected; then, for every artificial scout bee, the fw is cal-
culated according to Equation (2). After that, the fiw value
is checked to determine if fw = 1 or 0, also whether
Xit fimess = 0. Then Equation (3) is used for generating
the pace. However, if fw > 0 and fw < 1, then a random
number r will be generated in the [—1, 1] range. If r < O
then Equation (4) is used to calculate the pace, in this case,
fw gets a negative sign, but if » > 0 then Equation (5) is
used to calculate the pace, accordingly, fw gets a positive sign.
Randomly selecting negative or positive sign for a a fw will
guarantee that the artificial bee will search randomly in every
direction.

In FDO randomization mechanism controls the pace size
and direction, whereas in most cases, the randomization
mechanism only controls the pace direction; in these cases,
the pace size depends on the fiw. Moreover, each time the
artificial scout bee finds a new solution, it checks whether
the new solution is better than the current solution, depending
on the fitness function as shown in the pseudocode of the
single objective FDO (see Figure (3)). If the new solution
is better, then it is accepted, and the old solution is ignored.
Additionally, one of the special features of FDO is that if
the new solution is not better, then the artificial scout bee
continues using the previous direction (using the previous
pace value if available), but only if it takes the scout bee to a
better solution. In addition, if using the previous pace is not
leading the scout bee to a better solution, then FDO maintains
the current solution until the next iteration. In this algorithm,
every time the solution is accepted, its pace value is saved for
potential reuse in the next iteration.

When implementing FDO for maximization problems,
two minor changes are needed. First, Equation (2) must be
replaced by Equation (6), as Equation (6) is simply an inverse
version of Equation (2).

Xit fitness
*
xi ,t fitness

—wf (6)

Second, the condition for selecting a better solution should
be changed. The line: “if (X, ; fitness < X, ; fitness)” must
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Initialize scout bee population X, ; G=12 .., n
while iteration (t) limit not reached
for each artificial scout bee X, ;
find best artificial scout bee x; ;
generate random-walk r in [-1, 1] range
If( X,; fitness == 0) (avoid divide by zero)
fitness weight = 0
else
calculate fitness weight. equation (2)
end if
if (fitness weight = 1 or fitness weight = ()
calculate pace using equation (3)
else
if (random number >= ()
calculate pace using equation (5)
else
calculate pace using equation (4)
end if
end if
calculate X,,,; equation (1)
if( X4, fitness < X, fitness)
move accepted and pace saved
else
calculate X,,,; equation (1) ...
. with previous pace
if (K41, fitness < X, fitness)
move accepted and pace saved
else
maintain current position (don’t move)
end if
end if
end for
end while

FIGURE 3. Pseudocode of FDOSOOP.

be replaced with the line: “if (X;+1,; fitness > X, fitness)”
in both occurrences in the pseudocode shown in Figure (3).

V. RESULTS AND DISCUSSION
To test the performance of this algorithm, a number of stan-

dard benchmark test functions exist in the literature is used.
Additionally, our results are compared to five other well-
known algorithms in the literature: PSO, GA, DA, WOA,
and SSA. It is worth mentioning that results of (19 classical
benchmark test functions) PSO, GA, and DA is taken from
this work [16], however, we conducted the CEC-CO06 tests.
Also, all test results were compared using the Wilcoxon rank-
sum test to prove their statistical significance. Moreover,
four measurement metrics were used for further observation.
Finally, the FDO was used for optimizing two real-world
applications; thus, the section consists of five parts as follows.

A. CLASSICAL BENCHMARK TEST FUNCTIONS

Three sets of test functions are selected to test the perfor-
mance of the FDO algorithm [16]. The test functions have dif-
ferent characteristics, for instance, unimodal test functions,
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TABLE 2. Classical benchmark results of selected algorithms with FDO [16].

Test FDO DA PSO GA
Function Ave Std Ave Std Ave Std Ave Std

TF1 7.47E-21 7.26E-19 2.85E-18 7.16E-18 4.2E-18 1.31E-17 748.5972 324.9262
TF2 9.388E-6 6.90696E-6 1.49E-05 3.76E-05 0.003154 0.009811 5.971358 1.533102
TF3 8.5522E-7  4.39552E-6 1.29E-06 2.1E-06 0.001891 0.003311 1949.003 994.2733
TF4 6.688E-4 0.0024887 0.000988 0.002776 0.001748 0.002515 21.16304 2.605406
TF5S 23.50100 59.7883701 7.600558 6.786473 63.45331 80.12726 133307.1 85,007.62
TF6 1.422E-18  4.7460E-18 4.17E-16 1.32E-15 4.36E-17 1.38E-16 563.8889 229.6997
TF7 0.544401 0.3151575 0.010293 0.004691 0.005973 0.003583 0.166872 0.072571
TF8 -2285207 206684.91 -2857.58 383.6466 -7.1E+11 1.2E+12 -3407.25 164.4776
TF9 14.56544 5.202232 16.01883 9.479113 10.44724 7.879807 25.51886 6.66936
TF10 3.996E-15 6.3773E-16 0.23103 0.487053 0.280137 0.601817 9.498785 1.271393
TF11 0.568776 0.1042672 0.193354 0.073495 0.083463 0.035067 7.719959 3.62607
TF12 19.83835 26.374228 0.031101 0.098349 8.57E-11 2.71E-10 1858.502 5820.215
TF13 10.2783 7.42028 0.002197 0.004633 0.002197 0.004633 68,047.23 87,736.76
TF14 3.7870E-7 6.3193E-7 103.742 91.24364 150 135.4006 130.0991 21.32037
TF15 0.001502 0.0012431 193.0171 80.6332 188.1951 157.2834 116.0554 19.19351
TF16 0.006375 0.0105688 458.2962 165.3724 263.0948 187.1352 383.9184 36.60532
TF17 23.82013 0.2149425 596.6629 171.0631 466.5429 180.9493 503.0485 35.79406
TF18 222.9682 9.9625E-6 2299515 184.6095 136.1759 160.0187 118.438 51.00183
TF19 22.7801 0.0103584 679.588 199.4014 741.6341 206.7296 544.1018 13.30161

multimodal test functions, and composite test functions.
Each set of these test functions is used to benchmark cer-
tain perspectives of the algorithm. Unimodal benchmark
functions, for example, are used for testing the exploitation
level and convergence of the algorithm, as their name might
imply that they have a single optimum. However, multimodal
benchmark functions have multi optimal solutions, and they
are used for testing the local optima avoidance and explo-
ration levels. As in multimodal algorithms, there are many
optimum solutions; one of them is a global optimum solution
and most local optimum solutions. An algorithm must avoid
local optimum solutions and converge to a global optimum
solution. Furthermore, the composite benchmark functions
are mostly combined, shifted, rotated, and biased versions of
other test functions. Composite benchmark functions provide
diverse shapes for different regions of the search landscape;
they also have a very large number of local optima. This type
of benchmark function demonstrates that complications exist
in real-world search spaces (see Table (6, 7 and 8) in the
appendix) [16].

Each algorithm in Table (2) has been tested 30 times by
using 30 search agents each with 10 dimensions; in each
test, the algorithm was allowed to look for the best optimum
solution in 500 iterations, and then, the average and standard
deviation were calculated. Regarding parameter sets, GA,
PSO, and DA parameter sets described in this paper [16]. But
for FDO parameters, there is only wf to be tuned. In Table (2),
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for all test functions wf was equal to 0 except test function
(2 and 6) where wf equal to 1. Every test function was
minimized towards 0.0 except TF8, which was minimized
towards -418.9829 (see Appendix Tables 6, 7 and 8 for more
details about the test function conditions). For example, some
test functions were shifted by some degrees from the origin
point to prove that the algorithms were not biased towards the
origin.

In Table (2), the results of FDO, DA, PSO, and GA are
presented. The TF1 to TF6 results showed that FDO generally
provided better results than the other algorithms; however,
the TF7 results showed the other algorithms were better.
FDO in TF8 showed poor performance even though it had
better results than PSO. In contrast, TF9 FDO provided a
better result than both GA and DA, and comparative results
were produced by PSO. In TF10 to TF13 and TF18, FDO pro-
vided relatively comparative results to the other algorithms.
However, the results of TF14 to TF17 and TF19 confirm that
the FDO algorithm outperformed DA, PSO, and GA in all
cases.

B. CEC-C06 2019 BENCHMARK TEST FUNCTIONS

A group of 10 modern CEC benchmark test functions is used
as an extra evaluation on FDO, these test functions were
improved by professor Suganthan and his colleges for a single
objective optimization problem [1], the test functions are
known as “The 100-Digit Challenge’’, which are intended to
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TABLE 3. IEEE ECE 2019 benchmark results.

. FDO DA WOA SSA

Test Function Average STD Average STD Average STD Average STD
CECO01 4585.27 20707.627 543x10% 669x108 411x108 542x108 605x107 475%107
CECO02 4.0 3.22414E-9 78.0368 87.7888 17.3495 0.0045 18.3434 0.0005
CECO03 13.7024 1.6490E-11 13.7026 0.0007 13.7024 0.0 13.7025 0.0003
CEC04 34.0837 16.528865 3443561  414.0982  394.6754  248.5627 41.6936 22.2191
CECO05 2.13924 0.085751 2.5572 0.3245 2.7342 0.2917 2.2084 0.1064
CECO06 12.1332 0.600237 9.8955 1.6404 10.7085 1.0325 6.0798 1.4873
CECO07 120.4858 13.59369 578.9531  329.3983  490.6843  194.8318 410.3964 290.5562
CECO08 6.1021 0.756997 6.8734 0.5015 6.909 0.4269 6.37 [17]23 0.5862
CECO09 2.0 1.5916E-10 6.0467 2.871 5.9371 1.6566 3.6704 0.2362
CECI0 2.7182 8.8817E-16 21.2604 0.1715 21.2761 0.1111 21.04 0.078

be used in annual optimization competition. See Table (9) in
the appendix.

Functions CEC04 to CEC10 are shifted and rotated,
whereas functions CEC01 to CECO03 are not. However,
all test functions are scalable. The parameter set where
defined by the CEC benchmark developer, as functions
CECO04 to CECI10 where set as 10-dimensional minimiza-
tion problem in [—100, 100] boundary range, however,
CECO1 to CECO3 have different dimensions as shown in the
Appendix in Table 9. For more convenient, all CEC global
optimum where unified toward point 1. FDO is competed
with three modern optimization algorithms: DA, WOA, and
SSA. The reasons behind selecting these algorithms are:
1) They are all PSO-based algorithms same as FDO. 2) All
of them are well cited in the literature. 3) They are Proven
to have an outstanding performance both on benchmark test
functions and real-world problems. 4) These algorithm imple-
mentations are publicly provided by their authors. Regard-
ing algorithms parameter settings, their default parameter
settings were not modified during the tests, all competi-
tors are set the same as the settings used in their original
papers [16]—[18]. Interested readers can find these algorithms
MATLAB implementations and their parameter setting spec-
ification here [30]. Additionally, FDO default parameter set
wf = 0 is used for all test functions.

Each algorithm where allowed to search the landscape
for 500 iterations using 30 agents. As shown in Table (3),
FDO outperforms other algorithms except in CEC06. Even
though other algorithms have a comparative result in CEC03,
CECO05, and CEC09 benchmarks, for example, WOA has the
same result as FDO in CECO03, but the WOA standard devi-
ation is equal to O, this shows that WOA has the same result
every time it uses with no chance for further improvements.

C. STATISTICAL TESTS

To show that the results presented in Table (2) and Table (3)
are statistically significant, the p values of the Wilcoxon rank-
sum test are found for all test functions, and the results of
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TABLE 4. The wilcoxon rank-sum test for classical benchmarks.

Function DFO vs. DA (P value)
TF1 0.000513631
TF2 0.7111046
TF3 8.2371E-05
TF4 1.0750E-08
TF5 0.0023817
TF6 1.7620E-04
TF7 6.6643E-12
TF8 1.4805E-34
TF9 5.8820E-08

TF10 5.6002E-17
TF11 0.012793
TF12 9.4381E-05
TF13 1.0426E-37
TF14 1.1142E-21
TF15 0.000094477
TF16 0.0000E+00
TF17 1.0668E-120
TF18 0.0000E+00
TF19 5.5373E-166

a statistical comparison are shown in Table (4) and Table (5).
In Table (4), the comparison is conducted only between the
FDO and DA algorithms because the DA algorithm was
already tested against both PSO and GA in this paper [16].
According to the mentioned work, it has been proven that
the DA results are statistically significant compared with PSO
and GA.

Again, as shown in Table (4), the FDO results are con-
sidered significant in all statistical tests (unimodal, multi-
modal and composite test functions), except in TF2, that is
because the results are more than 0.05. There are two unusual
results in the composite test functions in both TF16 and TF18
because the DA algorithm provided the same fitness function
value for each of the 30 different individual tests.
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FIGURE 6. Average fitness of FDO's search agents on unimodal, multimodal, and composite test functions.

Table (5) shows the Wilcoxon rank-sum test of FDO
against DA, WOA, and SSA for 10 CEC benchmark test func-
tions, the results show that FDO performances are statistically
significant in all cases, except in test function CEC03 for
DA and WOA algorithms, and test function CEC04 and
CECO8 for WOA algorithm. The results of Table (4) and
Table (5) prove that FDO results are statistically significant,
consequently, the existence of the FDO algorithm is statisti-
cally feasible.
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D. QUANTITATIVE MEASUREMENT METRICS

For more detailed analyses and in-depth observation of
the FDO algorithm, four more quantitative metrics were
used, as shown in Figures (4, 5, 6 and 7). In each exper-
iment, the first test function is selected from the unimodal
benchmark functions (FT1 to FT7), the second test function
selected is from the multimodal test functions (TF8 to TF13),
and the last test function is selected from the composite
benchmark functions (TF14 to TF19). The experiment was
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TABLE 5. The wilcoxon rank-sum test (p-value) for CEC 2019.

Func. FDO Vs. DA FDO Vs. WOA  FDO Vs. SSA
CECO01  4.03455E-05 0.000108312 3.1831E-09
CEC02  1.81428E-05 3.17E-252 1.1E-196
CECO03 0.244847 0.363647 1E-306
CEC04 0.000124 0.095911 7.4365E-11
CECO05  6.05468E-09 0.007884 2.3682E-15
CEC06  2.90314E-09 2.196E-28 1.9679E-08
CEC07  2.69474E-10 1.0424E-06 6.2691E-15
CECO08 2.3638E-05 0.131704 5.2331E-06
CEC09  1.80487E-10 3.7992E-43 7.4029E-19
CEC10 2.2248E-111 6.397E-131 2.459E-122

Non-Uniform
Antenna Array
o
Periodic locations -
Antenna Array MOR:sBO\':VSLL

.. : : : : : Aperiodic
D q Antenna Array
\ L] essosu

et |20 | wowsonsu

Thinned
Antenna Array

FIGURE 8. Nonuniform antenna array and a thinned antenna array [22].

conducted using 10 search agents, each allowed to search the
two-dimensional landscape through 150 iterations.

The first metric measures the convergence and illustrates
how well the artificial scout covers the search landscape.
This is merely a search history of artificial scout movements
because the position of the artificial scouts is recorded from
the beginning to the end of the test. As presented in Figure (4),
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FIGURE 9. Array configurations for 10-elements [32].
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FIGURE 10. Global best with average fitness results for 200 Iteration with
20 artificial scout bees on aperiodic antenna array designs.

the scout quickly explores the overall area first and then
gradually moves towards optimality.

The second metric measures the value of the search agent
(fitness function value), as shown in Figure (5). The values
start with large values and then steadily decrease. This behav-
ior guarantees that FDO will eventually reach optimality [31].

The third test metric is shown in Figure (6) and shows
that the average fitness value of all FDO agents decreased
dramatically over the course of the iterations, which verifies
that the algorithm not only improves the global best agent (x;*)
but also improves the overall agent fitness values.

The fourth metric measures the convergence of the global
best agent through the course of the iteration. This proves
that x* becomes more accurate as the number of iterations
increases again, clear abrupt changes can be seen due to the
emphasis on the local search and exploitation, see Figure (10).
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TABLE 6. Unimodal benchmark functions [16].

Functions Dimension Range Shift position [min
n
TF1(x) = inz 10 [-100, 100] [-30, -30, ... -30] 0
i=1
n n
TF2(x) = Z |x; |+1_[|xi| 10 [-10,10] [-3,-3, ... 3] 0
i=1 i=1
n i 2
TF3(x) = Z ij 10 [-100, 100] [-30, -30, ... -30] 0
i=1 \j-1
TF4(x) = miax{lxl, 1<i<nj 10 [-100, 100] [-30, -30, ... -30] 0
n-1
TF5(x) = z:[loo(xprl — x4+ (x; — 1D?] 10 [-30,30] [-15,-15, ... -15] 0
i=1
n
TF6(x) = Z([xi + 0.5])? 10 [-100, 100] [-750, ... -750] 0
i=1
n
TF7(x) = Z ix{ + random[0, 1] 10 [-1.28,1.28] [-0.25, ..-0.25] 0

i=1

FM

Fitness Value
N w e (% (=2} ~
8 8 8 8 8 8

g

o q o~
@ | o

105

M o= QoW
— N Nom o
P B

153
161
169
177
185
193

Iterations
Global Best

= = = Avarage Fitness

FIGURE 11. Global best with average fitness results for 200 Iteration with
30 artificial scout bees on the FM synthesis problem.

Overall, in this section, measurement metrics showed that
FDO is capable of effectively exploring the search space,
improving the overall solution, avoiding local optimum and
fairly converging towards optimality.

E. FDO REAL WORLD APPLICATION

Similar to any other metaheuristic algorithm, FDO can be
used to solve real-world application problems. In this section,
FDO is applied to two different applications:
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1) FDO USAGE ON APERIODIC ANTENNA ARRAY DESIGNS.
Since the 1960s, with the advances in both radar techniques
and radio astronomy, aperiodic antenna arrays have received
considerable attention, as shown in Figure (8); there are two
types of aperiodic antenna arrays: nonuniform antenna arrays
and thin antenna arrays.

In particular, to obtain the peak sidelobe level (SLL) in
nonuniform arrays, the element position should be optimized
in terms of a real number vector, as shown in Figure (9).
Moreover, to avoid grating lobes, a certain element spacing
limit exists for conventional periodic arrays (see constraints
in Equation (7)). Interested readers can review [32] for more
details on this problem.

Again, as shown in Figure (9), there are 10 elements of
a nonuniform isotropic array, and only four element loca-
tions need to be optimized on each side. Since the outer-
most element is fixed at location 2.251¢ with an average
element spacing of d,ye = 0.5, this is a four-dimensional
optimization problem with the following constraints:

x; € (0,2.25) |x; — xj| > 0.254¢

min {x;} > 0.125x0.i= 1,2, 3, 4.i £ j. 7

The constraints show that there is a boundary between
0 and 2.25 for every element. However, each element cannot
be smaller than 0.125X¢ or larger than 2.0A¢; that is because
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TABLE 7. Multimodal benchmark functions (10 dimensional) [16].

Functions Range Shift position fmin
n
TF8(x) = Z —xZsin (y/Ixi]) [-500, 500] [-300, ... -300] | -418.9829
=1
n
TF9(x) = z:[xl2 — 10 cos(2mx;) + 10] [-5.12,5.12] [-2, -2, ...-2] 0
=1
1 n
TF10(x) = —20exp| —0.2 Zl—exp (EZ cos(27rxi)> +20+e [-32, 32] 0
i=1 i=1
TF11(x) = ! i 2 ﬁ (xi> +1 600, 600 400 400 0
x—4000‘1xi .1cos\ﬁ [-600, ] [-400, ... -400]
i= i=
TF12(x) = ~{10sin(my,) + X5 (v — D?[1 +
10 sin2(my;s )] + (i — 12} + Tty u(x;, 10,100, 4).
yi=1+2 [-50,50] [-30, 30, ... 30] 0
k(x;—a)™x; >a
u(x;, a,k,m) = 0 —a<x;<a
k(—x;—a)™x; < —a
TF13(x) = 0. 1{sin2(3n'x1)
n
+ ) (x;— D?[1 + sin®*(Bmx; + 1)] [-50,50] [-100, ... -100] 0
i=1
n
+ (x, — 1)?[1 + sin? (Zn'xn)]} + Z u(x;,5,100,4).
i=1

of 2.25A¢ is a fixed element and two adjacent elements can-
not get closer than 0.254¢. The fitness function problem is
described as:

J = max {2010g |AF (0)|} ®

where

4
AF (0) = Z cos [2mx; (cos & — cosby)]
i=1

+cos[2.25 x 2 (cosf — cosby)]  (9)

Consider that 6 = 90° in this work is defined in
Figure (9) [32].

The DFO algorithm is used to optimize this problem, con-
sidering the constraints mentioned in Equation (7). Twenty
artificial scout search agents are used for 200 iterations,
and the presented result in Figure (10) includes the global
best fitness in each iteration and the average fitness value
according to Equation (8). The result shows that the global
best solution reached its optimum solution in iteration 78 with
element positions = {0.713, 1.595, 0.433, 0.130}.
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2) FDO ON FREQUENCY MODULATED SOUND WAVES

FDO is used on frequency-modulated sound waves (FM)
to optimize the parameter of an FM synthesizer, which
has an essential role in several modern music systems; this
problem has six parameters to be optimized as indicated
in Equation (10).

X ={ay1,w1, a2, wa, az, w3} (10)

The objective of this problem is to generate a sound,
as in Equation (11), that is similar to the target sound, as
in Equation (12).

¥(t) = aj.sin (wy.t. 4+ az. sin (wy.t.0 + a3. sin (w3.£.0)))
Y
Yo(t) = (1.0).sin ((5.0).2. + (1.5). sin ((4.8).1.0
+(2.0).51in ((4.9).£.0))) (12)
where the parameters should be in the range [—6.4, 6.35] and
6 = 2m /100, the fitness function can be calculated using

Equation (13), which is simply the summation of the square
root between the result of Equation (11) and Equation (12),
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TABLE 8. Composite benchmark functions [16].

Functions Dimension Range fmin

TF14 (CF1)
f1,f2,f3...f10 = Sphere function
61,62,63..610 = [1,1,1,....1] 10 [-5, 5] 0
1,12,23 ,110—[5 > O 5]

e 711007100, 100° 77100
TF15 (CF2)
f1,1f2,f3 ... f10 = Griewank’s function
61,62,63..610 =[1,1,1,....1] 10 [-5, 5] 0
A1,42,23 /110—[5 > > 5]

e 711007100, 100° 100
TF16 (CF3)
f1,f2,f3...f10 = Griewank’s function
51,62,63..610 = [1,1,1, ....1] 10 [-5, 5] 0
A1, 42,43 ..A10 = [1,1,1, ....1]
TF17 (CF4)
f1, f2 = Ackley’s function
f3, f4 = Rastrigin’s function
f5, f6 = Weierstrass function
f7, f8 = Griewank’s function 10 [-5, 5] 0
9, f10 = Sphere function ’
61,62,63...610 =[1,1,1,....1]
A1,A2,A3...110 = > S 115 > 5 > > >

e ~132’32,"7’770.5°0.5°100°100° 100" 100
TF18 (CF5)
f1, f2 = Rastrigin’s function
f3, f4 = Weierstrass function
f5, f6 = Griewank’s function
f7,f8 = Ackley’s function 10 [-5, 5] 0
f9, f10 = Sphere function ’
61,62,63..610 =[1,1,1,....1]
A1,22,23 /110—11 5 5 5 > > 5 5

e ~15’5,70.5°0.5"100°100°32°32"100° 100
TF19 (CF6)
f1, f2 = Rastrigin’s function
f3, f4 = Weierstrass function
f5,f6 = Griewank’s function
f7,f8 = Ackley’s function
f9, f10 = Sphere function 10 [-5, 5] 0
61,62,63...610 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] ’

1 1 5 5
— 0.7 %=—,08*—,09%——,1%5/100
100" %7 " 32083309 * 1007 1 7%/
while t = 100 turns. wy = —0.0193, a3 = —0.5701, wz = 4.937} were also

100

FE =) 00—y

t=0

13)

Interested readers can find more details on this problem
in [33].

FDO is applied to the problem with 30 agents for 200
iterations, and records of the global best solutions and aver-
age fineness values can be seen in Figure (11). Parameter-
set X = {a1 = 0974, w; = —0.241, a, = —4.3160,
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generated at iteration 200. The global best value converges
to the near-global optimal value from iteration 64.

VI. CONCLUSION

A new swarm intelligent algorithm was proposed called the
fitness dependent optimizer; it is inspired by the bee repro-
ductive swarming process, where scout bees search for a
new nest site. Additionally, the algorithm is inspired by their
collective decision-making. It has no algorithmic connection
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TABLE 9. CEC-C06 2019 Benchmarks “The 100-Digit Challenge:” [1].

No. Functions Dimension Range fmin
1 STORN'S CHEBYSHEV POLYNOMIAL FITTING PROBLEM 9 [-8192, 8192] 1
2 INVERSE HILBERT MATRIX PROBLEM 16 [-16384, 16384] 1
3 LENNARD-JONES MINIMUM ENERGY CLUSTER 18 [-4,4] 1
4 RASTRIGIN’S FUNCTION 10 [-100, 100] 1
5 GRIEWANGK’S FUNCTION 10 [-100, 100] 1
6 WEIERSTRASS FUNCTION 10 [-100, 100] 1
7 MODIFIED SCHWEFEL’S FUNCTION 10 [-100, 100] 1
8 EXPANDED SCHAFFER’S F6 FUNCTION 10 [-100, 100] 1
9 HAPPY CAT FUNCTION 10 [-100, 100] 1
10 ACKLEY FUNCTION 10 [-100, 100] 1

NOTE: Interested reader can see this technical paper [1] for more information about the CEC benchmarks.

with the ABC algorithm. FDO employs fitness function val-
ues to generate weights that drive the search agents towards
optimality. Additionally, FDO depends on the randomization
mechanism in the initialization, exploration and exploitation
phases. A group of 19 single objective benchmark testing
functions was used to test the performance of the FDO.
The benchmark testing functions were divided into three
subgroups (unimodal, multimodal and composite test func-
tions). Additionally, FDO tested on 10 modern CEC-C06
benchmarks. The FDO results compared to two well-known
algorithms (PSO and GA) and three modern algorithms
(DA, WOA, and SSA), FDO outperformed the competing
algorithms in the majority of cases and produced a compara-
tive result on the others. The test results were compared using
the Wilcoxon rank-sum test to prove their statistical signif-
icance. Four additional experiments were conducted on the
FDO algorithm to measure, prove and verify the performance
and credibility. Furthermore, FDO was practically applied to
two real-world examples as evidence that the algorithm can
address real-life applications.

Generally, we found that the number of search agents was
related somehow to FDO performance after testing on many
standard test functions and real-world applications. Thus,
using a small number of agents (below five) would notably
decrease the accuracy of the algorithm, and a large number of
search agents would improve the accuracy and cost more time
and space, partially because the algorithm depends on the
fitness weight on the significant part of its searching mech-
anism; in view of this, it is known as the fitness dependent
optimizer.

Future works will adapt, implement and test both multi-
objective and binary objective optimization problems on
FDO. Finally, integrating evolutionary operators into FDO
and hybridizing it with other algorithms can be considered
as potential future research.

VIi. APPENDIX
See Tables 6-8.
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