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ABSTRACT It is crucial to evaluate the quality of clustering results in cluster analysis. Although many
cluster validity indices (CVIs) have been proposed in the literature, they have some limitations when dealing
with non-spherical datasets. One reason is that the measure of cluster separation does not consider the impact
of outliers and neighborhood clusters. In this paper, a new robust distance measure, one into which density is
incorporated, is designed to solve the problem, and an internal validity index based on this separationmeasure
is then proposed. This index can cope with both the spherical and non-spherical structure of clusters. The
experimental results indicate that the proposed index outperforms some classical CVIs.

INDEX TERMS Crisp clustering, cluster validity index, arbitrary-shaped clusters.

I. INTRODUCTION
Clustering is one of the most critical problems in machine
learning, in which the task is to divide a dataset into
structural groups without prior information [1]. Clustering
has been widely studied in many research areas, such as
image segmentation [2], data mining [3], and bioinformat-
ics [4]. One of the standard components in clustering algo-
rithms is the similarity measure, which is usually estimated
by the distance or the density information of objects [5].
On this basis, clustering algorithms can be roughly clas-
sified into distance-based, density-based and hybrid clus-
tering. For example, K-means, average-linkage, AP [6],
and Ncut [7] use distance-based similarity; DBSCAN [8],
ReCon-DBSCAN [9], and OPTICS [10] employ density-
based similarity; while DPC [11], SNN-DPC [12] and robust
path-based spectral clustering [13] use a mixed similarity.
Different clustering algorithms are proposed to solve differ-
ent types of applications, but there does not exist a unified
clustering algorithm can cope with all applications [14]–[18].
As a result, it is necessary to find an effective way to evaluate
the goodness of clustering before using a particular algorithm
for further use [19], [20].
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Clustering validation is a process of estimating how
well a partition fits the underlying structure of the dataset.
It has been recognized as a vital tool in clustering appli-
cations and widely used in clustering ensemble [21]–[23]
and multi-objective clustering schemes [24], [25]. Clustering
validation can be mainly classified into two types: internal
and external. The main difference between internal and exter-
nal validation is whether some external information, such
as class labels, is used in the validation process. Unlike
external validation, which is mostly used in supervised learn-
ing, internal validation is usually employed in unsupervised
learning to evaluate the goodness of a clustering without
using any external information. In practice, external informa-
tion is often not available in clustering processes. Therefore,
internal validations are usually the only option for clustering
evaluation [26].

The conventional approach for evaluating the internal
validation is to use validity indices [27]. Many cluster
validity indices (CVIs) have been developed [28], includ-
ing classic indices such as the Calinski-Harabasz index
(CH) [29], Davies-Bouldin index (DB) [30], S_Dbw [31],
I index [32], Dunn index [33], CDbw [34], and Silhou-
ette index [35]; density-based indices [36], [37]; and newly
developed indices, such as WB index [38], CVNN [26],
RTI [39], CSP [40], and the Local Cores-based Cluster
Validity index (LCCV) [41].
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TABLE 1. CVI representatives.

However, most of them are effective only when applied
to a dataset with a simple cluster structure, such as spheri-
cal clusters or well-separated clusters, and become degraded
when the dataset has a complicated structure, such as
arbitrary-shaped clusters or clusters with outliers. For exam-
ple, the CH index is estimated based on the distances from
the objects in a cluster to its centroid and distances from the
cluster centroids to the global centroid and may fail when a
cluster centroid is outside of the cluster. The Dunn index is
based on the nearest neighbor distance and maximum cluster
diameter, which is only suitable for clusters well-separated
with respect to distance. Furthermore, these indices perform
well only for datasets that are composed of spherical shapes
or have structures without outliers.

We propose a robust and relatively universal Cluster Valid-
ity index based on Density-involved Distance (CVDD), and
then use it to choose the best partition and determine the
optimal number of clusters.

The remainder of the paper is organized as follows:
Section 2 discusses related work. Density-involved distance
is proposed in Section 3. The internal cluster validation index
based on density-involved distance is presented in Section 4.
Experimental results on synthetic and real datasets are pre-
sented in Sections 5. Finally, some concluding remarks are
given in the last section.

II. RELATED WORK
In this section, some basic concepts of internal validity
indices are introduced, and then some representative compo-
nents of the indices are extracted. With these components,
the limitations of the indices are described.

A. COMPONENTS OF INTERNAL VALIDITY INDICES
Since clustering tries to make pairwise objects within a
cluster similar and those across clusters dissimilar, inter-
nal validity indices are usually designed to measure the
intra-cluster compactness and inter-cluster separation simul-
taneously. Intra-cluster compactness depicts how closely the
objects in a cluster are related, and it can be quantified as the
overall deviation [24]. Inter-cluster separation, on the other
hand, depicts the separation degree of two clusters and can
be measured by distances of objects between the two clusters.
Normally, a cluster with high compactness and separation is
of high quality. The most common measures based on these
two aspects for spherical clusters are summarized in [38].

However, some studies pay more attention to the design
of inter-cluster separation [42], [43], and some even directly
claim that inter-cluster separation is more important than
intra-cluster compactness [44].

In general, existing validity indices use some representa-
tives to evaluate the separation [26], where the representatives
could be medoids or means. Suppose π is a clustering of
dataset X = {x1, x2, · · · , xN }, where π = {C1,C2, ...,CK };
d(xi, xj) is the Euclidean distance between object xi and xj,
|Ci| is the number of objects in Ci, N is the number of
the objects in X and K is the number of the clusters of π .
The separation between Ci and Cj is defined as the dis-
tance between representatives, namely sep(Ci,Cj) = d(a, b)
where a, b are the representative of Ci and Cj respectively.
As shown in Table 1, the validity indices can be categorized
into four groups according to the following four kinds of
representatives:

1) Single center
2) Multiple centers
3) Single non-center
4) Multiple non-centers

However, the above representatives, which are located in or
far from the cluster center, have some drawbacks, and the
resulting limitations of CVIs based on these representatives
will be discussed in the next subsection.

B. LIMITATIONS OF THE EXISTING REPRESENTATIVES
A single center representative is not enough to represent an
entire cluster that has non-spherical structure. To address this
problem, RTI divides a cluster into several subclusters, and
uses multiple centers to describe the geometrical structure of
the cluster [39].

However, sometimes the distance between center-based
representatives of two clusters cannot measure the separation
well. In Fig. 1, two groups of pairwise clusters have the
same distance between center representatives but different
separations, namely, d(µ1, µ2) = d(µ3, µ4), sep(C1,C2) >
sep(C3,C4), where sep(Ci,Cj) denotes the separation of Ci
and Cj. Thus, center representative based CVIs, such as
CH, DB, WB, S_Dbw, I and RTI, may fail to reflect the
separation. But single non-center representatives can depict
the separations of the case in Fig. 1, that is, d(δ1, δ2) >
d(δ3, δ4). Therefore, to measure the separations, a non-center
representative is better than a center representative when two
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FIGURE 1. Intercluster separation between clusters.

clusters are close but the two corresponding centers are far
away.

A single non-center representative does not aim to rep-
resent the entire geometrical structure of a cluster, but the
geometrical information of local portions especially those
that are adjacent to the other clusters.

However, a single non-center representative might be sen-
sitive to outliers. In Fig. 2(1), it is obvious that there exist a
gap between clusters, and a and b are the non-center represen-
tatives of C1 and C2 respectively and sep(C1,C2) = d(a, b).
In Fig. 2(2), two outliers, p and q, are between C1 and C2.
The two representatives are selected by Dunn’s index as p
and q, and the separation d(p, q) is quite different from that
in Fig. 2(1). Therefore, the cluster separation estimated by the
single non-center may be changed when outliers or noise is
introduced.

FIGURE 2. Impact of outliers.

To alleviate the above problem, CDbw [34], CVNN [26],
and Silhouette scheme [35], VCN [45], and LCCV [41] use
multiple non-center representatives to measure the separation
more accurately. Unfortunately, this method is only workable
when there exist a small number of outliers between the two
clusters. If more outliers are selected as representatives, for
example in Fig. 2(2), when p, q and the other three outliers
are selected, it does not depict the separation well.

Moreover, the above non-center representatives cannot rec-
ognize density-separated clusters (also known as density gra-
dient problem [46]). In Fig. 3, there are two clusterings, π1 =
{C1,C2} and π2 = {C3,C4}, where C1,C2 are density-wise
well-separated and C3,C4 are not. Dunn selects a, b and
c, d as the corresponding representatives. The separations of

FIGURE 3. Impact of density-separated clusters.

C1,C2 and C3,C4 are represented by d(a, b) and d(c, d),
respectively. But d(a, b) = 2.47 and d(c, d) = 2.94, which
means the separation of C3,C4 is greater than that of C1,C2,
but this does not make intuitive sense, since C1,C2 constitute
a good clustering and C3,C4 do not.
To eliminate the impact of outliers and the problems with

density-separated clusters in the above separation situations
(clusters with lesser degree of overlap [47]), we design a new
density-involved distance measure in the next section.

III. A NEW DENSITY-INVOLVED DISTANCE
In this section, density information is employed to improve
the performance of the distance measure in non-centers rep-
resentatives. The main idea is to use two concepts from
DBSCAN: core objects and density connectivity, in which
the first concept is useful to recognize outliers (discussed in
subsectionA) and the second one is helpful to differentiate the
density-separated clusters (discussed in subsection B). The
newly defined outlier factor fDen, and mutual density factor
fRel are combined with a graphical-based approach into a
novel density-involved distance in subsection C.

An overview of the density-involved distance is illustrated
in Fig. 4.

A. USING DENSITY ESTIMATION TO COPE WITH OUTLIERS
As discussed above, one limitation of the existing CVIs is that
the definition of the separation may be sensitive to outliers
between the two clusters. Normally, any outlier should not
act as a representative for the evaluation of the separation.
Definition 1: C is said to be a region, if for every x ∈ C ,

the density of x is approximately equal to a certain value. For
example, in Fig. 2(2), every object in C1 has a similar density
to that of a, while objects in C3 have a similar density to that
of p. C1 and C3 are different regions with respect to density.
The main concept of ‘‘region’’ is based on the density attrac-
tor notion [48], which implies dense regions recognized as
clusters are surrounded by regions with low density. Since
outliers usually come from low-density regions [8], which
deviate significantly from higher-density regions [49], [50],
the representatives should be selected from regions of high
density. Therefore, density should be taken into account as a
key factor in the design of the separation.
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FIGURE 4. The scheme of Density-involved distance. (a) shows a partition of π = {C1,C2} where C1 = {x1, x2, x3, x4}, C2 = {x5, x6, x7, x8}.
(b) the Euclidean distances where min d (C1,C2) = d (x1, x6). (c) includes density information such as outlier factor fDen (normalized Den)
estimated by 3-NN graph and mutual density factor fRel . (d) is the directly density-reachable distance drD estimated from Den,d and fRel .
(e) is the connectivity distance conD estimated from the drD’s path-based pD transformation based on a minimum spanning tree. (f) is the
final density-involved distance DD with the combination of conD, fDen. where min DD(C1,C2) = DD(x1, x5).

Definition 2: LetNi be the k nearest neighbors (k-NN) of
object xi, d(xi, xj) be the Euclidean distance between object
xi and xj, the density estimation of object xi is defined as:

Den(xi) =
1
k

∑
xj∈Ni

d(xi, xj). (1)

This density estimation is a neighbor-based approach [51]
used in [52]. The smaller the Den(xi), the denser the xi;
e.g., in Fig. 2(2), the size of a’s neighborhoods are smaller
than those of p’s while a is denser than p. Accordingly,
the density of a region C can be evaluated as Den(C) =
1
|C|6xi∈CDen(xi).
Assumption 1: Let dis(xi, xj) be the dissimilarity of

objects xi and xj. Suppose d(xi, xj) = d(xp, xq), xi, xj ∈ C1,
xp, xq ∈ C2. If Den(C1) < Den(C2) then dis(xi, xj) <

dis(xp, xq).
The above assumption is based on an intuition: Dense

regions are more likely to be recognized as clusters. As clus-
ters are surrounded by sparse regions, objects in a dense
region are more likely to be compact or similar while objects
in a sparse region are more separated. When Den(C1) <
Den(C2), even if d(xi, xj) = d(xp, xq), xi and xj are more
likely density-connected than xp and xq. In Fig. 2(2), for
example, two clusters C1 and C2 are separated by a sparse
region C3, objects a and e are in C1, while objects p and q
are in C3. When the number of nearest neighbors k is set
to 8, we have Den(C1) < Den(C3). Since d(a, e) = d(p, q),
the dissimilarity dis(p, q) is larger than dis(a, e). Accordingly,
this assumption is reasonable.

Definition 3: The normalized inverse of Den(xi) is called
its outlier factor:

fDen(xi) =
Den(xi)

maxxj∈X Den(xj)
. (2)

The outlier factor, fDen(xi) ∈ (0, 1], reflects the score of how
likely xi can be viewed as an outlier.
Definition 4: The outlier-penalized distance, abbreviated

as out-distance, of object xi and xj is defined as in:

outD(xi, xj) =
√
fDen(xi) · fDen(xj) · d(xi, xj). (3)

The above defined out-distance can be used as a dissimilarity
measure or distance measure.

Suppose xi and xj are in a dense region, xp and
xq are in a sparse region, and d(xi, xj) = d(xp, xq).
We have

√
fDen(xp) · fDen(xq) >

√
fDen(xi) · fDen(xj), and

outD(xp, xq) > outD(xi, xj). At the same time, according to
Assumption 1, dis(xp, xq) > dis(xi, xj).

Moreover, suppose xi, xj ∈ C1, xp /∈ C1, Den(xp) >

Den(C1), and d(xi, xj) = d(xp, xi). As
√
fDen(xp) >√

fDen(xj), we have outD(xp, xi) > outD(xi, xj). Similarly,
if d(xi, xj) = d(xp, xj), then outD(xp, xj) > outD(xi, xj).
Therefore, under Assumption 1, outD(xi, xj) can be viewed
as dis(xi, xj).

Obviously, out-distance outD(xi, xj) satisfies:

1) outD(xi, xj) ≥ 0
2) outD(xi, xj) = 0↔ xi = xj
3) outD(xi, xj) = outD(xj, xi)
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but does not satisfy (iv) outD(xi, xz) ≤ outD(xi, xj) +
outD(xj, xz), since outD(xi, xj) is not linearly defined. There-
fore, outD(xi, xj) is a distance measure but not a metric.
The main advantage of out-distance is that this distance

measure is robust to outliers, and this performance is illus-
trated in Fig. 5. We use two-dimension multidimensional
scaling (MDS)1 to generate the transformed space by the
distance measure and verify the performance. The original
dataset contains six outliers and is shown in Fig. 5(a). The
transformed dataset by MDS with out-distance is shown
in Fig. 5(b). The outliers between two clusters in original
space are removed, and the separation in the transformed
space is more prominent compared with the separation in the
original space.

FIGURE 5. MDS transformation of distance with the impact of outliers.

B. USING MUTUAL DENSITY TO COPE WITH
DENSITY-SEPARATED CLUSTERS
In general, two density-separated clusters should not be
merged into one cluster, as they are not directly density-
reachable [8]. However, separation measures in the exist-
ing CVIs usually favor distance-separated clusters but not
density-separated clusters, since factors of density separa-
tion are not considered well. In this subsection, a density
separation measure is carefully defined to recognize the
density-separated clusters.
Definition 5: The relative density of xi with respect to xj is

defined as:

Rel(xi, xj) =
Den(xi)
Den(xj)

. (4)

IfDen(xi) > Den(xj), the relative density Rel(xi, xj) is greater
than 1, which means xi is of a relatively high density.
Definition 6: The mutual density factor between xi

and xj is defined as:

fRel(xi, xj) = 1− e−[Rel(xi,xj)+Rel(xj,xi)−2]. (5)

The mutual density factor, fRel(xi, xj) ∈ [0, 1), reflects the
score of how likely the xi and xj are density-separated. If and

1 Multidimensional scaling is a powerful statistical method for visualizing
the information contained in a dissimilarity or distance matrix [53]. Gener-
ally, the aim of MDS is to place objects in a low-dimensional space while
preserving the pairwise dissimilarity between objects as well as possible.
Note that the dissimilarities is preserved in the transformed space by MDS
while the orientation of mapping is arbitrary.

only if Den(xi) = Den(xj), then fRel(xi, xj) = 0. The power
−[Rel(xi, xj) + Rel(xj, xi) − 2] is always less than or equal
to 0, which makes the factor change with the relative density
but not with respect to the individual density of xi or xj.

As fRel(xi, xj) measures the difference between xi and xj
respect to relative density, one may use it to define a new
density-reachable distance.
Definition 7: The directly density-reachable distance,

abbreviated as dr-distance, between xi and xj is defined as:

drD(xi, xj) = d(xi, xj)+ relD(xi, xj) (6)

where relD(xi, xj) = fRel(xi, xj) · nD(xi, xj), and nD(xi, xj)
is a reference. Addend relD(xi, xj) is a penalty distance, and
the purpose of its introduction is to make the dr-distance
drD(xi, xj) larger than d(xi, xj) when themutual density factor
fRel(xi, xj) is large. That is to say, when the density difference
between xi and xj is large, the distance between them is
mandatorily changed into a large one so that the separability
is strengthened. If xi and xj have the same density, then
fRel(xi, xj) = 0 and drD(xi, xj) = d(xi, xj).
We set nD(xi, xj) to Den(xi) + Den(xj), because on the

one hand nD(xi, xj) is adaptive with respect to the varied
individual densities of xi and xj, and on the other hand,
Den(xi)+Den(xj) approaches the sum of the two k-NN radii
and is relatively moderate.

If d(xi, xj) � relD(xi, xj), then drD(xi, xj) is not sensitive
to fRel(xi, xj), and the separability of xi and xj is determined
by the Euclidean distance rather than density. Moreover, if xi
and xj are near enough, for example, xi ∈ Nj or xj ∈ Ni,
then drD(xi, xj) is sensitive to fRel(xi, xj), and the impact
of density-separated clusters will play an important role in
drD(xi, xj).

The main advantage of dr-distance is that this distance
measure is sensitive to density-separated scenarios. This
performance is illustrated in Fig. 6. The original dataset
contains two density-separated clusters shown in Fig. 6(a).
The dataset transformed by classic two-dimensional MDS
with dr-distance is shown in Fig. 6(b). The separability in
the transformed space is greater than that in the original
space.

C. COMBINATION OF OUTLIER FACTOR
AND MUTUAL DENSITY FACTOR

FIGURE 6. MDS transformation of distance with the impact of
density-separated clusters.
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To copewith the impact of outliers and the density-separated
clusters simultaneously, we should consider both the out-
lier factor and the mutual density factor. We can combine
the above out-distance and dr-distance to form a new
density-involved distance. The combination is as follows.
Definition 8: The path-based distance [54] between

objects xi and xj in Ci is defined as in:

pD(xi, xj) = min
p∈Pij

{
max

1≤h<|p|
d(x[h], x[h+1])

}
(7)

where Pij denotes the set of all paths from object xi to object
xj, [h] denote the [h]th object along a path p from xi to xj
(Pij = {p1, p2, ..., pt }, p = [x[1], x[2], ..., x[h], x[h+1], ...x[p]]
is a sequence along xi to xj, x[1] = xi, x[p] = xj, and the
[h + 1]th object is the nearest object with [h]th object). For
each path p ∈ Pij, the maximum weight d(x[h], x[h+1]) along
the path p is selected to be the weight of the path p, then
the minimum weight from all paths Pij is selected to be
path-based distance between xi and xj. The path-based dis-
tance can be computed from aminimum spanning tree (MST)
of d [10], [55].

The main property of the path-based distance is that
the similarity or dissimilarity is transitive: ‘‘My neigh-
bor’s neighbor can also be my neighbor.’’ [56] As the
density-reachability between objects is also transitive [10],
we use the path-based method to define the following global
distance.
Definition 9: The connectivity distance between xi and xj

is defined as:

conD(xi, xj) = min
p∈Pij

{
max

1≤h<|p|
drD(x[h], x[h+1])

}
. (8)

The connectivity distance between xi and xj is the mini-
mum of the maximum dr-distance weights of all the path Pij.
Compared with the definition of path-based distance in
Definition 8, connectivity distance is obtained by replacing
the weight of original Euclidean distance d(x[h], x[h+1]) with
the weight of dr-distance drD(x[h], x[h+1]).
This path-based like distance measure satisfies the fol-

lowing assumption of clustering, called cluster assump-
tion: objects are likely in different clusters if there is
a path connecting them passing through regions of low
density [57], [58]. One can see that neighboring weights or
dr-distance weights imply the local cluster structure.
Definition 10: The density-involved distance between xi

and xj is defined as:

DD(xi, xj) =
√
fDen(xi) · fDen(xj) · conD(xi, xj). (9)

Compared with the definition of out-distance in
Definition 4, the density-involved distance is obtained by
replacing the original Euclidean distance d(xi, xj) with the
connectivity distance conD(xi, xj).
The performance of density-involved distance is demon-

strated in Fig. 7. Fig. 7(a) is the original dataset, which con-
tains two density-separated clusters in the left side and two
distance separated clusters containing six outliers in the right

FIGURE 7. MDS transformation of distance with the impact of outliers
and density-separated clusters.

side. The dataset is transformed by classic two-dimensional
MDS with density-involved distance. The transformed ver-
sion is shown in Fig. 7(b), from which one can see that the
left two clusters are distance well-separated and the right two
clusters are also distance well-separated, since the outliers are
not in the middle of the two clusters. This performance indi-
cates that the density-involved distance can remove the neg-
ative impact of outliers and be sensitive to density-separated
clusters simultaneously.

IV. CVDD: A NEW CLUSTERING VALIDITY INDEX
As DD(xi, xj) is robust to outliers and sensitive to
density-separated clusters, it can be used to measure the
separability of two clusters in an internal validity index.
An overview of CVDD is seen in Fig. 8.

FIGURE 8. The scheme of CVDD between two clusters. The π is from
Fig. 4(a). The separation of π is based on minimum DD between clusters.
The compactness of π is based on the weights of C1,C2’s pD.

Let5 = {π1, π2, ..., πM } beM clusterings on a dataset X ,
πi = {Ci1,Ci2, ...,CiKi} a clustering from5, CiKi a cluster of
πi and Ki the number of the clusters of πi.
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Definition 11: The separation between Ci and Cj is
defined as:

sep(Ci,Cj) = min
xi∈Ci,xj∈Cj

DD(xi, xj). (10)

Like the Dunn index [33], we use the minimum pairwise
distance between clusters to represent the separation between
clusters.

Then, the separation between Ci and other clusters is
defined as:

sep(Ci) = min
xj∈π,xj /∈Ci

sep(Ci,Cj). (11)

When evaluating the compactness of a cluster, we do
not take the density factors into account, as compactness
is usually irrelevant to outliers and density separation. But
we use the path-based distance defined in Definition 8 as
a measure to evaluate the compactness; the reason is that
the path-based distance is transferable within a cluster. Some
statistical properties of path-based distance are used to define
the compactness as follows.
Definition 12: The compactness of Ci is defined as:

com(Ci) =
1
|Ci|
· STD(Ci) ·Mean(Ci) (12)

where Mean(Ci) = 1
|Ci|
·
∑

xi,xj∈Ci pD(xi, xj), STD(Ci) =√
1

|Ci|−1
·
∑

xi,xj∈Ci (pD(xi, xj)−Mean(Ci)).
In the above definition, three factors are included.

Mean(Ci) and STD(Ci) are the mean and the standard devi-
ation respectively of a cluster with respect to the path-based
distance, and 1

|Ci|
acts as a penalty factor.

It is intuitive that a compact cluster should have a relatively
small mean and standard deviation for its path-based dis-
tances.While 1

|Ci|
means that when two clusters have the same

mean and standard deviation, the cluster with more objects
should be relatively more compact.
Definition 13: The CVDD index is defined as in:

CVDD(π ) =

∑K
i=1 sep(Ci)∑K
i=1 com(Ci)

. (13)

The above definition is the proposed internal validity
index. It is the average performance of π with respect to
individual clusters. Another option of designing the final
index is to compute the performance of a single cluster first
and then average the performances as the whole performance
of π . But this option may be sensitive to single clusters with
extreme cases such as when the compactness approaches 0.

Obviously, the larger CVDD(π ), the better quality of the
partition π .
To sum up,2 the process of computing the CVDD of a given

partition is shown in Algorithm 1
Algorithm for determining the optimal partition. For a

set of partitions 5, the optimal clustering πOP can be given

2The source code of this paper is available at https://github.com/
hulianyu/CVDD

Algorithm 1 CVDD
Input: π = {C1,C2, ...,CK } of X , number of nearest

neighbor k
Output: Validity index CVDD(π )

1 CVDD(π )← null
2 Compute the density estimation Den as in Eq. 1
3 Compute the outlier factor fDen as in Eq. 2
4 Compute the mutual density factor fRel as in Eq. 5
5 Compute the density-involved distance DD as in Eq. 9
6 for i← 1 to K do
7 Compute the separation sep[i] of Ci as in Eq. 11
8 Compute the compactness com[i] of Ci as in Eq. 12

9 Compute the validity index CVDD of π as in Eq. 13.

as:

πOP = arg max
1≤i≤M

{CVDD(πi)} (14)

The optimal partition algorithm is described in
Algorithm 2.

Algorithm 2 CVDD-OP
Input: A set of partitions 5 = {π1, π2, ..., πM }
Output: The optimal partition πOP

1 πOP← null
2 cvi← 0
3 for i← 1 to M do
4 if cvi < CVDD(πi) then
5 cvi← CVDD(πi)
6 πOP← πi

To obtain the CVDD index, two main graph construc-
tions are required: k-NN graph and MST. The time com-
plexity of k-NN and MST are both O(N 2). In computing
density-involved distance, k-NN is used for density estima-
tion and MST is used to figure out the path-based distance.
Thus, the time complexity of DD is O(N 2). ForM partitions,
MST is used for computing the compactness of each partition
while DD is global for all partitions. Therefore, the overall
time complexity of computing CVDD index forM partitions
is O(N 2

+MN 2).

V. EXPERIMENTAL RESULTS
As CVIs can usually be used to select the optimal partition
from multiple candidates and determine the optimal number
of clusters (K ), we evaluate the performance of CVDD from
these two aspects. Eight well-known CVIs are selected for
comparison and shown in Table 2.

A. DATASETS USED
Thirty datasets are used to test the CVDD algo-
rithm. Ten non-spherical datasets are downloaded from
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FIGURE 9. Ten non-spherical clusters.

TABLE 2. CVIs compared. The middle column denotes that an index is
optimal when its value is minimum or maximum.

Shape sets,3 Fundamental clustering problem suite
(FCPS) [59]4 and Tomas Barton’s clustering benchmark5 and
illustrated in Fig. 9. The ten spherical datasets are all from the
Clustering basic benchmark [47]3, and the ten real datasets or
classification datasets are from UCI [60] and [61]. In Fig. 9,
we can see that the separation of pathbased, aggregation,
zelnik6 and longsquare datasets may be affected from outliers
and density-separated clusters. Detailed information on these
datasets such as the number of clusters (K ), the number
of objects (N ) and the number of dimensions are depicted
in Table 3.

B. PERFORMANCE MEASURES
If the ground truth partition of X is available, it is usually
used to evaluate the performance of a partition generated by
a clustering algorithm. Suppose π∗ = {C∗1 ,C

∗

2 , . . . ,C
∗
K } is

the ground truth of X . Taking π∗ as a reference, we measure
the performance of CVIs by measuring the quality of the best
partition (πOP), which is determined by CVIs.

We use cluster-level Centroid Index (CI) [69] and
point-level Purity [70] to measure the quality of πOP, and

3http://cs.uef.fi/sipu/datasets/
4https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data
5https://github.com/deric/clustering-benchmark

TABLE 3. The description of the data sets.

the similarity between πOP and ground truth. CI provides
a clear interpretation about the dissimilarity between πOP
and π∗ in cluster-level structure (e.g., CI = 1 demonstrates
one cluster difference in the global allocation of πOP, π∗).
Purity is equivalent to Accuracy [71] and widely cited as
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TABLE 4. The results measured by CI. In the second column, the best partitions are determined by CI from 40,000 partitions generated by Ncut with
different parameters. The remaining nine columns are the values of CI of the best partitions πOP selected by corresponding CVIs. The numbers in bold
font means the best in all of the CVIs for a dataset.

classification accuracy [68] in current clustering research,
such as [72], [73], [74].

Let ci and c∗i denote the clustering label and the ground
truth of xi respectively, then we have

Purity(π, π∗) =

∑
i1(ci,map(c∗i ))

N
(15)

where 1(ci, c∗i ) = 1 if ci = c∗i , and 1(ci, c∗i ) = 0 otherwise,
and map(c∗i ) is the best mapping function that permutes clus-
tering labels to match the ground truth labels [71]. Intuitively,
Purity ∈ (0, 1]. Normally, larger Purity(πOP, π∗) values
indicate better quality of the selected partition.

Using the above mapping function, the CI [69] is general-
ized for arbitrary-shaped data [75], then we have

orphan(C∗j ) = 1(π,map(C∗j )) (16)

where 1(π,map(C∗j )) = 1 if no cluster in π is matched C∗j ,
and 1(π,map(C∗j )) = 0 otherwise, and

CI1(π, π∗) =
∑
j

orphan(C∗j ) (17)

CI (π, π∗) = max{CI1(π, π∗),CI1(π∗, π)} (18)

Intuitively, CI ∈ [0,K ). Normally, smaller CI (π, π∗) values
indicate better quality of the selected partition.

C. COMPARE THE QUALITY OF OPTIMAL PARTITION
Since Ncut [7] works on the similarity matrix W of X and
can analyse datasets with complex structures, we use Ncut
with variedW to produce different partitions5. The form of
element w in W is defined by exponential function as:

wij = e−|filterij| (19)

where filterij = [d(xi, xj)]order/(s · maxi,j{d(xi, xj)}), order
and s are constant numbers. We set s to [0.0005 : 1] with step
0.0005 and order to [1 : 20]. Then we have a set of partitions
5 = {π1, π2, . . . , πM }, where M = 40, 000.

To determine the optimal partition, we fix the number of
clusters at the correct K . The M partitions6 of non-spherical
clusters and classification datasets are tested and the results
are shown in Tables 4 and 5.

In Table 4, from the second column, one can see that
16 ground truth partitions in cluster-level (CI=0) are discov-
ered by Ncut with M groups of parameters, except Glass,
Movement, Vertebral and Yeast. The performance of CVDD
is shown in the third column, from which one can see that
19 partitions out of 20 are the best compared with the other
CVIs, and CVDD ranks the first out of the methods tested.
Dunn ranks the second, as it can find 14 best partitions. The
third-ranking CVI is I, since using it the 12 best partitions

6In the experiments, we discard some extreme partitions fromM partitions
with Ncut’s mode isolation (Breiman’s bias [76]), namely, partitions possess
clusters that are composed of few objects.
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TABLE 5. The results measured by Purity. In the second column, the best partitions are determined by purity from 40,000 partitions generated by Ncut
with different parameters. The remaining 9 columns are the values of Purity of the best partitions πOP selected by corresponding CVIs. The numbers in
bold font means the best in all of the CVIs for a dataset.

are found. In addition, the CI of CVDD’s πOP on Glass is not
much worse than the best CI = 2.
In Table 5, from the second column, one can see that

six ground truth partitions (the same to the GT’s labels) in
point-level (Purity = 1) are discovered by Ncut with M
groups of parameters, and all partitions with high quality
are discovered in non-spherical clusters. The performance of
CVDD is shown in the third column, from which one can see
that 19 partitions out of 20 are the best compared with the
other CVIs, and the method ranks first among the methods
tested. Dunn ranks the second, as it did not find one best
partition in classification but could find the six best parti-
tions that are well-separated in distance. Therefore, no CVIs
except CVDD can cope with outliers and density-separated in
complex structures. For example, in pathbased datasts, only
CVDD could cluster the three structures shown in Fig. 10.
In addition, the Purity of CVDD’s πOP on Glass is not much
worse than the best Purity = 0.57.

To sum up, CVDD has attractive performance when it is
used to determine the optimal partition from complex candi-
dates generated with fixed K .

D. DETERMINING THE OPTIMAL CLUSTER NUMBER
The other function of an internal validity index is to determine
the optimal K . This is a tough task in clustering community,
as we usually do not have any a priori knowledge about
the dataset and several factors may affect the determina-

FIGURE 10. CVIs’ πOP on pathbased datasets.

tion of the number, such as internal validity index, cluster-
ing algorithm and parameter estimations. There is no guar-
antee that the clustering algorithms in optimal K provide
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TABLE 6. The optimal K of πOP determined from partitions generated by RS, where partitions with correct K are replaced by the ground truths.

meaningful results unless we follow the Algorithm Correct-
ness Assumption [77].7

In this section, we evaluate the performance of CVDD
on determining the optimal K . Normally, one can generate
partitions with different K , and measure the quality of these
partitions with an internal validity index. The best partition
is then selected, and the K of this partition can be viewed
as the optimal K . To generate different partitions only by
changing K , we do not employ Ncut. Because the inputs W
and K of Ncut, both can change a partition while we focus
on the affection of different K on partitions. Meanwhile, it is
not applicable to tune the correctK in Ncut if we have no idea
of selectedW . Furthermore, clustering algorithms optimizing
sum-of-squared criterion are usually used to generate natu-
ral clusters. Therefore, we employ Random Swap (RS) [78]
which is shown to find better clustering results thanK -means.
The different numbers of clusters are varied from 2 to b

√
Nc,

according to the commonly used rule [79].
The RS8 consists of K -means while the quality of the

result depends on the initialization [47], so we run K -means
20 times in each iteration of RS and set the iteration to
1000 for converge. From the varied partitions with differ-
ent K s, one can select πOP and take the K of πOP as
optimal K .

7The main idea is that the clustering algorithm works well on a set of K s,
and the partition with correct K is the one that best fits the dataset. In other
words, only if the optimal partition is in the candidates, does the evaluation
makes sense.

8The source code of Random Swap (RS) algorithm is available at
http://www.uef.fi/web/machine-learning/software

For non-spherical clusters and classification datasets,
RS does not perform well in correct K . Thus, to follow
the Algorithm Correctness Assumption, we put the ground
truths of the twenty datasets into the candidate partitions,
and replace those partitions with correct K . The experimental
results are shown in Table 6. From the table, one can observe
that CVIs find the correct K on 16 datasets except Wine,
Glass, Movement and Yeast while CVDD detects the cor-
rect K on 13 datasets out of 16 except Vertebral, Leukemia
and Seeds. In addition, CVDD finds all correct K in non-
spherical clusters while the second-best, Dunn, finds six of
them and none of the classification datasets.

For spherical clusters datasets, RS performs very well in
correct K [78]. Thus, the selected partitions generalized by
RS in correct K makes sense. The experimental results are
shown in Table 7. From the table, one can observe that the
sum-of-squares based indices [38] CH and WB find all the
correct K on 10 datasets. CVDD finds 6 correct K , which
is better than the performance of Dunn, CVNN and S_Dbw.
It is surprising that CVDD has a good performance on both
a1 and a2 datasets [47]. Furthermore, CVDD is degraded on
the unbalanced datasets and high overlap datasets (s2, s3,
s4 datasets) [47]. In addition, as the overlap of a1, a2 is
20%, the overlap of s1 is 9%, CVDD may be able to cope
with less-overlapped datasets but possibly be discard on
higher- overlapped datasets (the overlap of s2, s3, s4 is 22%,
41%, 44%.)

From the above two situations, one can see CVDD
outperforms the compared CVIs excepting overlap and
unbalance towards determination of the number of
clusters.
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TABLE 7. The optimal K of πOP determined from partitions generated by RS.

FIGURE 11. CVDD selects optimal partitions with different k on
non-spherical datasets. Horizontal axis represents the k value and
vertical axis represents the corresponding Purity of selected partitions.

FIGURE 12. CVDD selects optimal partitions with different k on
classification datasets. Horizontal axis represents the k value and vertical
axis represents the corresponding Purity of selected partitions.

E. DISCUSSION OF PARAMETERS
IN DENSITY ESTIMATION
In proposed CVDD index, one parameter is used: the number
of nearest neighbors k . This is similar to the CVNN index.

As this parameter may affect the performance of CVDD,
we experimentally discuss it as follows.

We test CVDD with different ks on the twenty non-
spherical clusters and classification datasets. Thus, k is
set from 2 to 16, and the performances of selecting the
optimal partition on synthetic and real datasets are shown
in Figs. 11 and 12, respectively. One can see the performances
of CVDD is not sensitive to this parameter except in the
datasets Iris and Yeast, where Iris has a large difference
between k = 2 and the others and Yeast has a small difference
between k = 5 and k = 6 and the others. In all the
experiments above, we set k to 7.

VI. CONCLUSION
There does not exist a unified clustering validity index that
can cope with varied partitions. The classical and some newly
developed ones still cannot cope with complex structures,
because they mainly ignore the important information of
density connectivity. The newly refined density-involved dis-
tance is effectively capture this. The experimental results
indicate CVDD has a significance performance on arbitrary
clusters. As our index is designed for less-overlapped datasets
at the beginning, we will generalize it into higher-overlapped
datasets in future work. Furthermore, wewill find a better tool
to enhance the computational efficiency of density estimation
and compactness weights.
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