
Received December 20, 2018, accepted February 19, 2019, date of publication March 22, 2019, date of current version April 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2906782

Fast Methods for Eikonal Equations:
An Experimental Survey
J. V. GÓMEZ, D. ÁLVAREZ , S. GARRIDO, (Member, IEEE), AND L. MORENO, (Member, IEEE)
Robotics Laboratory, University Carlos III of Madrid, 28911 Madrid, Spain

Corresponding author: D. Álvarez (dasanche@ing.uc3m.es)

This work is funded by the projects: ‘‘RoboCity2030-DIH-CMMadrid Robotics Digital Innovation Hub (Robtica aplicada a la mejora de la
calidad de vida de los ciudadanos. Fase IV; S2018/NMT-4331), funded by Programas de Actividades I+D en la Comunidad de Madrid and
cofunded by Structural Funds of the EU,’’ and ‘‘Investigación para la mejora competitiva del ciclo de perforación y voladura en minerıaı y
obras subterráneas, mediante la concepción de nuevas técnicas de ingenierıaı , explosivos, prototipos y herramientas avanzadas (TUÑEL).’’

ABSTRACT Fast methods are very popular algorithms to compute time-of-arrival maps (distance maps
measured in time units) solving the Eikonal equation. Since fast marching was proposed in 1995, it has been
applied to many different applications, such as robotics, medical computer vision, fluid simulation, and so
on. From then on, many alternatives to the original method have been proposed with two main objectives:
reducing its computational time and improving its accuracy. In this paper, we collect themain single-threaded
approaches, which improve the computational time of the standard fast marching method and study them
within a common mathematical framework. Then, they are evaluated using isotropic environments, which
are representative of their possible applications. The studied methods are the fast marching method with the
binary heap, the fast marching method with Fibonacci heap, the simplified fast marching method, the untidy
fast marching method, the fast iterative method, the group marching method, the fast sweeping method,
the locking sweeping method, and the double dynamic queue method.

INDEX TERMS Eikonal equation, fast methods, fast marching method, fast sweeping method.

I. INTRODUCTION
The Fast Marching Method (FMM) has been extensively
applied since it was first proposed in 1995 [1] as a solution to
isotropic control problems using first-order semi-Langragian
discretizations on Cartesian grids. The first approach was
introduced by Tsitsiklis [1], but the most popular solution
was given a few months later by Sethian [2] using first-
order upwind finite differences in the context of isotropic
front propagation. The differences and similarities between
both works can be found in [3]. The Fast Sweeping Method
(FSM) is a more modern iterative algorithm which uses
Gauss-Seidel iterations with alternating sweeping ordering
to also solve a discretized Eikonal equation on a rectangular
grid [4]. As long as the same first-order upwind discretization
is used in both methods, the computed solution with the Fast
Sweeping Method is exactly the same as the one given by the
Fast Marching Method.

These two different methods, commonly named as Fast
Methods [5], [6], were originally suggested to simulate a
wavefront propagation through a regular discretization of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

space. However, many different approaches have been pro-
posed, extending these methods to other discretizations and
formulations. For a more detailed history of Fast Methods,
we refer the interested readers to [7].

One of the reasons for the popularity of the Fast Methods
is that they can be applied in many different fields, such
us: path planning in robotics [8]–[12]; image segmenta-
tion [13]–[15], shape and surface recognition and segmenta-
tion [16], [17], volumetric data representation [18] or
quantification of lesions in contrast-enhanced tomogra-
phy [19] in computer vision; traveltime computation in
geophysical applications such as tomography [20]–[22] or
seismology [23], [24]. Despite the vast amount of literature
on Fast Methods, there is a lack of in-depth comparison and
benchmarking among the proposed methods.

In this paper, nine sequential (mono-thread), isotropic,
grid-based Fast Methods are detailed in the follow-
ing sections: Fast Marching Method (FMM), Fibonacci-
Heap FMM (FMMFib), Simplified FMM (SFMM), Untidy
FMM (UFMM), Group Marching Method (GMM), Fast
Iterative Method (FIM), Fast Sweeping Method (FSM),
Locking Sweeping Method (LSM) and Double Dynamic
Queue Method (DDQM). All these algorithms provide

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

39005

https://orcid.org/0000-0001-7695-6197

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 1. Comparisons among algorithms. Colors refer to different
works: orange [27], gray [5], yellow [28], green [26], black [29],
and blue [25].

exactly the same solution except for UFMM and FIM, which
have bounded errors. However, the question of which one is
the best for which applications is still open because of the
lack of comparison. For example, [5] compares only FMM
and FSM in spite of the fact that GMM and UFMM had
already been published. Survey [25] mentions most of the
algorithms but only compares FMM and SFMM. A more
recent work compares FMM, FSM and FIM in 2D [26].
However, FIM was parallelized and implemented in CUDA
providing a biased comparison. Fig. 1 schematically shows
the comparisons between algorithms carried out in the litera-
ture. As an example, UFMM has barely been compared to its
counterparts whereas FMM and FSM are compared in many
papers despite the fact that it is well knownwhen each of them
performs better: FSM is faster in simple environments with
constant speed. In addition, results from one work cannot be
directly extrapolated to other works since the performance of
these methods highly depends on their implementation.
Statement of Contributions: Three main contributions are

included in this paper: 1) Based on previous publications,
a common formulation and notation are given for all the
algorithms, presented in Section II. This way, it is possible
to easily understand their working principles and mathemat-
ical formulation. 2) A survey of the research on designing
n-dimensional sequential Fast Methods is explained along
Sections III, IV and V. 3) Extensive and systematic compar-
ison of the mentioned methods is carried out and explained
in Section VI, followed by a discussion in Section VII. The
experiments are designed to take into account their possible
applications and the results previously reported.

OTHER ALGORITHMS NOT INCLUDED IN THE SURVEY
There are some variations of these approaches which focus on
improving some of the characteristics of the solution given
by the fast methods. For example, in order to enhance the
computation time, parallel approaches have been proposed of
both the FastMarching [30] and Fast Sweeping [31] methods.
In [32] the Heat Method, used for computing the geodesic
distances in near-linear time, was introduced. Although it
outperforms the presented methods in terms of computation
time, it only works with constant speed functions, so it
does not solve the problems analyzed in the experimental

section. Additionally, it is obvious that the accuracy of the
computed solution for these methods depends on the chosen
grid size, however, higher order approaches [33], [34] are
able to improve the accuracy using the same grid at the
cost of more computation time. For applications in which a
high accuracy solution of the Eikonal equation at the source
point is needed, the factored Eikonal equation leads to much
more accurate solutions by analytically handling the source
singularity [35], [36].

Different two-scale methods are proposed in [7]: Fast
Marching-Sweeping Method (FMSM), Heap Cell Method
(HCM), and Fast Heap Cell Method (FHCM). They combine
the FMM and FSM in order obtain the best features of both
algorithms, dividing the grid into two different levels and
performingmarching on a coarser scale and then sweeping on
a finer scale. However, these methods have not been included
in this analysis for different reasons: 1) the performance of
HCM and FHCM depends on the discretization of the coarse
grid, where the optimal parameter depends on the speed
profile. Furthermore, FHCM includes additional error. 2) the
FMSM error is not mathematically bounded. Thus, the com-
parison with other Fast Methods becomes more complex.
3) they suppose that the speed is almost constant on domains
of arbitrary size [7], although this is not a restriction for the
actual speed function, it is a strong assumption for some of
the designed experiments.

Additionally, the single-pass methods suggested in [37]
have not been included in this survey because, as the authors
conclude, it is not always possible to know in advance which
method, among those presented, should be used. This is
an important drawback for practical applications such as
robotics.

II. PROBLEM FORMULATION
Fast Methods are designed to solve nonlinear boundary value
problems.1 That is, given a domain� and a functionF : �→
R+ which represents the local speed of the motion, drive a
system from a starting set Xs ⊂ � to a goal set Xg ⊂ δ�

through the fastest possible path. The Eikonal equation com-
putes the minimum time-of-arrival function T (x) as follows:

|∇T (x)|F(x) = 1, � ⊂ RN

T (x) = 0, x in Xs (1)

Once solved, T (x) represents a distances (time-of-arrival)
field containing the time it takes to go from any point x to the
closest point in Xs following the speed on F(x).
We assume, without loss of generality, that the domain is a

unit hypercube of N dimensions:� = [0, 1]N . The domain is
represented with a rectangular Cartesian grid X ⊂ RN , con-
taining the discretizations of the functions F(x) and T (x), F
and T respectively. We refer to grid points xij = (xi, yi), xij ∈
X as the point x = (x, y) in the space corresponding to
a cell (i, j) of the grid (for the 2D case). For simplicity of

1This problem formulation closely follows [38]

39006 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

notation, we will denote Tij = T (xij) ≈ T (x),Tij ∈ T , that
is, Tij represents an approximation to the real value of the
function T (x). Analogously, Fij = F(xij) ≈ F(x),Fij ∈ F .
We also denote the set of vonNeumann (4-connectivity in 2D)
neighbors of grid point xij byN (xij). For a general grid of N
dimensions, we will refer to cells by their index (or key) i
as xi, since a flat representation is more efficient for such a
data structure.

A. N-DIMENSIONAL DISCRETE EIKONAL EQUATION
In this section the most common first-order discretization
of the Eikonal equation is detailed. It is first derived in 2D
for better understanding and then an n-dimensional approach
is explained. The most common first-order discretization is
given in [39], which uses an upwind-difference scheme to
approximate partial derivatives of T (x) (D±xij represents the
one-sided partial difference operator in direction ±x):

Tx(x) ≈ D±xij T =
Ti±1,j − Tij
±1x

Ty(x) ≈ D±yij T =
Ti,j±1 − Tij
±1y

(2){
max(D−xij T , 0)

2
+min(D+xij T , 0)

2
+

max(D−yij T , 0)
2
+min(D+yij T , 0)

2

}
=

1

F2
ij

(3)

A simpler but less accurate solution to (3) is proposed in [40]:{
max(D−xij T ,−D

+x
ij T , 0)

2
+

max(D−yij T ,−D
+y
ij T , 0)

2

}
=

1

F2
ij

(4)

and1x and1y are the grid spacing in the x and y directions.
Substituting (3) in (4) and letting

T = Ti,j
Tx = min(Ti−1,j,Ti+1,j)
Ty = min(Ti,j−1,Ti,j+1) (5)

we can rewrite the Eikonal Equation, for a discrete 2D space
as:

max
(
T − Tx
1x

, 0
)2

+max
(
T − Ty
1y

, 0
)2

=
1

F2
ij

(6)

Since we are assuming that the speed of the front is positive
(F > 0), T must be greater than Tx and Ty whenever the
front wave has not already passed over the coordinates (i, j).
Therefore, (6) can be simplified as:(

T − Tx
1x

)2

+

(
T − Ty
1y

)2

=
1

F2
ij

(7)

Equation (7) is a regular quadratic equation of the form
aT 2
+ bT + c = 0, where:

a = 12
x +1

2
y

b = −2(12
yTx +1

2
xTy)

c = 12
yT

2
x +1

2
xT

2
y −

12
x1

2
y

F2
ij

(8)

In order to simplify the notation for the n-dimensional
case, we assume that the grid is composed of hypercubic
cells, that is, 1x = 1y = 1z = · · · = h. Let us denote
Td as the generalization of Tx or Ty for dimension d , up to
N dimensions. We also denote by F the propagation speed
for the point with coordinates (i, j, k, . . .). Operating and sim-
plifying terms, the discretization of the Eikonal is a quadratic
equation with parameters:

a = N

b = −2
N∑
d=1

Td

c = (
N∑
d=1

T 2
d)−

h2

F2 (9)

B. SOLVING THE N-D DISCRETE EIKONAL EQUATION
A solution to equation (7) is not straightforward, since there
may be more unknowns than equations if the dimension is
greater than 1. However, the entropy condition formulated
in [41] for moving fronts yields a unique viscosity solution
of the equation (7), which forces the wavefront to follow
causality [40]. In other words, in order to reach a point with
a higher time of arrival, it should have first traveled through
neighbors of such a point with smaller values. The opposite
would imply a jump in time continuity and the solutions
would be erroneous.

The proposed Eikonal solution (9) does not guarantee the
causality of the resulting map, since F and h can have arbi-
trary values. Therefore, before accepting a solution as valid its
causality has to be checked. For instance, in 2D, the Eikonal
is solved as:

T =
Tx + Ty

2
+

1
2

√
2h2

F2 −
(
Tx − Ty

)2 (10)

called the two-sided update, as both parents Tx and Ty are
taken into account. The solution is only accepted if T ≥
max

(
Tx,Ty

)
. The upwind condition [7] shows that:

T ≥ max
(
Tx,Ty

)
⇐⇒ |Tx − Ty| ≤

h
F

(11)

If this condition fails, the one-sided update is applied instead:

T = min
(
Tx,Ty

)
+

h
F

(12)

This is a top-down approach, in which the parents are iter-
atively discarded until a causal solution is found. However,
generalizing (11) is complex, hence, we choose to use a
bottom-up approach: (12) is solved and parents are iteratively
included until the time of the next parent is higher than
the current solution: Tk > T . This procedure is detailed
in Algorithms 1 and 2. The MINTDIM() function returns the
minimum time of the neighbors in a given dimension (left
and right for dim = 1, bottom and top for dim = 2, etc.).
This approach has been found to be more robust when used
in three or more dimensions with a negligible impact on the
computational performance.

VOLUME 7, 2019 39007

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

The next sections introduce the different algorithms, com-
pared in this survey, used to solve the Eikonal equation.

Algorithm 1 Solve Eikonal Equation
1: procedure SolveEikonal(xi, T ,F)
2: a← N
3: for dim = 1 : N do
4: minT ←MINTDIMdim
5: if minT 6= ∞ and minT < Ti then
6: Tvalues.push(minT)
7: else
8: a← a− 1
9: end if

10: end for
11: if a = 0 then F FSM can cause this situation.
12: return∞
13: end if
14: Tvalues← SORTTvalues
15: for dim = 1 : a do
16: T̃i← SOLVENDIMS xi, dim,Tvalues,F
17: if dim = a or T̃i < Tvalues,dim+1 then
18: break
19: end if
20: end for
21: return T̃i
22: end procedure

Algorithm 2 Solve Eikonal for N Dimensions
1: procedure SolveNDims(xi, dim,Tvalues,F)
2: if dim = 1 then
3: return Tvalues,1 + h

Fi
4: end if

5: sumT ←
dim∑
i=1

Tvalues,i

6: sumT 2
←

dim∑
i=1

T 2
values,i

7: a← dim
8: b←−2sumT
9: c← sumT 2

−
h2
Fi

10: q← b2 − 4ac
11: if q < 0 then F Noncausal solution
12: return∞
13: else
14: return −b+sqrt(q)2a
15: end if
16: end procedure

III. FAST MARCHING METHODS
The Fast Marching Method (FMM) [2] is the most common
Eikonal solver. It can be classified as a label-setting, Dijkstra-
like algorithm [42]. It uses a first-order upwind finite dif-
ference scheme, which is described in detail in Section II,
to simulate an isotropic front propagation computing the

solution following Bellman’s optimality principle [43]:

Ti = min
xi∈N (xi)

(cij + Tj) (13)

In other words, a node xi is connected to the parent xj in
its neighborhoodN (xi) which minimizes (or maximizes) the
value of the function (in this caseTi) composed by the value of
Tj plus the addition of the cost of traveling from xj to xi, repre-
sented as cij. This discretization takes into account the spatial
representation (i.e., a rectangular grid in two dimensions) and
the values of all the causal upwind neighbors. This is the
main difference with Dijsktra’s algorithm, since Dijkstra is
designed to work on graphs, assuming discrete traveling, and
the value of a node xi only depends on one parent xj.
The algorithm labels the cells in three different sets:

1) Frozen: those cells whose value has already been
computed and will not change during new iterations,
2) Unknown: cells with no value assigned, to be evaluated,
and 3) Narrow band (or just Narrow): the frontier between
Frozen and Unknown containing those cells with a value
assigned that may still improve. These sets are mutually
exclusive, that is, a cell cannot belong to more than one of
them at the same time. The implementation of the Narrow
set is a critical aspect of FMM, so a more detailed discussion
will be carried out in Section III-A.
The procedure to compute FMM is detailed in Algorithm 3.

Initially, all points2 in the grid belong to the Unknown set
and have an infinite arrival time. The initial points (wave
sources) are assigned a value of 0 and inserted in Frozen
(lines 2-7). Then, the main FMM loop starts by choosing
the element with minimum arrival time from Narrow (line
10) and all its non-Frozen neighbors are evaluated: for
each of them the Eikonal is solved and the new arrival time
value is kept if it improves the existing one. In case the
evaluated cell is in Unknown, it is transferred to Narrow
(lines 11-18). Finally, the previously chosen point from
Narrow is transferred to Frozen (lines 21 and 22) and a
new iteration starts until the Narrow set is empty. The arrival
times map T is returned as the result of the procedure.

A. BINARY AND FIBONACCI HEAPS
FMM requires the implementation of the Narrow set to have
four different operations: 1) Push: to insert a new element to
the set, 2) Increase: to reorder an element, already existing in
the set, whose value has been improved, 3) Top: to retrieve the
element with minimum value, and 4) Pop: to remove
the element with minimum value. As stated before, this is
the most critical aspect of the implementation of FMM. The
most efficient way to implement Narrow is by using a min-
heap data structure. A heap is an ordered tree in which every
parent is ordered with respect to its children. In a min-heap,
the minimum value is at the root of the tree and the children
have higher values. This is satisfied for any parent node of the
tree.

2From now on, we will indistinctly use point, cell or node to refer to each
element of the grid.

39008 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

Algorithm 3 Fast Marching Method
1: procedure FMM(X , T ,F ,Xs)

Initialization:
2: Unknown← X ,Narrow← ∅,Frozen← ∅
3: Ti←∞ ∀xi ∈ X
4: for xi ∈ Xs do
5: Ti← 0
6: Unknown← Unknown\{xi}
7: Narrow← Narrow ∪ {xi}
8: end for

Propagation:
9: while Narrow 6= ∅ do

10: xmin← argminxi∈Narrow {Ti} F Narrow top
operation.

11: for xi ∈ (N (xmin) ∩ X \Frozen) do F For all
neighbors not in Frozen.

12: T̃i← SOLVEEIKONAL xi, T ,F
13: if T̃i < Ti then
14: Ti← T̃i F Narrow increase operation if

xi ∈ Narrow.
15: end if
16: if xi ∈ Unknown then F Narrow push

operation.
17: Narrow← Narrow ∪ {xi}
18: Unknown← Unknown\{xi}
19: end if
20: end for
21: Narrow← Narrow\{xmin} F Narrow pop

operation: add to Frozen.
22: Frozen← Frozen ∪ {xmin}

23: end while
24: return T
25: end procedure

TABLE 1. Summary of amortized time complexities for common heaps
used in FMM (n is the number of elements in the heap).

Among all the existing heaps, FMM is usually imple-
mented with a binary heap [44]. However, the Fibonacci
Heap [45] has a better amortized time for Increase and Push
operations, but it has additional computational overhead with
respect to other heaps. For relatively small grids, where the
narrow band is composed of few elements and the perfor-
mance is still far from its asymptotic behavior, the binary heap
performs better. Table 1 summarizes the time complexities for
these heaps.3 Note that n is the number of cells in the map,
as the worst case is to have all the cells in the heap.

Each cell is pushed and popped at most once in the
heap. For each loop, the top of Narrow is accessed (O(1)),

3http://bigocheatsheet.com/

the Eikonal is solved for at most 2N neighbors (O(1) for a
given N), these cells are pushed or increased (O(log n) in
the worst case), and finally the top cell is popped (O(log n)).
Therefore each loop is at most O(log n). Since this loop
is executed at most n times, the total FMM complexity
is O(n log n), where n represents the total number of cells
of the grid, which is the worst case scenario. Furthermore,
as pointed out in [7], the method has a bad cache locality,
since adjacent cells on the FMM heap have no spatial rela-
tionship and this problem becomes worse as the number of
dimensions increases.

B. SIMPLIFIED FAST MARCHING METHOD
The Simplified Fast Marching Method (SFMM) [25] is a
relatively unknown variation of the standard FMM which in
some cases has an impressive performance. SFMM, detailed
in Algorithm 4, is a reduced version of FMMwhere Narrow,
implemented as a simple priority queue which can contain
different instances of the same cell with different values.
Additionally, it can happen that the same cell belongs to
Narrow and Frozen at the same time. The simplification
occurs since no Increase operation is required. Every time a
cell has an updated value, it is pushed to the queue. Once it is
popped and inserted in Frozen, the remaining instances in
the queue are simply ignored.

The advantage of this method is that all the increase
operations are replaced by push operations. Although both
have the same computational complexity, the constant for
push is much lower (an increase requires removal and Push
operations). Note that the overall computational complexity
is maintained, O(n log n).

C. UNTIDY FAST MARCHING METHOD
The Untidy Fast Marching Method (UFMM) [29], [46] fol-
lows exactly the same procedure as FMM. However, a special
heap structure, which reduces the computational complexity
of the method to O(n), is used: the untidy priority queue.
This untidy priority queue is closer to a look-up table than

to a tree. It assumes that the values of F are bounded, hence
the values of T are also bounded. The untidy queue, depicted
in Fig. 2, is a circular array which divides the maximum
range of T into a set of k consecutive buckets. Each bucket
contains an unordered list of cells with similar values of Ti.
The low and high threshold values of each bucket evolve with
the iterations of the algorithm, trying to maintain a uniform
distribution of the elements in Narrow among the buckets.

Since the index of the corresponding bucket can be ana-
lytically computed, Push is O(1), as well as Top and Pop.
Besides, as the number of buckets is smaller than the number
of cells, the Increase operation is, in average, O(1). There-
fore, the total complexity of UFMM is O(n). However, since
elements within a bucket are not sorted (a FIFO strategy is
applied in each bucket), errors are introduced into the final
result. Nevertheless, it has been shown that the accumulated
additional error is bounded byO(h), with h being the cell size,
which is the same order of magnitude as in the original FMM.

VOLUME 7, 2019 39009

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

Algorithm 4 Simplified Fast Marching Method
1: procedure SFMM(X , T ,F ,Xs)

Initialization as FMM (in Algorithm 3)

Propagation:
2: while Narrow 6= ∅ do
3: xmin← argminxi∈Narrow {Ti} F Narrow top

operation.
4: if xmin ∈ Frozen then
5: Narrow← Narrow\{xmin}

6: else
7: for xi ∈ (N (xmin) ∩ X \Frozen) do F All

neighbors not in Frozen.
8: T̃i← SOLVEEIKONAL xi, T ,F
9: if T̃i < Ti then F Update arrival time.

10: Ti← T̃i
11: Narrow← Narrow ∪ {xi} F

Narrow push operation.
12: end if
13: if xi ∈ Unknown then
14: Unknown← Unknown\{xi}
15: end if
16: end for
17: Narrow← Narrow\{xmin} F Narrow

pop operation.
18: Frozen← Frozen ∪ {xmin}

19: end if
20: end while
21: return T
22: end procedure

FIGURE 2. Untidy priority queue representation. Top: first iteration,
the four neighbors of the initial point are pushed. Middle: the first bucket
becomes empty, so the circular array advances one position. Cell c2 is first
evaluated because it was the first pushed into the bucket. Bottom: after a
few iterations, an entire loop on the queue is about to be completed.

IV. FAST SWEEPING METHODS
The Fast Sweeping Method (FSM) [4], [47] is an iterative
algorithm which computes the time-of-arrival map by suc-
cessively sweeping (traversing) the whole grid following a
specific order. FSM performs Gauss-Seidel iterations in alter-
nating directions. These directions are chosen so that all the
possible characteristic curves of the solution to the Eikonal
are divided into the possible quadrants (or octants in 3D) of
the environment. For instance, a bi-dimensional grid has four

FIGURE 3. FSM sweep directions in 2D represented with arrows. The
darkest cell is the initial point and the shaded cells are those analyzed by
the current sweep (time improved or maintained).

possible Gauss-Seidel iterations (the combinations of travers-
ing x and y dimensions forwards and backwards): North-East,
North-West, South-East and South-West, as shown in Fig. 3.

The FSM is a simple algorithm: it performs sweeps until
no value is improved. In each sweep, the Eikonal equation is
solved for every cell. However, to generalize this algorithm to
N dimensions is complex and, up to our knowledge, there are
only 2D and 3D solutions. In this survey we introduce a novel
n-dimensional version, which is detailed in Algorithm 5.
We will denote the sweeping directions as a binary array
SweepDirs with elements 1 or −1, with 1 (−1) meaning
forwards (backwards) traversal in that dimension. This array
is initialized to 1 (North-East in the 2D case or North-East-
Top in 3D) and the grid is initialized as in FMM (lines 2-5).
The main loop updates SweepDirs and then a sweep is
performed in the new direction (lines 9-10).

The GETSWEEPDIRS() procedure (see Algorithm 6) is in
charge of generating the appropriate Gauss-Seidel iteration
directions. If a 3D SweepDirs = [1, 1, 1] vector is given,
the following sequence will be generated:

1 : [−1,−1,−1] 5 : [−1,−1, 1]

2 : [1,−1,−1] 6 : [1,−1, 1]

3 : [−1, 1,−1] 7 : [−1, 1, 1]

4.[1, 1,−1] 8 : [1, 1, 1] (14)

Note that the literature describes at least three different
sequences for the sweep pattern and shows that the opti-
mal sequence depends on the environment [24], [47]. The
sequence used in this work has been chosen to be calculated
efficiently in an n-dimensional version. Besides, it is equally
valid as the same directions are visited when the sweeps are
done.

Finally, the SWEEP() procedure (see Algorithm 7) recur-
sively generates the Gauss-Seidel iterations following the
traversal directions specified by the corresponding value of
SweepDirs (line 4). Each recursive level traverses the
whole corresponding dimension. Note that the extent of
dimension n is denoted by Xn. Once the most inner loop
is reached, the corresponding cell is evaluated and its value
updated if necessary (lines 8-12).

The FSM carries out as many grid traversals as necessary
until the value Ti for every cell has converged. Since no order-
ing is of the data is used, the evaluation of each cell is O(1).
As there are n cells and t traversals, the total computational
complexity of FSM is O(nt).

39010 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

Algorithm 5 Fast Sweeping Method
1: procedure FSM(X , T ,F ,Xs)

Initialization.
2: SweepDirs← [1, . . . , 1] F Initialize sweeping

directions.
3: Ti←∞ ∀xi ∈ X
4: for xi ∈ Xs do
5: Ti← 0
6: end for

Propagation:
7: stop← False
8: while stop 6= True do
9: SweepDirs← GETSWEEPDIRS X ,SweepDirs
10: stop← SWEEP X , T ,F ,SweepDirs,N
11: end while
12: return T
13: end procedure

Algorithm 6 Sweep Directions Algorithm
1: procedure getSweepDirs(X ,SweepDirs)
2: for i = 1 : N do
3: SweepDirsi← SweepDirsi + 2
4: if SweepDirsi ≤ 1 then
5: break F Finish For loop.
6: else
7: SweepDirsi←−1
8: end if
9: end for

10: return SweepDirs
11: end procedure

However, the complexity constants depend greatly on the
speed function F(x). For instance, in the case of an 2D empty
map with constant speed of propagation, four sweeps are
enough to cover the entire map, therefore the complexity is
O(4n), which is theminimum possible constant (assuming the
start point is not in a corner of the map). On the other hand,
the more complex the speed function or the environment are,
the more sweeps the algorithm will need to converge to the
final solution, increasing the complexity of the method.

Note that, as long as the same first-order upwind discretiza-
tion is used, the T returned by FSM is exactly the same as all
the FMM-like algorithms (except UFMM).

A. LOCKING SWEEPING METHODS
The Locking Sweeping Method (LSM) [27] is a natural
improvement over FSM. The FSM might spend time recom-
puting Ti of a cell even if none of its neighbors has changed
their value since the last sweep, which means that the com-
puted value Ti will be the same as in the last sweep. In order
to avoid this, LSM labels each cell as locked or unlocked,
and only the ones with the latter label are evaluated in each
sweep.

Algorithm 7 Recursive Sweeping Algorithm
1: procedure Sweep(X , T ,F ,SweepDirs, n)
2: stop← True
3: if n > 1 then
4: for i ∈ Xn following SweepDirsn do
5: stop ← SWEEP

X , T ,F ,SweepDirs, n− 1
6: end for
7: else
8: for i ∈ X1 following SweepDirs1 do
9: T̃i← SOLVEEIKONAL xi, T ,F F xi is the

corresponding cell.
10: if T̃i < Ti then
11: Ti← T̃i
12: stop← False
13: end if
14: end for
15: end if
16: return stop
17: end procedure

The LSM procedure is detailed in Algorithm 8. During the
initialization, all the cells are labeled as Frozen (the mean-
ing of locked and Frozen is the same). Then, the starting
cells Xs are assigned a 0 value and all their neighbors are
labeled as Narrow (the meaning of unlocked and Narrow is
the same). Then, the wave propagation is computed perform-
ing asmany grid traversals as necessary until no cell improves
its time-of-arrival value. As in FSM, the GETSWEEPDIRS() proce-
dure is in charge of generating the appropriate Gauss-Seidel
iteration directions.

For every iteration, the recursive locking sweeping algo-
rithm, detailed in Algorithm 9, is performed. Essentially, it is
the same procedure as in FSM. However, there are two main
differences: 1) the Eikonal equation is computed only for
those cells labeled as Narrow, otherwise they are skipped
(see line 9), and 2) after every evaluation, if the time-of-arrival
value (Ti) of cell xi is improved, all neighbors of cell xi which
have a higher value than Ti are labeled asNarrow so that they
are evaluated in the next iteration (lines 14-19).

Note that the asymptotic computational complexity of
FSM is kept as O(n) and the number of required sweeps is
also maintained. However in practice, it turns out that most of
the cells are locked during a sweep, therefore, the time saved
during the computation is important.

V. OTHER FAST METHODS
This section includes different algorithms which cannot be
categorized as Fast Marching-like or Fast Sweeping methods.

A. GROUP MARCHING METHOD
The Group Marching Method (GMM) [48] is an FMM-based
Eikonal solver which solves for a group of grid points in
Narrow at once, instead of sorting them in a heap structure.

VOLUME 7, 2019 39011

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

Algorithm 8 Locking Sweeping Method
1: procedure LSM(X , T ,F ,Xs)

Initialization.
2: Frozen← X ,Narrow← ∅
3: Ti←∞ ∀xi ∈ X
4: SweepDirs← [1, . . . , 1] F Initialize sweeping

directions.
5: for xi ∈ Xs do
6: Ti← 0
7: for xj ∈ N (xi) doF Unlock neighbors of starting

cells.
8: Frozen← Frozen\{xj}
9: Narrow← Narrow ∪ {xj}

10: end for
11: end for

Propagation:
12: stop← False
13: while stop 6= True do
14: SweepDirs← GETSWEEPDIRS X ,SweepDirs
15: stop← LOCKSWEEP X , T ,F,SweepDirs,N
16: end while
17: return T
18: end procedure

Consider a front propagating, at a given time, the Narrow
band will be composed by the set of cells belonging to the
wavefront. GMMselects a groupG out ofNarrow composed
by the global minimum and the local minima in Narrow.
Then, every neighboring cell to G is evaluated and added to
Narrow. These points in G have to be chosen carefully so
that causality is not violated, since GMM does not sort the
Narrow set. In order to select those values, GMM follows:

G = {xi ∈ Narrow : Ti ≤ min(TNarrow)+ δτ } (15)

where

δτ =
1

max(F)
(16)

Although in [48], in which the GMM was presented, δτ =
h

max(F)
√
N
was used, we have chosen (16) as detailed in [28],

since the results for the original δτ are much worse than FMM
in most cases, reaching one order of magnitude of difference.
If the time difference between two adjacent cells is larger
than δτ , their values will barely affect each other since the
wavefront propagation direction is more perpendicular than
parallel to the line segment formed by both cells. However,
the downwind points (those to be evaluated in future itera-
tions) can be affected by both adjacent cells. Therefore, points
in G are evaluated twice to avoid instabilities.

GMM is detailed in Algorithm 10. Its initialization is done
in the same way as in FMM. Then, a reverse traversal through
the selected points is performed, computing and updating
their value (lines 20-24). Next, in lines 28-40 a forward traver-
sal is carried out. The operations used are the same as in the

Algorithm 9 Recursive Locking Sweeping Algorithm
1: procedure LockSweep(X , T ,F ,SweepDirs, n)
2: stop← True
3: if n > 1 then
4: for i ∈ Xn following SweepDirsn do
5: stop ← LOCKSWEEP

X , T ,F ,SweepDirs, n− 1
6: end for
7: else
8: for i ∈ X1 following SweepDirs1 do
9: if xi ∈ Narrow then

10: T̃i← SOLVEEIKONAL xi, T ,F F xi is the
corresponding cell.

11: if T̃i < Ti then
12: Ti← T̃i
13: stop← False
14: for xj ∈ N (xi) do
15: if Ti < Tj then F Add improvable

neighbors to Narrow.
16: Frozen← Frozen\{xj}
17: Narrow← Narrow ∪ {xj}
18: end if
19: end for
20: end if
21: Narrow← Narrow\{xi} F Add xi to

Frozen.
22: Frozen← Frozen ∪ {xi}
23: end if
24: end for
25: end if
26: return stop
27: end procedure

reverse traversal but updating the Narrow and Frozen sets
in the same way as it is done in FMM. Then, the main loop
updates the threshold Tm every iteration. The simple design
of the method allows a straightforward implementation of a
generalized n-dimensional solution.
It is important to point out that that GMM returns the

same solution as FMM. In GMM, every node is evaluated
twice before inserting it into Frozen, whereas in FMM it
is done only once. However, GMM does not require any
sorting of the Narrow set, therefore, it is an O(n) iterative
algorithm that converges in only two iterations (traversals).
The value of δτ could bemodified by the user keeping inmind
that a higher δτ would require more iterations to converge.
However, a smaller δτ would require also two traversals, but
the group G will be composed by fewer cells. Therefore,
as the authors of GMMmention, GMM can be interpreted as
an intermediary point between FMM (δτ = 0) and a purely
iterative method [49] (δτ = ∞).

B. DYNAMIC DOUBLE QUEUE METHOD
The Dynamic Double Queue Method (DDQM) [27]
is inspired by LSM but resembles GMM. DDQM is

39012 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

Algorithm 10 Group Marching Method
1: procedure GMM(X , T ,F ,Xs)

Initialization:
2: Unknown← X ,Narrow← ∅,Frozen← ∅
3: Ti←∞ ∀xi ∈ X
4: δτ ←

1
max(F)

5: for xi ∈ Xs do
6: Ti← 0
7: Unknown← Unknown\{xi}
8: Frozen← Frozen ∪ {xi}
9: for xj ∈ N (xi) do F Adding neighbors of

starting points to Narrow.
10: Ti← SOLVEEIKONAL xj, T ,F
11: if Ti < Tm then
12: Tm← Ti
13: end if
14: Unknown← Unknown\{xi}
15: Narrow← Narrow ∪ {xi}
16: end for
17: end for

Propagation:
18: while Narrow 6= ∅ do
19: Tm← Tm + δτ
20: for xi ∈ (Narrow ≤ Tm) REVERSE do F

Reverse traversal.
21: for xj ∈ (N (xi) ∩ X \Frozen) do
22: T̃i← SOLVEEIKONAL xj, T ,F
23: if T̃i < Ti then
24: Ti← T̃i
25: end if
26: end for
27: end for
28: for xi ∈ (Narrow ≤ Tm) FORWARD do F

Forward tranversal.
29: for xj ∈ (N (xi) ∩ X \Frozen) do
30: T̃i← SOLVEEIKONAL xj, T ,F
31: if T̃i < Ti then
32: Ti← T̃i
33: end if
34: if xi ∈ Unknown then
35: Unknown← Unknown\{xi}
36: Narrow← Narrow ∪ {xi}
37: end if
38: end for
39: Narrow← Narrow\{xi}
40: Frozen← Frozen ∪ {xi}
41: end for
42: end while
43: return T
44: end procedure

conceptually simple: the Narrow set is divided into two non-
sorted FIFO queues: one with cells to be evaluated sooner and
the other one with cells to be evaluated later. Every iteration,

an element from the first queue is evaluated. If its arrival
time is improved, the neighboring cells with higher time are
unlocked and added to the first or second queue, depending
on the value of the updated cell. Once the first queue is empty,
the queues are swapped and the algorithm continues. The
purpose is to achieve a pseudo-ordering of the cells, so that
cells with lower value are evaluated first.

Since the queues are not sorted, the arrival time of the
same cell could require being solved many times until its
value converges. DDQMdynamically computes the threshold
value, which sets the division of the two queues, depending
on the number of points of each queue, trying to reach an
equilibrium. Reference [27] includes an in depth analysis of
the update of the threshold in each iteration. In this work,
the initial value of the step of the threshold is increased every
iteration according to:

step =
1.5hn∑
i
Fi

(17)

where n is the total number of cells in the grid. Originally,
it was suggested to compute this step as step = 1.5n

h
∑
i

1
Fi

.

However, the step value should have time units whereas
this expression has [t−1] units (probably an error due to the
ambiguity of using speed F or slowness f = 1

F). Therefore,
(17) is proposed as an alternative in this work.

While the algorithm evolves, every time the first queue is
emptied UPDATESTEP() (see Algorithm 11) is called, using the
value of the current step, the number of cells inserted in the
first queue c1, and the total number of cells inserted ctotal
as inputs. Then, step is modified so that the number of cells
inserted in the first queue is between 65% and 75% of the total
inserted cells. This is a conservative approach, since the closer
this percentage is to 50% the faster DDQM is. However,
the penalization provoked by percentages lower than 50% is
much more significant than for higher percentages. Note that
in Algorithm 11 the step is increased by a factor of 1.5 but
decreased by a factor of 2. This makes step to converge to
a value instead of overshooting around the optimal value.
Dividing by a larger number causes the first queue to become
empty earlier. Thus, the next iteration will finish faster and a
better step value can be computed.

The method of DDQM is detailed in Algorithm 12. As in
LSM, points are divided into the locked (Frozen) or
unlocked (Narrow) sets. The initialization labels all the
points as frozen except for the neighbors of the start points,
which are added to the first queue (lines 2-14). While the
first queue is not empty, its front element is extracted and
evaluated (lines 18-20). If its time value is improved, all its
locked neighbors with higher value are unlocked and added
to their corresponding queue.

In [27], three methods were proposed: 1) single-queue
(SQ), and therefore a simpler algorithm, 2) two-queue
static (TQS), where the step is not updated, and 3) two-
queue dynamic (which we call DDQM). SQ and TQS
slightly improve on DDQM in some experiments, but when

VOLUME 7, 2019 39013

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

Algorithm 11 DDQM Threshold Increase
1: procedure UpdateStep(step, c1, ctotal)
2: m← 0.65
3: M← 0.75
4: Perc← 1
5: if c1 > 0 then
6: Perc← c1

ctotal
7: end if
8: if Perc ≤ m then
9: step← step ∗ 1.5

10: else if Perc ≥ M then
11: step← step

2
12: end if
13: return step
14: end procedure

DDQM improves on SQ and TQS (for instance, in envi-
ronments with noticeable speed changes) the difference can
reach one order of magnitude. Therefore, we decided to
include DDQM instead of SQ and TQS since it has shown
a more adaptive behavior. In any case, any of these methods
returns the same solution as FMM.

Regarding its complexity, in the worst case, the whole grid
is contained in both queues and traversed many times during
the propagation. However, since queue insertion and deletion
are O(1) operations, the overall complexity is O(n). Note
that SWAP() can be efficiently implemented in O(1) as a
circular binary index, or updating references (or pointers),
and therefore there is no need for a real swap operation.

C. FAST ITERATIVE METHOD
The Fast Iterative Method (FIM) [28] is based on the iterative
method proposed by [49] but inspired by FMM. It also resem-
bles DDQM (concretely, its single queue variant). It itera-
tively evaluates every point in Narrow until it converges.
Once a node has converged its neighbors are inserted into
Narrow and the process continues. Narrow is implemented
as a non-sorted list. The algorithm requires a convergence
parameter ε: if Ti is improved less than ε, it is considered as
converged. As a result of FIM, if a small enough ε (depending
on the environment) is chosen, the same solution as FMM is
returned. However, it can be sped up allowing small errors
bounded by ε. FIM is designed to be efficient for paral-
lel computing, since all the elements in Narrow can be
evaluated simultaneously. However, we are focusing on its
sequential implementation in order to have a fair comparison
with the other methods.

Algorithm 13 details FIM steps. Its initialization is the
same as FMM. Then, for each element in Narrow, its
value is updated (lines 13-14). If the value difference is
less than ε, the neighbors are evaluated and, in case their
value is improved, they are added to Narrow (lines 15-22).
Since Narrow is a list, the new elements should be inserted

Algorithm 12 Double Dynamic Queue Method
1: procedure DDQM(X , T ,F ,Xs)

Initialization:
2: Frozen← X ,Narrow← ∅
3: Q1← ∅,Q2← ∅

4: c1← 0 F Counters
5: ctotal← 0
6: step = 1.5hn∑

i
Fi

F n is the total number of cells.

7: th← step
8: Ti←∞ ∀xi ∈ X
9: for xi ∈ Xs do

10: Ti← 0
11: for xj ∈ N (xi) do
12: Q1← Q1 ∪ {xj}
13: Unknown← Unknown\{xi}
14: Narrow← Narrow ∪ {xi}
15: end for
16: end for

Propagation:
17: while Q1 6= ∅ or Q2 6= ∅ do
18: while Q1 6= ∅ do
19: xi← Q1 .FRONT F Extracts the front element.
20: T̃i← SOLVEEIKONAL xi, T ,F
21: if T̃i < Ti then
22: Ti← T̃i
23: for xj ∈ (N (xi) ∩ Frozen) do
24: F Add improvable neighbors to their queue.
25: if Ti < Tj then
26: Frozen← Frozen\{xj}
27: Narrow← Narrow ∪ {xj}
28: ctotal← ctotal + 1
29: if Ti ≤ th then
30: Q1← Q1 ∪ {xj}
31: c1← c1 + 1
32: else
33: Q2← (Q2 ∪ {xj})
34: end if
35: end if
36: end for
37: end if
38: Narrow← Narrow\{xi}
39: Frozen← Frozen ∪ {xi}
40: end while
41: step← UPDATESTEP step, c1, ctotal
42: SWAPQ1,Q2
43: c1← 0
44: ctotal← 0
45: th← th+ step
46: end while
47: return T
48: end procedure

39014 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

just before the point being currently evaluated, xi. Finally,
this point is removed from Narrow and labeled as Frozen
(lines 25 and 26).

During the different iterations of the algorithm, a node can
be added several times to the Narrow set, since every time an
upwind (parent) neighbor is updated, the node can improve
its value. In the worst case, Narrow contains the whole
grid and the loop would go through all the points several
times. Operations on the list are O(1), therefore, the overall
computational complexity of FIM is O(n).

Algorithm 13 Fast Iterative Method
1: procedure FIM(X , T ,F ,Xs, ε)

Initialization:
2: Frozen← X ,Narrow← ∅
3: Ti←∞ ∀xi ∈ X
4: for xi ∈ Xs do
5: Ti← 0
6: for xj ∈ (N (xi) ∩ Unknown) do
7: Frozen← Frozen\{xi}
8: Narrow← Narrow ∪ {xi}
9: end for

10: end for

Propagation:
11: while Narrow 6= ∅ do
12: for xi ∈ Narrow do
13: T̃i← Ti
14: Ti← SOLVEEIKONAL xi, T ,F
15: if |Ti − T̃i| < ε then
16: for xj ∈ (N (xi) ∩ Frozen) do
17: T̃j← SOLVEEIKONAL xj, T ,F
18: if T̃j < Tj then
19: Tj← T̃j
20: Frozen← Frozen\{xj}
21: F Insert in the Narrow band just before xi
22: Narrow← Narrow ∪ {xj}
23: end if
24: end for
25: Narrow← Narrow\{xi}
26: Frozen← Frozen ∪ {xi}
27: end if
28: end for
29: end while
30: return T
31: end procedure

VI. EXPERIMENTAL COMPARISON
A. EXPERIMENTAL SETUP
In order to make an impartial and meaningful comparison,
all the algorithms have been implemented from scratch,
in C++11 using the Boost Heap library. An automatic bench-
mark application has been created so that the experiments
can be carried out and evaluated in the most systematic

possible way. This implementation is focused on time perfor-
mance, andwas compiled usingG++ 4.8.4with optimization
flag -Ofast. However, no special optimizations have been
included. All algorithms use the same primitive functions for
the grid and cell computations. The times reported correspond
to an Ubuntu 14.04 64 bits on a virtual machine using 6 cores
of 4GHz with 8GB of RAM. However, all experiments were
carried out in one core. In order to calculate the time used
by each algorithm, only propagation times are taken into
account. The computation time used in the initialization has
been omitted since it can be done offline, besides it is similar
for all algorithms and is only a small percentage of the total
computation time.

Since the algorithms are deterministic, the deviation in the
computation time between different runs is theoretically 0.
In fact, this deviation mostly depends on the OS scheduler
and not on the algorithm, as this will perform the exact same
number of operations in all the runs. However, the results
shown are the mean of ten runs for every algorithm, and the
deviation of the results is practically zero.

For UFMM, the default parameters are a maximum range
of T of 2 units and 1000 buckets (the checkerboard exper-
iment required different ones, see Section VI-A.4). The
ε parameter for FIM is set to 0 (actually 10−47 to provide
robust 64 bit double comparison).

Although error analysis is not within the scope of this
paper, it can be compared using the results in the existing liter-
ature since it is implementation-independent. UFMM errors
are reported in those experiments with non-constant speed.
Usually, the L1 and L∞ norms of the error are reported. Most
of the literature computes norm L1 as:

|T |1 =
∑
xi∈X
|Ti| (18)

where X is treated as a regular vector. However, follow-
ing [7], we treat the numerical solutions as elements of
Lp spaces (a generalization of the p-norm to vector spaces),
in which the L1 norm is defined as an integral over the
function. The result is a norm closely related to its physical
meaning and independent of the cell size. L1 is numeri-
cally integrated over the domain and therefore computed as
(assuming hypercubic cells and grids):

|T |1 =
∑
xi∈X
|TihN | = hN

∑
xi∈X
|Ti| (19)

Four different experiments have been carried out, which
represent the most characteristic cases for the Fast Methods.
They have been chosen so that the advantages and disadvan-
tages of each algorithm can be remarked. These experiments
were chosen attending to the most common situations tested
in the literature. By combining the characteristics of these
problems, it is possible to obtain similar features to those
found in real applications. Furthermore, two more experi-
ments have been included to test the application of the Fast
Methods to real applications such as path planning or medical
imaging.

VOLUME 7, 2019 39015

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

1) EMPTY MAP
This experiment is designed to show the performance of
the methods in the most basic situation, where most of the
algorithms perform best. An empty map with constant speed
represents the simplest possible case for the Fast Methods.
In fact, analytical methods could be implemented by com-
puting the Euclidean distance from every point to the initial
point. However, it is interesting because it shows the per-
formance of the algorithms on open spaces which, in a real
application, can be part of large environments.

The same environment is divided into a different number
of cells to study how the algorithms behave as the number of
cells increases. Composed of empty 2D, 3D and 4D hyper-
cubical environments of size [0, 1]N , with N = 2, 3, 4. The
speed is a constant Fi = 1 on X . The wavefront starts at the
center of the grid. This experimental setup can be found in
previous publications such as [27], [28], and [50].

The number of cells was chosen so that an experiment
has the same (or as close as possible) number of cells in all
dimensions. For instance, a 50x50 2D grid has 2500 cells.
Therefore, the equivalent 3D grid is 14x14x14 (2744) and
in 4D is 7x7x7x7 (2401). This way, it is possible to also ana-
lyze the performance of the algorithms for different numbers
of dimensions. Thus, we have chosen the following number
of cells for each dimension for 2D grid:

2D : {50, 100, 200, 400, 800, 1000,

1500, 2000, 2500, 3000, 4000}

Consequently, the 3D and 4D cells are:

3D : {14, 22, 34, 54, 86, 100, 131, 159, 184, 208, 252}

4D : {7, 10, 14, 20, 28, 32, 39, 45, 50, 55, 63}

2) ALTERNATING BARRIERS
In this case, we want to analyze how the algorithms behave
with obstacles (Fi = 0) in a constant speed environment
(Fi = 1). The obstacles cause the characteristics to change.
The experiment contains a 2D environment of con-

stant size [0, 1]x[0, 2] discretized in a 1000x2000 grid.
A variable number of alternating barriers are equally dis-
tributed along the longest dimension. The number of bar-
riers goes from 0 to 9. Examples are shown in Fig. 4.
Analogously, in 3D, a [0, 1]x[0, 1]x[0, 2] environment rep-
resented by a 100x100x200 grid is chosen, with equally
distributed alternating barriers (from 0 to 9) along the
z-axis. In all cases, the wavefront starts close to a corner of
the map. Similar experimental setups can be found in the
literature [7], [26], [28].

3) RANDOM SPEED FUNCTION
This experiment aims to test the performance of the algo-
rithms with random speed function (similar to noisy images,
as in the case of medical computer vision). It creates 2D,
3D and 4D environments of size [0, 1]N with N = 2, 3, 4
discretized in a 2000x2000 grid in 2D, 159x159x159 in 3D,

FIGURE 4. 2D alternating barriers environments. (a) 1 barrier.
(b) 5 barriers. (c) 9 barriers.

FIGURE 5. 2D random speed function environments. Lighter color means
faster wave propagation. (a) Max. speed = 30. (b) Max. speed = 60.
(c) Max. speed = 100.

FIGURE 6. 2D checkerboard environments. Lighter color means faster
wave propagation. (a) Max. speed = 30. (b) Max. speed = 60. (c) Max.
speed = 100.

and 45x45x45x45 in 4D. These discretizations are chosen so
that it is possible to make a direct comparison with the empty
map problem for the corresponding grid sizes. The wavefront
starts in the center of the grid. This setup is inspired by the
experiments carried out in [27], [28], and [50].

Additionally, the maximum speed is increased from
1 to 100 (in steps of 10 units) to analyze how the algo-
rithms behave with increasing speed changes. 2D examples
are shown in Fig. 5.

4) CHECKERBOARD
The random speed function experiment already tested
changes in the speed. However, those are high-frequency
changes because it is unlikely to have two adjacent cells with
the same speed. In this experiment low-frequency changes
are studied. The same environment and discretizations as
with random speed function are now divided like a checker-
board, alternating minimum and maximum speed. Analo-
gously, the maximum speed is increased from 1 to 100, while
the minimum speed is always 1. There are 10 checkerboard
divisions for each dimension. The wavefront starts in the
center of the grid. 2D examples are shown in Fig. 6. This
experimental setup is inspired by the experiments carried out
in [7].

39016 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 7. 2D gridmap: Intel Research Lab building in Seattle,
2500x2500px.

In this case, UFMM in 3D and 4D performed very poorly
with the default parameters. Additional tests not included
in the present paper show that the best parameters for
UFMM are approximately 1000 buckets with a maximum
range of 0.01 in 3D. In the 4D case, 20000 buckets and a
maximum range of 0.025 are used.

5) PATH PLANNING
Fast Methods are commonly used for low-dimensional path
planning problems, given that they produce deterministic
results, are complete (will find a solution if there is any),
and it is possible to easily influence some properties of the
paths, such as their smoothness or obstacle clearance [51].
Fast Methods are applied from a given start point until a goal
point is reached and labeled as frozen, then gradient descent
is applied from the goal point in order to obtain a path to the
global minimum (the start point). The gradient descent step
is omitted in these experiments as it is out of the scope of this
paper.

Experiments in 2D and 3D maps are included. It is impor-
tant to remark that since the Fast Methods are based on grids,
they scale exponentially with the number of dimensions.
To the best of the authors’ knowledge, in path planning, there
are no practical applications of Fast Methods further than 3D.

For 2D, the chosen map shown in Fig. 7 belongs to the
Intel Research Laboratory building in Seattle. This map
is commonly used in path planning and robot navigation
research [52], [53]. The map is square-shaped, and contains
binary values (1 for free cells, 0 for occupied cells). Similarly
to the empty map experiment, different resolutions have been
chosen for the sides of the square:

{400, 800, 1000, 1500, 2000, 2500, 3000, 4000}

For the 3D case, binary 3D gridmaps with different reso-
lutions are created from a 3D model of a building used for
video games, shown in Fig. 8, which has been taken from
the Internet4 with slight modifications (such as adding more
pieces of furniture or more internal rooms). This model is
composed of two floors. The first floor is divided into three

4https://www.cgtrader.com/free-3d-models/exterior/exterior-public/low-
polygon-townhall-for-games

FIGURE 8. 3D mesh of the building used to generate 3D gridmaps.
(a) Exterior view. (b) Interior view (internal walls are omitted).

rooms and all of them contain some furniture. The second
floor has one large room. The Fast Methods are applied to
the whole environment with the center of the first floor as
starting point. The maximum size of the gridmap created is
355x190x237. In this case, the following resolutions are cho-
sen for the first dimension (the other dimensions are linearly
scaled):

{19, 30, 48, 76, 122, 141, 185, 224, 260, 293, 355}

The initial point for the propagation has been arbitrarily
chosen in both cases. However, as the algorithms are run
without a goal point, all the reachable cells in the map are
evaluated. Therefore, although the choice of the initial point
can modify the results, the experimental setup guarantees that
the impact is negligible.

6) VESSEL SEGMENTATION
Another of the main uses of Fast Methods is computer vision
for medical applications, as intermediary steps in more com-
plex algorithms. For example, in [54], FMM is used for
2D vessel segmentation in retina images based on the
assumption that vessels usually follow a smooth path.
Flórez-Valencia et al. [55] perform a center line extraction
in arteries using FMM, after defining an appropriate speed
function and stopping criterion. It is then used to extract
2D contours in cross-sectional planes. The contours are
finally used to progressively reconstruct a regularized con-
tinuous 3D surface.

This section aims to show the performance of the Fast
Methods in such applications. More concretely, a vessel
segmentation algorithm similar to the one used in [54] is
implemented. When using a Fast Method for segmentation,
the main goal is to define a speed function, F(x), which
provokes the wave expansion to happen faster in those areas
which have to be segmented. In this case, the image is
first processed with a high pass filter in order to subtract
the smoothly varying background. Then, a speed function,
in which the pixels corresponding to vessels have a higher
value, is computed. Using this function, the Fast Method is
performed using a central point of a vessel as starting point.
Finally, gradient descent is used to extract the geodesics,
which correspond to center lines of the vessels.

This experiment involves the use of the Fast Methods in
grids with slightly structured propagation speed, which can

VOLUME 7, 2019 39017

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 9. Grids used as inputs for the vessels segmentation algorithm.
(a) 2D vessels initial grid. (b) Binarized 3D vessels grid after segmentation.

FIGURE 10. Example of the resulting time-of-arrival maps applying FMM
to the empty environment in 2D. (a) 50x50. (b) 800x800. (c) 4000x4000.

be considered as a mix between the random speed function
and checkerboard experiments. In this case, two examples
are covered: 2D and 3D vessel segmentation, using as input
for the algorithms the images shown in Fig. 9, taken from
the DRIVE database of retinal vessels [56]. The 2D image
has a resolution of 2560x2560 pixels with a range of speed
[1.7234, 100] (of the preprocessed image according the afore-
mentioned segmentation algorithm), whereas the 3D case is
composed of a grid of 128x128x128 voxels with a range of
speed [1, 100]. As in previous cases, a total of ten runs per
algorithm are executed for each case. The starting point in
the 3D case is close to one of the bottom corners.

In this experiment, as it focuses on a real application,
the range of speed values used is smaller than those presented
in the experiments above, since these values are due to the
real image values. Besides, after the application of the Fast
Methods, the necessary steps to complete the segmentation
algorithm are not included in the experiment, because they are
out of the scope of this study. It is also important to remark
that in this kind of application, the Fast Methods employed
are usually those based on high-accuracy solutions [57],
which are generally slower than the methods included in this
paper.

B. RESULTS
The next sections present the results of the experiments
explained in Section VI-A. Their analysis is grouped attend-
ing to the classification given in Sections III,IV, and V.

1) EMPTY MAP
An example of the time-of-arrival field computed by FMM is
shown in Fig. 10. Note that all algorithms provide the same
exact solution in this case. The higher the resolution, the bet-
ter the accuracy.

The results for the empty map experiment are shown
in Fig. 11 for 2D, Fig. 12 for 3D, and Fig. 13 for 4D. In all
cases two plots are included: raw computation times for each
algorithm, and time ratios computed as:

ratio =
FMM Time
Alg. Time

(20)

so that larger ratios represent better performances.
FMM is, as expected, the slowest algorithm in almost all

cases, because the rest of the algorithms were proposed as
improvements of FMM. Besides, an empty map environment
is the most favorable case for any of the algorithms. As the
number of cells increases, FMMFib quickly outperforms
FMM since the number of elements in the narrow band
increases exponentially with the number of dimensions, and
therefore the better amortized times of the Fibonacci heap
become useful.

SFMM, the other O(n log n) Fast Method, is always faster
than FMM and most of the times also faster then FMMFib,
due to its simpler and faster heap management. However,
as the number of cells increases, the tendencies of FMM-
Fib and SFMM are very similar to that of FMM (the ratio
remains constant as the number of cells increase). When the
number of cells is large enough, it is hard to say whether
SFMM or FMMFib are faster.

The sweeping-based methods show a similar behavior
to the FMM-based methods. FSM is only slower than
FMM-based methods for environments with a small number
of cells. However, its linear complexity quickly makes it
faster than FMM, FMMFib, and SFMM if the environment
becomes larger. In spite of this, when the number of dimen-
sions increases, the number of required sweeps also increases
(duplicates) and therefore this penalizes the algorithm, as it
will evaluate each cell more times. LSM and DDQM are
methods that improve on FSM by avoiding the recomputation
of the cells. Therefore, they become the fastest algorithms
as they do not deal with heap operations and they minimize
cell recomputation. In this case, LSM is faster in most cases
(in 4D it is slower than DDQM but presents a better tendency
than DDQM). This happens because DDQM maintains two
queues. Whereas the operations of these queues are efficient,
they still represent some overhead over LSM, which does not
update any internal container.

The iterative algorithms, such as GMM and FIM, present
moderate results with similar behavior. As they keep sim-
ple data structures, they usually are faster than FMM-like
methods. However, they do not leverage the brute-force
approach followed by sweeping-based methods, adding some
additional overhead to the iterations and thus, being usually
slower than them. UFMM also provides average computation
times for a similar reason: it maintains a heap, something
which is more efficient than FMM-like algorithms, but still
requires performing additional operations in comparison to
sweeping-based methods. As the speed is constant all over
the grid, UFMM provides the same solution as the other
methods.

39018 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 11. Computation times and ratios for the empty map environment in 2D. (a) Computation times. (b) Time ratios
against FMM.

FIGURE 12. Computation times and ratios for the empty map experiment in 3D. (a) Computation times. (b) Time ratios
against FMM.

FIGURE 13. Computation times and ratios for the empty map experiment in 4D. (a) Computation times. (b) Time
ratios against FMM.

In a previous comparison between GMM and FMM [28],
GMM was about 50% faster than FMM in all cases.
In the results presented here, GMM is at most 40% better.

We attribute this difference to the implementation, as the
heaps for FMM and FMMFib are highly optimized. There-
fore, it is worth mentioning that the results shown here are

VOLUME 7, 2019 39019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 14. Example of the resulting time-of-arrival maps applying FMM
to some of the alternating barriers environment in 2D. (a) 1 barrier.
(b) 5 barriers. (c) 9 barriers.

also slightly subject to implementation details and, some-
times, details that are out of the reach of regular users, such as
internal cache memory management, prefetchers, and other
low-level details of the hardware used.

The conclusions from these experiments are that, in the
absence of obstacles and propagation speed modifications,
sweeping-like methods perform the best. Although this setup
is unlikely to be present in a practical scenario, the results
allow understanding the behavior of the algorithms in ideal
situations and their major advantages.

2) ALTERNATING BARRIERS
An example of the results of FMM in some of the alternating
barriers environments is shown in Fig. 14, whereas its per-
formance results (times and ratios) for 2D and 3D are shown
in Fig. 15 and Fig. 16 correspondingly.
Overall, the results are very similar to the empty map

experiment. FMM and FMMFib are again the slowest algo-
rithms when the number of barriers is low, since this setup
is very similar to the empty map experiment. SFMM outper-
forms FMM and FMMFib in all cases, and it again performs
better that FIM and GMM. However, in the case of 3D,
GMM performs noticeably worse than in 2D due to its over-
headwhilemanaging the narrow band. The results of FIM and
UFMM are also similar to those in the previous experiment.

The most important results are those of the sweep-based
methods. This type of map requires more sweeps to cover
the full environment as it becomes more complex (i.e., as the
number of barriers increases), which negatively affects FSM
and LSM. FSM becomes the slowest algorithm as soon as
the environment is slightly complex. LSM is still faster than
many of the other algorithms since it avoids reevaluating the
cells over the sweeps, although its increasing trends show that
it is still heavily affected by the environment. In 3D the trend
is not as uniform as in 2D. The reason is that in 2D a cell
can only be evaluated from four directions. But these direc-
tions increase exponentially with the number of dimensions,
therefore there are more chances that the sweep directions

are aligned with the environment making the sweeps more
efficient since each sweep evaluates more unexplored cells.

As the propagation speed of the environment remains con-
stant, the effect on DDQM of the complexity of the map
is almost negligible. Also, UFMM provides again the same
solution as the other methods.

Finally, the fact that most of the algorithms show a decreas-
ing trend as the number of barriers increase is simply because
with more barriers there are fewer cells to be evaluated.

3) RANDOM SPEED FUNCTION
: The output of the FMM for the random speed map (Fig. 17)
is apparently close to the one of the empty map, but with the
wavefronts slightly distorted because of the speed changes.
However, the performance of the algorithms is greatly mod-
ified. The 2D, 3D and 4D results are respectively shown
in Fig. 18, Fig. 19, and Fig. 20. In this case, raw computation
times are shown together with a zoomed view of the fastest
algorithms to make the analysis easier. Note that all the
methods become slower with non-constant speed functions.
This happens because the narrow band tends to contain more
elements in these cases, leading to slower operations. But also
the cells have to be reevaluatedmore times than usual because
the values of the neighbors change more frequently.

FMM and FMMFib have the predictable behavior, FMM
being faster (just because of the size of the chosen map).
As expected, SFMM has a better performance than FMM and
similar to FMMFib. These algorithms were designed so that
they do not make any assumption on the environment and
therefore they are not affected by complexity or propagation
speed.

Sweep-based methods become unstable (in terms of
asymptotic computational time) with non-uniform speed
function. The main reason is that high contrasts in the
speed can act as barriers and therefore more sweeps can
be required. DDQM is able to maintain the fastest time for
slight speed changes, but when the changes are sharper the
double-queue threshold becomes unstable. However, for a
large number of dimensions, this effect vanishes (its com-
putation time is barely modified with the number of dimen-
sions) and DDQM becomes one of the fastest algorithms.
An explanation for this is that the overhead caused by the
required sweeps is lower (even if more sweeps are required)
than the overhead the other algorithms suffer when increasing
the dimensions.

In this case, GMM and FIM are the fastest algorithms.
Although FIM requires multiple iterations over the same
cells in order to converge to the real value, it only iter-
ates over the narrow band, being faster than sweep-based
methods (although these iterations makes it slower in lower
dimensions). On the other hand, GMM presents a constant
computation time because it will always converge in two
iterations, regardless of the speed, thus becoming the most
efficient algorithm.

Finally, UFMM requires special attention as it does
not provide the same solution as the other Fast Methods.

39020 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 15. Computation times and ratios for the alternating barriers experiment in 2D. (a) Computation times. (b) Time ratios
against FMM.

FIGURE 16. Computation times and ratios for the alternating barriers experiment in 3D. (a) Computation times. (b) Time ratios against FMM.

FIGURE 17. Example of the resulting time-of-arrival maps applying FMM to the random speed function environment
in 2D. (a) Max. speed = 30. (b) Max. speed = 60. (c) Max. speed = 100.

Its performance is very sensitive to the number of dimen-
sions. The main reason is the election of the parameters: they
were experimentally chosen to optimize the 2D performance.
However, these parameters are no longer useful for different

number of dimensions.We consider UFMMparameter tuning
to be a complex task.

Table 2 summarizes the largest errors for this experiment.
As the number of dimensions increases, the error decreases

VOLUME 7, 2019 39021

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 18. Computation times for the random speed function experiment in 2D. (a) Computation times. (b) Zoomed in view of the
lower part of the chart in a).

FIGURE 19. Computation times for the random speed function experiment in 3D. (a) Computation times. (b) Zoomed in view of
the lower part of the chart in a).

TABLE 2. Largest L1 and L∞ errors for UFMM in the random speed
function experiment.

.

while the computation time increases exponentially. There-
fore, by properly tuning the parameters for 3D and 4D better
times could be achieved while keeping a negligible error in
most practical cases.

4) CHECKERBOARD
Different time-of-arrival maps computed by FMM based on
the checkerboard grid are shown in Fig. 21. The numerical

results of the computation times are included in Fig. 22
for 2D, Fig. 23 for 3D, and Fig. 24 for 4D.

The results of FMM, FMMFib and SFMM remain the same
as in previous experiments. The main difference between
these experiments and the one with random speed function
is that the environment presents a well-defined structure and,
locally, acts as a constant speed environment as in the empty
map experiment.

For sweeping-based methods, the results are relatively
close to those in the random speed function experiment.
However, the differences between the algorithms are much
smaller. DDQMpresents a poor performance in 2D, but in 3D
and 4D it becomes the fastest algorithm for higher speed
modifications. The reason for this behavior is that DDQM
sweeps over a queue and, therefore, there is an overhead for

39022 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 20. Computation times for the random speed function experiment in 4D. (a) Computation times. (b) Zoomed in view of
the lower part of the chart in a).

FIGURE 21. Example of the resulting time-of-arrival maps applying FMM to the checkerboard
environment in 2D. (a) Max. speed = 30. (b) Max. speed = 60. (c) Max. speed = 100.

FIGURE 22. Computation times and ratios for the checkerboard experiment in 2D. (a) Computation times. (b) Time ratios
against FMM.

maintaining this queue that becomes negligible once the num-
ber of elements in the queue is large enough. Besides, if the
number of cells of the environment is increased, the same
behavior is expected. Also, the gap between FSM/LSM and
the remaining algorithms is much smaller than in the random

speed function experiment. This is because in this case the
environment presents some structure, allowing for more cells
to be evaluated at every sweep and thus becoming more effi-
cient, counteracting the overhead of performing more sweeps
because of the different speed values.

VOLUME 7, 2019 39023

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 23. Computation times and ratios for the checkerboard experiment in 3D. (a) Computation times. (b) Time ratios
against FMM.

FIGURE 24. Computation times and ratios for the checkerboard experiment in 4D. (a) Computation times. (b) Time ratios
against FMM.

GMM and FIM perform very similarly to the experi-
ment with random speed function, but in this case their
results are closer to each other. FIM requires more evalu-
ations only on those cells whose neighbors have different
propagation speed than the evaluated one. Because of the
structure of the environment, FIM does not require so many
iterations to converge to the cell value. In fact, it can solve
most of the cells in only two iterations, as it is very likely
that the propagation speed is constant in the neighborhood
of the cell to be evaluated. These additional evaluations
with respect to GMM are only noticeable in 2D, when
the results are more susceptible to internal data structure
overheads.

UFMM becomes worse with the number of dimensions
but it is among the fastest algorithms in lower dimensions.
Again, it is worth noting that these results greatly depend on

TABLE 3. Largest L1 and L∞ errors for UFMM in the checkerboard
experiment.

.

the parameters chosen, which in this case seem to be close to
optimal. UFMM errors are shown in Table 3.

5) PATH PLANNING
The FMM time-of-arrival field is shown in Fig. 25 for the
2D path planning problem. As the map is composed of binary
values, all algorithms provide the exact same solution. Visu-
alization of the results of the 3D path planning problem is
not included as they cannot be clearly depicted with a single
figure.

39024 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 25. Example of the resulting time-of-arrival maps applying FMM
to 2D path planning map. (a) 200x200. (b) 1500x1500. (c) 4000x4000.

The results for the path planning experiments are shown
in Fig. 26 for 2D, and Fig. 27 for 3D. In both cases two plots
are included: the raw computation times for each algorithm
and the time ratios (analogously to the results of the empty
map experiment). The results for such a binary and complex
map greatly depend on its topology. In this case, the Intel
Research Laboratories map has both large clear spaces and
cluttered, irregular areas, therefore, the results can be inter-
preted as a mix between those of the empty map experiment
and those from the alternating barriers experiment.

For both the 2D and 3D experiments, the results are very
similar to the alternating barriers experiments. FMM and
FMMFib perform similarly, with SFMM being faster in all
cases.

FSM and LSM suffer from the complexity of the environ-
ments, being the slowest in many of the cases. As the number
of cells in the map increases, the ratio of these methods with
respect to FMM decreases because the map becomes rela-
tively simpler. In other words, there is a higher density of free
cells (especially in open areas) and, therefore, a larger number
of cells can be computed in every sweep even if the proportion
to the total map remains the same. This is a manifestation of
the fact that the total number of cells increases exponentially,
but the complexity of such methods increases linearly. How-
ever, DDQM shows the fastest computation times since it is
rather immune to the environment complexity.

Both GMM and FIM are among the slowest methods. This
behavior has been appreciated already in other experiments
with constant propagation speed (empty map and alternating
barriers). However, UFMM is among the fastest algorithms
because of its efficient heap structure.

In the 3D results there is a bump on the times and ratios
for a given resolution. The reason for this irregularity is that
in the chosen map, for that given resolution, there are very
specific voxels that are difficult to reach, requiring many
iterations of the algorithm. This is the reason why it affects
only the purely iterative algorithms (FSM, LSM, and FIM).
For UFMM, however, these specific voxels cause the untidy
heap to be less uniform and therefore also requires more
operations.

6) VESSELS SEGMENTATION
The time-of-arrival map returned by FMM applied to the 2D
vessels grid is shown in Fig. 28. The numerical results of the

TABLE 4. Computation times (seconds) for the vessels segmentation
experiment.

computation times for 2D and 3D are included in Table 4.
The results for 2D and 3D are not directly comparable among
them as the environments are noticeable different. Neverthe-
less, some of the behavior can be appreciated and correlated
with the generic experiments explained previously. In 2D,
the results are in line with those for random speed function
for a range of speed values smaller than 20 units. Although
to human perception the vessel images seem to be slightly
structured, the irregular shapes and the image quality causes
the algorithms to behave very similarly to the case of a
completely random speed map. In 3D, the results are closer
to those observed in the checkerboard experiment.

As in all the other experiments, FMM and FMMFib pro-
vide almost identical results, with SFMM outperforming
them in both cases.

Since the propagation speed is non-constant, sweep-based
methods require many sweeps in order to converge to the
final solution. Therefore, FSM and LSM are slower than
all the other methods. However, DDQM is again the fastest
algorithm in 2D, and among the fastest ones in 3D. The
reason for this is that there are numerous changes in the
speed of the environment, but not as frequent as in the
random speed function experiment, because there is some
structure along the lines of the vessels and the surrounding
tissues.

As in the 2D random speed function experiment, FIM is
among the slowest algorithms because many iterations are
required to converge to the final solution due to the frequent
changes of the propagation speed. This effect vanishes in 3D
as the iterations become more efficient since the narrow band
contains more elements. Also, the difference in the environ-
ments play an important role in these results.

GMM is one of the fastest methods in 2D, similarly to the
other variable speed experiments. However, in 3D its results
are similar to those shown in the alternating barriers, showing
once again the sensitivity of GMM to the environment.

Finally, UFMM is among the fastest algorithms, mostly
due to a lucky selection of parameters for the environ-
ments chosen, because in both random speed function and
checkerboard experiments UFMM does not show good
results.

Considering that the speed in the environments is not con-
stant, the errors for UFMM are included in Table 5.

VOLUME 7, 2019 39025

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

FIGURE 26. Computation times and ratios for the 2D path planning experiment. (a) Computation times. (b) Time ratios
against FMM.

FIGURE 27. Computation times and ratios for the 3D path planning experiment. (a) Computation times. (b) Time ratios
against FMM.

TABLE 5. Largest L1 and L∞ errors for UFMM in the vessels segmentation
experiment.

VII. DISCUSSION
Two different sets of experiments have been carried out.
The first set contains canonical problems previously included
in the literature that cover the best and worst case scenar-
ios for all the methods. This set consists of: empty map,
alternating barriers, random speed function and checkerboard
experiment. The main hypothesis considered while design-
ing these experiments is that any other environment can be
thought of as a combination of free space with obstacles and
high-frequency or low-frequency speed changes of different
magnitudes. Consequently, the second set aims to test this
hypothesis while applying the Fast Methods to problems
which represent real world applications. The second set is

FIGURE 28. Example of the resulting time-of-arrival maps applying FMM
to the vessels grid in 2D.

composed of the path planning experiment and the ves-
sels experiment, in which the environments are more unpre-
dictable and can contain many of the characteristics of the
canonical problems. Note that the different grid sizes used in
the experiments vary from extremely small to extraordinarily
big grids.

The path planning and vessels results can be correlated
with those in the canonical problems, therefore supporting the

39026 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

choice of the latter. However, it is important to remark that
these results are very sensitive to the environments chosen.
Some algorithms, such as FMM, FMMFib, and SFMM are
completely independent of the environment, as their internal
data structures behave in the same manner regardless of
shape or speed, and therefore show consistent behavior for
all the experiments, but they are never among the fastest
methods. FIM results can be sped up for non-constant speed
problems if larger errors are allowed. UFMM can probably
be improved as well. However, our experience is that the
configuration of its parameters is complex and requires a deep
analysis of the environment to which it is to be applied on.

The results are also subject to low-level factors out of the
scope of this paper. These factors are, for example, internal
cache levels and memory management, data prefetching, etc.
For example, the performance of algorithms that maintain
a heap for the narrow band greatly depends on whether the
narrow band is small enough that can be stored completely
in microprocessor cache memories. Another example is that
some algorithms such as DDQM or FIM make it complex
for the prefetchers to prefetch the appropriate indices of the
narrow band that are going to be evaluated on the following
iterations since, commonly, grid neighbors are not contigu-
ously stored in memory.

Taking into account the results from the conducted exper-
iments, several conclusions for the use of the different types
of Fast Methods will now be summarized:
• There is no practical reason to use FMM or FMMFib as
SFMM is faster in every case. It shows the same behavior
as its counterparts regardless of the characteristics of the
environment, since the internal narrow band implemen-
tation is more efficient.

• If a sweep-based method is to be used, LSM should be
always chosen, as it greatly outperforms FSM, since it
recomputes cells only if there is a chance of improving
their value. In fact, it was not possible to find any case
in which FSM performs better than LSM. Therefore,
FSMmethods are recommended when applied to simple
scenarios with constant propagation speed, because they
require lower number of sweeps.

• In problems with constant speed and negligible depen-
dence on the environmental complexity, DDQM should
be chosen, as it has shown the best performance for the
empty map and the alternating barriers environments,
given that it combines the advantages of sweep-based
and wavefront-based methods. However, for problems
with variable speed values, its performance is highly
influenced by the distribution of speed changes through-
out the environment, as it might require many evalua-
tions of the same cells in order to converge to the final
solution.

• For variable speed functions, but simple scenarios,
GMM is the algorithm to choose, as it guarantees that
only two cell evaluations are required. However, com-
plex environments distort the narrow band, requiring
more iterations of its main loop.

• UFMM is hard to tune and its results include errors.
Also, it has been outperformed in most of the
cases by DDQM in constant speed scenarios, or by
SFMM or FIM in experiments with variable speed.
In order to evaluate whether this method should be
considered, an in-depth study for the specific problem
is required.

• There is no clear winner for complex scenarios with
variable speed. UFMM can perform well in all cases
if tuned properly. Otherwise, SFMM is a safe choice,
especially in cases where there is not much information
about the environment.

If a goal point is selected, cost-to-go heuristics can be
applied [58], which would greatly affect the results. Heuris-
tics for FMM, FMMFib and SFMM are straightforward and
they can be similarly applied to UFMM. They would improve
the results in most of the cases. However, it is not clear if they
can be applied to other Fast Methods. Anisotropic solutions
given to anisotropic problems based on some of the presented
methods are also interesting [9], [47], [59], [60].

VIII. CONCLUSIONS
In this paper we have introduced the main Fast Methods in a
common mathematical framework, adopting a practical point
of view. Besides, an exhaustive comparison of the methods
has been performed, which allows the users to choose among
them depending on the application.

The code is publicly available,5 as are the automatic bench-
mark programs. This code has been thoroughly tested and it
can serve as a basis for future algorithm design, as it provides
all the tools required to easily implement and compare novel
Fast Methods.

Future research will focus on three different aspects: devel-
oping an analogous review for parallelized FastMethods [31],
studying the application of thesemethods to anisotropic prob-
lems as well as to the new Fast Marching-based solutions
focused on path planning applications [61], [62]. Finally,
the combination ofUFMMand SFMMseems straightforward
and it would presumably outperform both algorithms.

ACKNOWLEDGMENT
The authors would like to thank the contribution of Pablo
GelyMuñoz to the GMM, FIM and UFMM implementations,
and to Adam Chacon for the interesting discussions and
suggestions towards improving the work.

REFERENCES
[1] J. N. Tsitsiklis, ‘‘Efficient algorithms for globally optimal trajectories,’’

IEEE Trans. Autom. Control, vol. 40, no. 9, pp. 1528–1538, Sep. 1995.
[2] J. A. Sethian, ‘‘A fast marching level set method for monotonically advanc-

ing fronts,’’Proc. Nat. Acad. Sci. USA, vol. 93, no. 4, pp. 1591–1595, 1996.
[3] J. A. Sethian and A. Vladimirsky, ‘‘Ordered upwind methods for static

Hamilton–Jacobi equations: Theory and algorithms,’’ SIAM J. Numer.
Anal., vol. 41, no. 1, pp. 325–363, 2003.

[4] H. Zhao, ‘‘A fast sweeping method for eikonal equations,’’Math. Comput.,
vol. 74, no. 250, pp. 603–627, 2005.

5https://github.com/jvgomez/fast_methods

VOLUME 7, 2019 39027

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

[5] P. A. Gremaud and C.M. Kuster, ‘‘Computational study of fast methods for
the Eikonal equation,’’ SIAM J. Sci. Comput., vol. 27, no. 6, pp. 1803–1816,
2006.

[6] J. A. Sethian andA.Vladimirsky, ‘‘Fastmethods for the Eikonal and related
Hamilton–Jacobi equations on unstructured meshes,’’ Proc. Nat. Acad. Sci.
USA, vol. 97, no. 11, pp. 5699–5703, 2000.

[7] A. Chacon, ‘‘Eikonal equations: New two-scale algorithms and error anal-
ysis,’’ Ph.D. dissertation, Dept. Math., Cornell Univ., Jan. 2014.

[8] J. V. Gómez, ‘‘Advanced applications of the fast marching square planning
method,’’ M.S. thesis, Syst. Eng. Automat. Dept., Carlos III Univ., 2012.

[9] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, and D. Lane,
‘‘Path planning for autonomous underwater vehicles,’’ IEEE Trans. Robot.,
vol. 23, no. 2, pp. 331–341, Apr. 2007.

[10] Q. H. Do, S. Mita, and K. Yoneda, ‘‘Narrow passage path planning using
fast marching method and support vector machine,’’ in Proc. IEEE Intell.
Vehicles Symp., Jun. 2014, pp. 630–635.

[11] Y. Liu and R. Bucknall, ‘‘Path planning algorithm for unmanned surface
vehicle formations in a practical maritime environment,’’ Ocean Eng.,
vol. 97, pp. 126–144, Mar. 2015.

[12] F. Gao, W. Wu, Y. Lin, and S. Shen, ‘‘Online safe trajectory generation for
quadrotors using fast marching method and bernstein basis polynomial,’’
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 344–351.

[13] N. Forcadel, C. Le Guyader, and C. Gout, ‘‘Generalized fast marching
method: Applications to image segmentation,’’Numer. Algorithms, vol. 48,
nos. 1–3, pp. 189–211, 2008.

[14] S. Basu and D. Racoceanu, ‘‘Reconstructing neuronal morphology from
microscopy stacks using fast marching,’’ in Proc. IEEE Int. Conf. Image
Process., Oct. 2014, pp. 3597–3601.

[15] N. Al Zaben, N. Madusanka, A. Al Shdefat, and H.-K. Choi, ‘‘Comparison
of active contour and fast marching methods of hippocampus segmenta-
tion,’’ in Proc. 6th Int. Conf. Inf. Commun. Syst., Apr. 2015, pp. 106–110.

[16] A. Capar andM. Gokmen, ‘‘Concurrent segmentation and recognition with
shape-driven fast marchingmethods,’’ inProc. Int. Conf. Pattern Recognit.,
vol. 1, Aug. 2006, pp. 155–158.

[17] M. Frenkel and R. Basri, ‘‘Curve matching using the fast marching
method,’’ inEnergyMinimizationMethods in Computer Vision and Pattern
Recognition. Berlin, Germany: Springer, 2003, pp. 35–51.

[18] K. Museth, ‘‘VDB: High-resolution sparse volumes with dynamic topol-
ogy,’’ ACM Trans. Graph., vol. 32, no. 3, pp. 1–22, 2013.

[19] M. G. Linguraru et al., ‘‘Computer-aided renal cancer quantification
and classification from contrast-enhanced ct via histograms of curvature-
related features,’’ in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Sep. 2009, pp. 6679–6682.

[20] X.-X. Qu, S.-X. Liu, and F. Wang, ‘‘A new ray tracing technique for cross-
hole radar traveltime tomography based on multistencils fast marching
method and the steepest descend method,’’ in Proc. 15th Int. Conf. Ground
Penetrating Radar, Jun. 2014, pp. 503–508.

[21] S. Li, A. Vladimirsky, and S. Fomel, ‘‘First-break traveltime tomography
with the double-square-root eikonal equation,’’ Geophysics, vol. 78, no. 6,
pp. U89–U101, 2013.

[22] E. Treister and E. Haber, ‘‘Full waveform inversion guided by travel time
tomography,’’ SIAM J. Sci. Comput., vol. 39, no. 5, pp. S587–S609, 2017.

[23] X. Zhang and R. Bording, ‘‘Fast marchingmethod seismic traveltimes with
reconfigurable field programmable gate arrays,’’ Can. J. Explor. Geophys.,
vol. 36, no. 1, pp. 60–68, 2011.

[24] U. B. Waheed and T. Alkhalifah, ‘‘A fast sweeping algorithm for accurate
solution of the tilted transversely isotropic Eikonal equation using factor-
ization,’’ Geophysics, vol. 82, no. 6, pp. WB1–WB8, 2017.

[25] M.W. Jones, J. A. Baerentzen, and M. Sramek, ‘‘3D distance fields: A sur-
vey of techniques and applications,’’ IEEE Trans. Vis. Comput. Graphics,
vol. 12, no. 4, pp. 581–599, Jul. 2006.

[26] A. Capozzoli, C. Curcio, A. Liseno, and S. Savarese, ‘‘A comparison of
fast marching, fast sweeping and fast iterative methods for the solution
of the Eikonal equation,’’ in Proc. 21st Telecommun. Forum, Nov. 2013,
pp. 685–688.

[27] S. Bak, J. McLaughlin, and D. Renzi, ‘‘Some improvements for the fast
sweeping method,’’ SIAM J. Sci. Comput., vol. 32, no. 5, pp. 2853–2874,
2010.

[28] W. Jeong and R.Whitaker, ‘‘A fast iterative method for Eikonal equations,’’
SIAM J. Sci. Comput., vol. 30, no. 5, pp. 2512–2534, 2008.

[29] L. Yatziv, A. Bartesaghi, and G. Sapiro, ‘‘O(N) implementation of the
fast marching algorithm,’’ J. Comput. Phys., vol. 212, no. 2, pp. 393–399,
2005.

[30] P. Kotas, R. Croce, V. Poletti, V. Vondrak, and R. Krause, ‘‘A massive
parallel fast marching method,’’ in Domain Decomposition Methods in
Science and Engineering XXII, T. Dickopf, M. J. Gander, L. Halpern,
R. Krause, and L. F. Pavarino, Eds. Cham, Switzerland: Springer, 2016,
pp. 311–318.

[31] M. Detrixhe, F. Gibou, and C. Min, ‘‘A parallel fast sweeping method for
the Eikonal equation,’’ J. Comput. Phys., vol. 237, pp. 46–55, Mar. 2013.

[32] K. Crane, C. Weischedel, and M. Wardetzky, ‘‘Geodesics in heat: A new
approach to computing distance based on heat flow,’’ ACM Trans. Graph.,
vol. 32, no. 5, pp. 152:1–152:11, Oct. 2013.

[33] Y.-T. Zhang, H.-K. Zhao, and J. Qian, ‘‘High order fast sweeping methods
for static Hamilton–Jacobi equations,’’ J. Sci. Comput., vol. 29, no. 1,
pp. 25–56, Oct. 2006.

[34] A. M. Popovici and J. A. Sethian, ‘‘3-D imaging using higher order fast
marching traveltimes,’’ Geophysics, vol. 67, no. 2, pp. 604–609, 2002.

[35] S. Fomel, S. Luo, and H. Zhao, ‘‘Fast sweeping method for the factored
Eikonal equation,’’ J. Comput. Phys., vol. 228, no. 17, pp. 6440–6455,
Sep. 2009.

[36] E. Treister and E. Haber, ‘‘A fast marching algorithm for the factored
Eikonal equation,’’ J. Comput. Phys., vol. 324, pp. 210–225, Nov. 2016.

[37] S. Cacace, E. Cristiani, and M. Falcone, ‘‘Can local single-pass methods
solve any stationary Hamilton–Jacobi–Bellman equation?’’ SIAM J. Sci.
Comput., vol. 36, no. 2, pp. 570–587, 2014.

[38] J. A. Sethian, ‘‘Fast marching methods,’’ SIAM Rev., vol. 41, no. 2,
pp. 199–235, 1999.

[39] S. Osher and J. A. Sethian, ‘‘Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton–Jacobi formulations,’’ J. Comput.
Phys., vol. 79, no. 1, pp. 12–49, 1988.

[40] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge,
U.K.: Cambridge Univ. Press, 1999.

[41] J. A. Sethian, ‘‘An analysis of flame propagation,’’ Ph.D. dissertation, Dept.
Math., Univ. California, Berkeley, CA, USA, Jun. 1982.

[42] E. Dijkstra, ‘‘A note on two problems in connection with graphs,’’
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[43] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univ.
Press, 1957.

[44] A. K. Jain, L. Hong, and S. Pankanti, ‘‘Random insertion into a priority
queue structure,’’ Stanford Univ., Stanford, CA, USA, Tech. Rep. Stan-
Cs-74-460, 1974.

[45] M. L. Fredman and R. E. Tarjan, ‘‘Fibonacci heaps and their uses in
improved network optimization algorithms,’’ J. ACM, vol. 34, no. 3,
pp. 596–615, 1987.

[46] C. Rasch and T. Satzger, ‘‘Remarks on the O(N) implementation of the
fast marching method,’’ IMA J. Numer. Anal., vol. 29, no. 3, pp. 806–813,
Nov. 2008.

[47] Y. Tsai, L. Cheng, S. Osher, and H. K. Zhao, ‘‘Fast sweeping algorithms
for a class of Hamilton–Jacobi equations,’’ SIAM J. Numer. Anal., vol. 41,
no. 2, pp. 659–672, 2003.

[48] S. Kim, ‘‘An O(N) level set method for Eikonal equations,’’ SIAM J. Sci.
Comput., vol. 22, no. 6, pp. 2178–2193, 2001.

[49] E. Rouy and A. Tourin, ‘‘A viscosity solutions approach to shape-from-
shading,’’ SIAM J. Numer. Anal., vol. 29, no. 3, pp. 867–884, 1992.

[50] W.-K. Jeong and R. Whitaker, ‘‘A fast iterative method for a class of
Hamilton–Jacobi equations on parallel systems,’’ School Comput., Univ.
Utah, Salt Lake City, UT, USA, Tech. Rep. UUCS-07-010, 2007.

[51] J. V. Gómez, D. Álvarez, S. Garrido, and L. Moreno, ‘‘Fast marching-
based globally stable motion learning,’’ Soft Comput., vol. 21, no. 10,
pp. 2785–2798, 2017.

[52] R. Valencia, M. Morta, J. Andrade-Cetto, and J. M. Porta, ‘‘Planning
reliable paths with pose SLAM,’’ IEEE Trans. Robot., vol. 29, no. 4,
pp. 1050–1059, Aug. 2013.

[53] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, ‘‘A tutorial
on graph-based SLAM,’’ IEEE Intell. Transp. Syst. Mag., vol. 2, no. 4,
pp. 31–43, Feb. 2010.

[54] W. Liao, K. Rohr, and S. Wörz, ‘‘Globally optimal curvature-regularized
fast marching for vessel segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent., 2013, pp. 550–557.

[55] L. Flórez-Valencia et al., ‘‘Coronary artery segmentation and stenosis
quantification in CT images with use of a right generalized cylinder
model,’’ in Proc. MICCAI Workshop 3D Cardiovascular Imag., MICCAI
Segmentation Challenge, 2012, pp. 1–8.

[56] M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M. Abramoff,
‘‘Comparative study of retinal vessel segmentation methods on a new pub-
licly available database,’’ Proc. SPIE, vol. 5370, pp. 648–657, May 2004.

39028 VOLUME 7, 2019

J. V. Gómez et al.: Fast Methods for Eikonal Equations: An Experimental Survey

[57] S. Ahmed, S. Bak, J. McLaughlin, and D. Renzi, ‘‘A third order accurate
fast marching method for the Eikonal equation in two dimensions,’’ SIAM
J. Sci. Comput., vol. 33, no. 5, pp. 2402–2420, 2011.

[58] A. Valero-Gómez, J. V. Gómez, S. Garrido, and L. Moreno, ‘‘The path to
efficiency: Fast marching method for safer, more efficient mobile robot
trajectories,’’ IEEE Robot. Autom. Mag., vol. 20, no. 4, pp. 111–120,
Dec. 2013.

[59] S. Bougleux, G. Peyré, and L. D. Cohen, ‘‘Image compression with
anisotropic triangulations,’’ in Proc. IEEE 12th Int. Conf. Comput. Vis.,
Sep. 2009, pp. 2343–2348.

[60] C.-Y. Kao, S. Osher, and Y.-H. Tsai, ‘‘Fast sweeping methods for static
Hamilton–Jacobi equations,’’ SIAM J. Numer. Anal., vol. 42, no. 6,
pp. 2612–2632, 2005.

[61] L. Janson and M. Pavone, ‘‘Fast marching tree: A fast marching sampling-
based method for optimal motion planning in many dimensions,’’ in
Robotics Research. Cham, Switzerland: Springer, 2016, pp. 667–684.

[62] D. S. Yershov and E. Frazzoli, ‘‘Asymptotically optimal feedback planning
using a numerical Hamilton–Jacobi–Bellman solver and an adaptive mesh
refinement,’’ Int. J. Robot. Res., vol. 35, no. 5, pp. 565–584, 2016.

J. V. GÓMEZ received the degree in indus-
trial engineering from the Technical University
of Madrid, in 2011, and the master’s degree in
robotics and automation and the Ph.D. degree
in robotics from the Universidad Carlos III de
Madrid, Spain, in 2012 and 2015, respectively. His
main research interests include robot navigation
and environment modeling.

D. ÁLVAREZ received the degree in communica-
tions electronics engineering from the Technical
University of Madrid, in 2009, and the master’s
degree in robotics and automation and the Ph.D.
degree in robotics from the Universidad Carlos
III de Madrid, Madrid, Spain, in 2011 and 2016,
respectively. In 2010, he joined the Department
of Systems Engineering and Automation, Univer-
sidad Carlos III de Madrid, where he has been
involved in several robotics projects. His research

interests include path planning, mobile manipulation, and environment mod-
eling.

S. GARRIDO received the degree in mathemat-
ics from the Complutense University of Madrid,
in 1979, and the degree in physics and the Ph.D.
degree from the Universidad Carlos III de Madrid,
Madrid, Spain, in 1955 and 2000, respectively.
In 1997, he joined the Department of Systems
Engineering and Automation, Universidad Carlos
III de Madrid, where he has been involved in sev-
eral mobile robotics projects. His research inter-
ests include mobile robotics, mobile manipulators,

environment modeling, path planning, and mobile robot global localization
problems.

L. MORENO received the degree in automation
and electronics engineering and the Ph.D. degree
from the Universidad Politécnica de Madrid,
Madrid, Spain, in 1984 and 1988, respectively,
where he was an Associate Professor, from 1988 to
1994. In 1994, he joined the Department of Sys-
tems Engineering and Automation, Universidad
Carlos III de Madrid, Madrid, where he has been
involved in several mobile robotics projects. His
research interests include mobile robotics, mobile

manipulators, environment modeling, path planning, andmobile robot global
localization problems.

VOLUME 7, 2019 39029

	INTRODUCTION
	PROBLEM FORMULATION
	N-DIMENSIONAL DISCRETE EIKONAL EQUATION
	SOLVING THE N-D DISCRETE EIKONAL EQUATION

	FAST MARCHING METHODS
	BINARY AND FIBONACCI HEAPS
	SIMPLIFIED FAST MARCHING METHOD
	UNTIDY FAST MARCHING METHOD

	FAST SWEEPING METHODS
	LOCKING SWEEPING METHODS

	OTHER FAST METHODS
	GROUP MARCHING METHOD
	DYNAMIC DOUBLE QUEUE METHOD
	FAST ITERATIVE METHOD

	EXPERIMENTAL COMPARISON
	EXPERIMENTAL SETUP
	EMPTY MAP
	ALTERNATING BARRIERS
	RANDOM SPEED FUNCTION
	CHECKERBOARD
	PATH PLANNING
	VESSEL SEGMENTATION

	RESULTS
	EMPTY MAP
	ALTERNATING BARRIERS
	RANDOM SPEED FUNCTION
	CHECKERBOARD
	PATH PLANNING
	VESSELS SEGMENTATION

	DISCUSSION
	CONCLUSIONS
	REFERENCES
	Biographies
	J. V. GÓMEZ
	D. ÁLVAREZ
	S. GARRIDO
	L. MORENO

