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ABSTRACT In this paper, online deep learning (DL)-based channel estimation algorithm for doubly
selective fading channels is proposed by employing the deep neural network (DNN). With properly selected
inputs, the DNN can not only exploit the features of channel variation from previous channel estimates but
also extract additional features from pilots and received signals. Moreover, the DNN can take the advantages
of the least squares estimation to further improve the performance of channel estimation. The DNN is
first trained with simulated data in an off-line manner and then it could track the dynamic channel in an
online manner. To reduce the performance degradation from random initialization, a pre-training approach
is designed to refine the initial parameters of the DNN with several epochs of training. The proposed
algorithm benefits from the excellent learning and generalization capability of DL and requires no prior
knowledge about the channel statistics. Hence, it is more suitable for communication systems with modeling
errors or non-stationary channels, such as high-mobility vehicular systems, underwater acoustic systems,
and molecular communication systems. The numerical results show that the proposed DL-based algorithm
outperforms the existing estimator in terms of both efficiency and robustness, especially when the channel
statistics are time-varying.

INDEX TERMS Deep learning, neural networks, channel estimation, doubly selective channel, LS oriented
input, pre-training.

I. INTRODUCTION
The quality of channel estimation is crucial to the
performance of wireless communication systems. Clas-
sic estimation methods, such as least squares (LS) [1]
and minimum mean-square error (MMSE) [2], have been
widely used to estimate block fading channels. In mobile
scenarios, the transmitted signals often undergo doubly
selective fading (i.e., both frequency- and time-selective
fading) due to multipath effects and Doppler spread. Vari-
ous models have been proposed to characterize the doubly
selective channels, e.g., basis expansion model (BEM) [3],
high order-motion (HOM) model [4], finite state Markov
model (FSM) model [5], etc. Among these models, BEM has
been widely adopted, in which doubly selective channels are
expressed as superpositions of (known) time-invariant basis
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functions (e.g., Fourier basis functions [3], polynomials [6],
wavelets [7], [8], etc) weighted by (unknown) time-varying
coefficients [9]. Many BEM-based estimators have been
developed for doubly selective fading channels, includ-
ing LS [10], MMSE [11], recursive LS [12], linear MMSE
(LMMSE) [3], etc.

It is not difficult to know that all classical estimators
highly rely on tractable mathematically channel mod-
els, which are generally assumed to be linear, stationary,
and follow Gaussian statistics. However, practical wire-
less communication systems may have many imperfec-
tions and unknown effects that cannot be well captured
by accurate models, especially for doubly selective envi-
ronments. As a result, the existing channel estimators
always suffer from performance degradation in real appli-
cations. For example, experiment results in [13] and [14]
have both demonstrated the error floors of LMMSE
estimators.
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Recently, deep learning (DL) has drawn attentions for its
great success in computer vision (CV), automatic speech
recognition (ASR), and natural language processing (NLP).
There are two reasons promoting the applications of DL in
various areas [15]. Firstly, DL-based algorithms are data-
driven, and therefore are more robust to imperfections in
real-world systems. Secondly, DL-based algorithms have
low computational complexities, which only involve several
layers of simple operations such as matrix-vector multiplica-
tions. With the rapid development of massively parallel pro-
cessing architectures (e.g., graphic processing units (GPUs),
specialized chips [16], etc), the execution of deep neural net-
works (DNNs) can be highly parallelized on concurrent archi-
tectures and is easily implemented with low-precision data
types [17], which makes DL-based algorithms much more
efficient. Motivated by these advantages, DL was introduced
to physical layer and achieved superior performance over
various issues [18]–[20].

One way to apply DL into physical layer is based on the
‘‘unfold’’ idea, where mutilayer networks are employed to
approximate iterative algorithms. By unfolding the iterative
algorithm as a chain of iterative operations and mimick-
ing each iteration using a layer, the network with special-
ized structure can well approximate the iterative algorithm
with the aid of off-line training [21]–[23]. For example,
a multi-layer neural network for multiple input multiple
output (MIMO) detection is designed in [22] by unfold-
ing the orthogonal approximate message passing (OAMP)
algorithm, which can achieve better performance than the
classical OAMP algorithm with several epochs of training.
However, the ‘‘unfold’’ idea is only feasible when the itera-
tions have simple structures. If the iterations face computa-
tionally heavy operations, e.g., matrix inversion or singular
value decomposition, then the ‘‘unfold’’ type of design is not
amenable.

Another way to apply DL into physical layer is to treat
the generic deep neural network (DNN) as a ‘‘black box’’,
and try to learn the underlying relationships between its
inputs and outputs [24]. As rigorously proved in the uni-
versal approximation theorem [25], a feed-forward network
with a single hidden layer, known as shallow neu-
ral network, is capable of approximating any continu-
ous functions defined on compact sets. Compared with
the shallow neural network, DNN exhibits more power-
ful learning capability due to more hidden layers and
neurons. Many DNN based approaches have been devel-
oped to address issues in wireless communications, such
as beamforming [26], [27], channel state information (CSI)
feedback [28]–[30], modulation recognition [31], [32], chan-
nel encoding and decoding [33]–[36], channel estimation and
detection [37], [38]. Especially, the DNN based joint channel
estimation and symbol detection algorithm for orthogonal
frequency division multiplexing (OFDM) systems with fre-
quency selective channels in [37] is shown to outperform
the traditional MMSE estimator when imperfections and
non-linearities of systems are taken into account. In [38],

FIGURE 1. Transmitted signal structure.

a learning assisted channel estimation algorithm was pro-
posed for time-varying channels, and achieves better perfor-
mance than the LS estimation. To the best of the authors’
knowledge, there is no study on DL based channel estimation
for doubly selective channels.

In this paper, we propose an on-line DL-based estimator
using DNN for doubly selective channels. The DNN is first
trained with simulated data in an off-line manner and then
tracks the dynamic channel in an on-line manner. We also
design a pre-training approach for the DNN to acquire a
desirable initialization, which can further improve the per-
formance of DL-based estimator. Numerical results show
that the DL-based estimator outperforms the conventional
BEM-based channel estimator in all scenarios. These results
also demonstrate the efficiency and robustness of the pro-
posed DL-based estimator.

The rest of this paper is organized as follows. The
system model for doubly selective channels is introduced
in Section II. The proposed DL-based estimation algo-
rithm is presented in Section III. Numerical results are
presented in Section IV. Our main conclusions are given
in Section V.
Notations: The bold and lowercase letters denote vec-

tors while the bold and capital letters denote matrices.
The notation [X]n,m denotes the (n,m)th entry of the
matrix X , where the index m and n both start from 0. The
notations <[·] and =[·], respectively, denote the real and
imaginary parts of matrices, vectors or scales. The nota-
tions bxc and dxe denote the integer floor and ceiling of
x, respectively. The notation |x| denotes the absolute value
of x. The notation ‖x‖1 denotes the L1 norm of x. The
notations (·)H and (·)−1 denote the Hermitian and inverse
of the matrix, respectively. The notation E[·] represents
the expectation with respect to all random variables within
the brackets. The notation ⊗ represents Kronecker prod-
uct. The notation vec(·) represents the vectorization of the
matrix.

II. SYSTEM MODEL AND CONVENTIONAL ALGORITHMS
In this section, we present the doubly selective channel
model. Then, the conventional BEM based LS and linear
MMSE (LMMSE) channel estimators are briefly reviewed as
the baselines of channel estimation algorithms.
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h (t; τ) =
∑
l

∑
µ

al,µ exp
[
j
(
φl,µ + 2π fmax cos

(
βl,µt

))]
δ(τ − τl) (3)

A. TRANSMITTED SIGNAL
The transmitted signal structure follows the current IEEE
standards, as shown in Fig. 1. Each frame contains K blocks
and can be split into two parts. The first part is preamble while
the second part is the information blocks. Denote k and L+1
as the block index and the number of multipath, respectively.
Each information block u(k) has the form

[
uTsb (k) ,01×L

]T ,
where usb (k) contains Ns information symbols and Nb pilot
symbols, while 0 is the zero padding to avoid the inter
block interference (IBI).1 Moreover, usb (k) is divided into
P sub-blocks, each containing consecutive Ns,p information
symbols and Nb,p pilot symbols, denoted as sp (k) and bp (k),
respectively. There are

∑P
p=1 Ns,p = Ns,

∑P
p=1 Nb,p = Nb,

and Ns + Nb + L = N , where N is the number of symbols in
one information block. For simplicity, we set Ns,p = Ns/P
and Nb,p = Nb/P for 1 ≤ p ≤ P. Therefore, the kth
information block u (k) can be expressed as:

u (k) =
[
uTsb (k) ,01×L

]T
=

[
sT1 (k) , b

T
1 (k) , · · · , s

T
P (k) , b

T
P (k) ,01×L

]T
. (1)

B. CHANNEL MODELS
Typically, the time variation in rich scattering environment
is characterized by Jakes model. It should be mentioned that
the proposed DL-based estimator does not require any prior
knowledge of the channel models, i.e., model free, and is
applicable for any communication systems. The Jakes model
is briefly introduced in the following.

1) JAKES MODEL
Let hJ (t) denote the channel generated by Jakes’ model [39]:

hJ (t) =
∑
µ

aµ exp
[
j
(
φµ + 2π fmax cos

(
βµ
)
t
)]
, (2)

where aµ is the amplitude of theµth propagation path; φµ and
βµ are, respectively, the angle of arrival and random phase of
the µth path; fmax = fcvmax/c is the maximum Doppler fre-
quency with carrier frequency fc, maximum mobile velocity
vmax, and the speed of light c. Both φµ and βµ are mutually
independent and uniformly distributed over [−π, π).

2) DOUBLY-SELECTIVE CHANNELS
The time- and frequency-selective channel model can be
given as Eq. (3), shown at the top of this page, where l is the
index for multipath with 0 ≤ l ≤ L, while al,µ, φl,µ, βl,µ, and
τl are the path dependent amplitude, angle of arrival, phase

1If OFDM modulation is adopted, zero padding can be replaced by cyclic
prefix.

and time delay, respectively. After sampling, the discrete time
channel is given by

h (n; l)
1
= h (nTs; τ) , (4)

where Ts is the sampling period.

C. RECEIVED SIGNAL
Denote u (i) as the transmitted symbol at the ith slot, and the
received symbol is given by

r (i) =
L∑
l=0

h (i; l) u (i− l)+ w (i) , (5)

where w (i) is the additive white Gaussian noise (AWGN),
i.e., w (i)∼CN

(
0, σ 2

w
)
with σ 2

w denoting the noise variance.
With the zero padding structure in Eq. (1), the received

signal can be written in matrix-vector form as follows:

r (k) = H (k)usb (k)+ w (k) , (6)

where r (k) = [r (kN ) , · · · , r (kN + N − 1)]T , w (k) =

[w (kN ) , · · · ,w (kN + N − 1)]T , and H (k) is an N ×
(N − L) Toepliz matrix with entries

[H (k)]n,m =

{
h (kN + n; n− m), 0 ≤ n− m ≤ L;
0, otherwise.

(7)

D. BEM-BASED LS AND LMMSE ESTIMATOR
With the basis expansion model (BEM), the discrete-time
baseband equivalent channel h (i; l) can be written as follows
(see [40] for detailed derivations):

h (i; l) =
Q∑
q=0

hB,q
(⌊
i
/
N
⌋
; l
)
ejωqi, l = 0, 1, · · · ,L, (8)

where
{
hB,q

(⌊
i
/
N
⌋
; l
)}Q
q=0 are the BEM coefficients,{

ejωqi|ωq = 2π (q− Q/2) /N
}Q
q=0 are Fourier bases, and

Q := 2 dfmaxNTse. For simplicity, Eq. (8) can be written in
matrix-vector form as follows:

hl = BhB,l, (9)

where B is an N × (Q + 1) matrix with [B]m,n = ejmwn ,
hl = [h (kN ; l) , · · · , h (kN + N − 1; l)]T , and hB,l =[
hB,0 (k; l) , · · · , hB,Q (k; l)

]T .
Since the following channel estimation is based on a single

block, the block index k in Eq. (6) is omitted. We can extract
one sub-block of r, denoted as rb =

[
rb1, · · · , r

b
P

]T
, that

depends only on H and
{
bp
}P
p=1 as shown in Fig. 2. With

the BEM in Eq. (9), rb can be obtained as follows:

rb = φbhB + wb, (10)
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FIGURE 2. Illustration of extracting rb from r.

where wb denotes the corresponding noise vector, φb is
an (Nb − PL) × (Q + 1)(L + 1) matrix consisting of
the pilot symbols and Fourier transform sub-matrices deter-
mined by pilot positions (see [42, eq. (9)] for specific

expression), and hB =

[
hTB,0,h

T
B,1, · · · ,h

T
B,Q

]T
repre-

sents the BEM coefficients to be estimated with2 hB,q =[
hB,q (0) , hB,q (1) , · · · , hB,q (L)

]T for 0 ≤ q ≤ Q. Since
there are (Q + 1)(L + 1) unknown coefficients in hB, the
minimum number of pilot symbols for estimating doubly
selective channels is L + (Q + 1)(L + 1) to ensure the
uniqueness of estimation.

The LS estimator can be written as [42]

ĥB,LS =
(
φb

Hφb + ηI
)−1

φb
H rb, (11)

where I is an identity matrix with dimension (Q+ 1)(L + 1),
and η is set to be a very small positive real number to
ensure the matrix φb

Hφb + ηI being full rank. Once ĥB,LS
is obtained, one can first substitute Eq. (11) into Eq. (9)
and obtain the LS estimated discrete-time baseband equiv-

alent channel
{
ĥl,LS

}L
l=0

. Then, the LS estimated channel

matrix ĤLS(k) can be obtained by substituting
{
ĥl,LS

}L
l=0

into
Eq. (7).

The LMMSE estimator is given as follows [43]:

ĥB,LMMSE =
1
σ 2
w

(
R−1hB +

1
σ 2
w

φb
Hφb

)−1
φb

H rb, (12)

where RhB = E
[
hBhBH

]
is the covariance matrix of the

BEMcoefficients. The covariancematrixRhB can be obtained
in the following way: First, denote Rhl as the covariance
matrix of hl , which can be easily obtained based on the LS
channel estimation in Eq. (11). Then, the covariance matrix

2Since block index k is omitted, we use hB,q (l) to denote hB,q (k; l) for
simplicity.

FIGURE 3. The structure of the DNN, where the circles labeled with ‘‘+1’’
are the bias units.

of hB,l , can be obtained from Eq. (9) as follows:

RhB,l =
(
BHB

)−1
BHRhlB

(
BHB

)−1
. (13)

Finally, RhB can be obtained as follows:

RhB = RhB,l ⊗ I, (14)

where I is an identity matrix with dimension L + 1.

III. DEEP LEARNING BASED CHANNEL ESTIMATION
In this section, we describe the architecture and learning
mechanism of the DNN. Then, we present a detailed descrip-
tion of how the pre-training, training and testing stages are
performed.

In the following subsections, we first describe the architec-
ture and learningmechanism of the DNN. Then, we introduce
the input data structure of the DL-based estimator as well as
the generation of data sets required for pre-training, training
and testing stages. Finally, we give a detailed description
of how to the pre-training, training and testing stages are
performed.

A. DEEP LEARNING ALGORITHM
The proposed DL-based channel estimator adopts the fully
connected feedforward deep neural network with L layers,
including one input layer,L−2 hidden layers, and one output
layer as shown in Fig. 3. The `th (0 < ` < L − 1) layer of
the network consists of n` neurons and one bias unit (circle
labeled with ‘‘+1’’). Each neuron represents a nonlinear
transform of a weighted summation of output values of the
preceding layer. The nonlinear functions, i.e., the activation
functions, used in the DNN can be the Sigmoid function
fs(x) = 1/(1 + exp(−x)), or the rectified linear unit (ReLU)
function fr (x) = max{0, x}, etc. In the proposed DL-based
channel estimator, we choose no activation function for neu-
rons in the output layer and ReLU functions for neurons in
the rest of layers.

As shown in Fig. 3, W ` is the n` × n`−1 weight matrix
associated with the (` − 1)th and `th layers while c` is the
bias vector for the `th layer. Since a single execution of the
DL algorithm is based on one batch of data, we denote V
and ν (0 ≤ ν ≤ V − 1) as the batch size and serial index,
respectively. Let x(ν) and y(ν), respectively, represent the
input and labels of the DNN at serial index ν. The output of
the DNN is the estimate of y(ν), which can be mathematically
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g` (x(ν); θ`) =


x(ν), ` = 1;
f r
(
W `

(
g`−1 (x(ν); θ`−1)

)
+ c`

)
, 2 ≤ ` < L− 1;

WL−1
(
gL−2

(
x(ν); θL−2

))
+ cL−1, ` = L− 1

(16)

expressed as

ŷ(ν) = gL−1
(
· · · g1 (x(ν); θ1) ; θL−1

)
, (15)

where θ` , {W `, c`} represents the parameters of the `th
layer. Moreover, g` (x(ν); θ`) is the output of the `th layer,
which can bewritten as Eq. (16), shown at the top of this page,
with f r denoting the vector-form of the ReLU function.3

For expression simplicity, we define θ , {θ`}
L−1
`=1 as the set

of parameters to be optimized. The optimal θ can be obtained
by minimizing the loss function Loss (θ) through off-line
training, and Loss (θ) can be written as:

Loss (θ) =
1
VLy

V−1∑
ν=0

∥∥ŷ(ν)− y(ν)∥∥1 , (17)

where Ly is the length of the vector y(ν). In addition, we adopt
the L1 norm (absolute error) instead of L2 norm (squared
error) as loss function because L1 norm removes the outliers
and thus makes DNN converges faster.

Various optimization algorithms can be used to min-
imize Loss (θ) by iteratively updating the parameters θ ,
i.e., stochastic gradient descent [44], root mean square
prop [45], adaptive moment estimation (ADAM) [46], etc.
We adopt ADAM as the optimization algorithm for the pro-
posed DNN, which is straightforward to implement, invariant
to diagonal rescaling of the gradients, and computationally
efficient.

B. IMPLEMENTATION OF THE DL-BASED CHANNEL
ESTIMATION ALGORITHM
As illustrated in Fig. 4, the proposed DL-based estimation
algorithm has three stages, i.e., the pre-training, training,
and testing stages. The DNN is trained off-line in both the
pre-training and training stages. While in the testing stage,
the channels can be dynamically tracked by the DNN with
only pilots known, and then the transmitted symbols are
detected.

1) PRE-TRAINING STAGE
Let us collect the system data in one block (i.e., the transmit-
ted signals, received signals, etc) as the training data at one
serial index. Denote D as the number of transmitted frames
in one training batch. As shown in Fig. 1, each signal frame
contains K blocks. Hence, the serial length in one batch is
V = DK and the serial index ν can be described as ν =
dK+k , where d = 0, 1, · · · ,D−1 and k = 0, 1, · · · ,K−1.
Since the implementation of the proposed estimator is based
on one transmitted frame, we can omit the index d and use

3 Given x = [x1, · · · , xn]T , there is f r (x) = [fr (x1) , · · · , fr (xn)]T .

the block index k instead of ν to represent the serial index for
simpler illustration.

As shown in Fig. 4, the raw input data of DNN at
pre-training stage can be expressed as follows:

xrp(k) =
[
usb(k)T , r(k)T ,

vec
(
Ĥ
sb
LS(k)

)T
, vec

(
Ĥ(k − 1)

)T]T
, (18)

where Ĥ
sb
LS(k) represents the LS estimate ofH (k)with usb(k)

known, and Ĥ(k − 1) is the previous estimated channel.
Since DL-based algorithms can only work in real domain,
the raw input data should be reshaped. Define f R(z) as the
input reshaping function, i.e.,

f R(z) =
[
<{z}T ,={z}T

]T
. (19)

Then, the real input data of the DNN in the pre-training stage
are given as:

xp(k) = f R(xrp(k)). (20)

In addition, the relationship between the output of DNNs ŷ(k)
and the DL-based estimated channels Ĥ(k) can be written as
follows:

Ĥ(k) = vec−1
(
f−1R (ŷ(k) )

)
, (21)

where f−1R (·) and vec−1(·) are the inverse function of f R(·)
and vec(·), respectively.
In the pre-training stage, we first initialize the weights

of the DNN as random variables that follow the truncated
normal distribution4 with normalized variance.5 Such kind of
initialization of weights is recommended for the DNN with
ReLu used as activation functions [47], [48]. The biases of
the DNN are initialized to be small constants closed to 0.
Let us denote the initial parameters of the DNN as θ (i). Then,
we minimize Loss (θ) by the ADAM algorithm [46] until the
DNN converges and then denote the converged parameters of
the DNN as θ (p).
One major motivation for designing the pre-training

approach is to obtain a desirable initialization for the train-
ing stage. Generally, when the DNN is randomly initialized,
optimization algorithms such as ADAM may be stuck in

4The truncated normal distribution is similar to normal distribution except
that values more than two standard deviations from the mean are discarded
and re-drawn.

5We normalize the variance of weights in the following manner: First,
generating the weights of neurons in the `th (2 ≤ ` ≤ L − 1) layer as
truncated normal variables with variance 2. Then, we divide the weights of
neurons by the number of neurons in the (`− 1)th layer.
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FIGURE 4. Block diagram of the proposed DL-based estimation algorithm, where vec(·) and f R(·) represent the vectorization and reshaping function
given in Eqs. (18)-(23) and Eq. (19), respectively. vec−1(·) and f−1

R (·) represent the inverse function of vec(·) and f R(·), respectively.

a low-performance local minimum, resulting in the limited
performance of DNNs [49]. One possible way to circumvent
this problem is to render the DNNwell-initialized, i.e., select-
ing the initial parameters of DNNs close to the optimal
solution [50]. Such way is feasible in channel estimation
since one can first transmit training frames, where the pilot
and information symbols are both known, to obtain a much
more accurate estimation of the channels. Then, the DNN
can use these accurate estimates to achieve a more desirable
initialization. Moreover, the pre-training approach can help
alleviate vanishing gradient problems, and thus makes the
DNN converge faster [51]. The improvements brought by
pre-training will be evaluated in Section IV-B2.

2) TRAINING STAGE
Define ub(k) as the sub-block consisting of all pilot symbols
in the kth block, which can be written as

ub(k) =
[
01×Ns,1 , b

T
1 (k) , · · · ,01×Ns,P , b

T
P (k)

]T
. (22)

Then, the raw input data vector of the DNN in the training
stage is given as:

xrt(k) =
[
ub(k)T , r(k)T ,

vec
(
Ĥ
b
LS(k)

)T
, vec

(
Ĥ(k − 1)

)T]T
, (23)

where Ĥ
b
LS(k) is the LS estimate of H (k) with ub(k) known.

The real input data of the DNN in the training stage can be
written as follows:

xt(k) = f R(xrt(k)). (24)

The difference between the pre-training and training stages
is that information symbols and pilots are both known and

FIGURE 5. Performance comparison between the LMMSE estimator and
estimator proposed in [38].

added as input data of the DNN in the pre-training stage while
only pilots are known in the training stage, which is more
practical in real-world systems. The existing work [38] sim-
ply used the transmitted pilots ub(k), received signal y(k), and
pervious estimated channel Ĥ(k − 1) as input, which cannot
handle the doubly selective channels as shown in Fig. 5.
The proposed DL-based estimator originally adopts the LS
estimation Ĥ

b
LS(k) as part of the input such that the DNN can

take the advantages of the LS estimation to further improve
the performance. The effectiveness of the designed input data
structure will be validated in Section IV-B3.

We collect the transmitted pilot symbols ub(k), received
signals y(k) and LS estimation Ĥ

b
LS(k) as the input data such

that the DNN can not only take the advantages of the LS
estimation but also extract more features about the channel,
from ub(k) and y(k). We add Ĥ(k − 1) as part of inputs to
capture the underlying features of channel variation. At each
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block index, the DNN implicitly learns time correlation of the
time-varying channels from the previous estimated channel
and then merges them with the currently obtained data to
further improve the accuracy of channel estimation.

In the training stage, we first load θ (p) as initial parameters
of the DNN and then minimize Loss (θ) by the ADAM algo-
rithm until the DNN converges. The parameters of DNN after
the training stage are denoted by θ (t).

3) TESTING STAGE
The input of the DNN in the testing stage has the same
structure with that in the training stage. We load the trained
parameters θ (t), and then pass the input data through the
trained DNN and obtain the estimated channel. Based on
the DL-based estimation channel Ĥ(k), we use the zero-
forcing (ZF) detector to obtain the estimation of u(k), which
is denoted by û(k) as shown in Fig. 4. In the testing stage,
we generate the testing sets with channels following the
same statistics as the training stage to evaluate the bit error
rate (BER) performance of the DL-based estimator. We also
generate the testing sets with channels following different
statistics from the training stage to test the robustness of the
DL-based estimation algorithm.

C. COMPLEXITY ANALYSIS
The required number of floating point operations (FLOPs)
is used as the metric of complexity. For the proposed
DL-based estimator, the FLOPs come from the LS esti-
mation processing in Eq. (11) and the DNN processing in
Eq. (15). The total number of FLOPs in the LS estimation
is N 2

Q (Nb − PL)+ 2N 3
Q + N

2
Q with NQ = (Q+ 1) (L + 1)

while in the DNN processing it is
∑L−1
`=1 n`−1n`. Therefore,

The complexity of DL-based estimator can be written as
follows:

CDL-based ∼ O

N 3
Q +

L−1∑
`=1

n`−1n`

 . (25)

IV. SIMULATION RESULTS
In this section, we investigate the performance of the pro-
posed DL-based estimator for doubly selective channels.
We first present the configuration and default parameters
of the simulation system. Then, hyper-parameter selections
and the structure of the input data for the DL-estimator are
both evaluated. Finally, the performances of DL-based and
BEM-LMMSE estimators are compared and analyzed.

A. SIMULATION SETUP
The proposed DL-based estimator is implemented on one
computer with one Nvidia GeForce GTX 1080 Ti Graphical
Processing Units (GPU) and 32 GB of memory. Keras 2.2.0
with TensorFlow 1.4.0. as backhaul is employed as the deep
learning framework.

Unless otherwise specified, the parameters of the
channel model follow the default setting as shown in

TABLE 1. Default channel parameters.

FIGURE 6. Performance of the DL-based algorithms with different
numbers of layers.

Tab. 1. The minimum value of Doppler-spread Q is
Qmin = 2 dfmaxNTse.

B. HYPER-PARAMETER SELECTION AND STRUCTURE
DESIGNING FOR THE DL-BASED ESTIMATOR
1) HYPER-PARAMETER SELECTION
The default parameters of the DL-based estimator are given
in Tab. 2. The numbers of neurons of the input and output
layers are consistent with the lengths of input and output
data vectors, respectively. It has been widely identified that
the hyper-parameter selections are crucial to the performance
of DL [52]. The hyper-parameters for the ADAM algorithm,
including the learning rate α, exponential decay rates (β1, β2),
and disturbance term ε, follow those in [46]. Generally, these
hyper-parameters for the ADAM algorithm have intuitive
interpretations and typically require little tuning.

In Fig. 6, we investigate the performance of the DL-based
estimators with different number of layers. The performance
of the DL-based estimator first improves and then degrades
as the number of layers L increases. From Fig. 6, we observe
that the optimal number of layers is 5, which is also the
default value of L for the DL-based estimator in our sim-
ulations. Theoretically, the learning capability of the DNN
improves as the number of layers increases. In fact, due to the
vanishing gradient and pathology degradation, the training
of the DNN becomes more challenging as the network goes
deeper [53]. Furthermore, when signal-to-noise ratio (SNR)
is low, i.e., less than 10 dB, there are no significant gaps
between the DL-based estimators with different number of
layers. In this case, we can further reduce the number of
layers of the DNN for lower complexity. This also indicates
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TABLE 2. Default DNN parameters.

that the optimal architectures for the DNN should be chosen
according to the practical system configurations and channel
conditions.

2) PERFORMANCE EVALUATION FOR THE PRE-TRAINING
APPROACH
As mentioned in Section III-B1, we design the pre-training
approach to improve the performance of the DL-based
estimator. For the DL-based estimator without pre-training
approach, the DNN is loaded with the initial parameters θ (i)

instead of θ (p) at the beginning of training stage.
Fig. 7 compares the performance of the DL-based esti-

mators with and without pre-training, where Nb = 12 and
L = 3. It can be observed that the improvement in BER
performance brought by pre-training becomes significant as
SNR increases. While the improvement is negligible when
SNR is less than 10 dB. This is because that in lower SNR
region, additional training frames in the pre-training stage are
less effective to provide a well guided initialization for the
DL-based estimator. The results show that when SNR is low,
the pre-training cannot enhance the performance of DL-based
estimator, and therefore is unnecessary. However, when SNR
is high, the pre-training can assist the DL-based estimator
in the training stage to obtain better initial parameters, and
therefore can further improve the performance of DL-based
estimator.

3) PERFORMANCE EVALUATION FOR THE INPUT
DATA STRUCTURE
In this simulation, the impacts of different input data struc-
tures on the BER performance are analyzed. We consider

FIGURE 7. Performance comparison between the DL-based estimators
with and without pre-training.

three simplified structure designs corresponding to the
DL-based estimator without Ĥ(k − 1), {ub(k), r(k)}, and
Ĥ
b
LS(k), respectively.
As shown in Fig. 8, the gap between the DL-based estima-

tor with and without Ĥ(k − 1) increases as SNR increases
and the performance loss reaches 7dB when SNR is 20 dB.
This indicates the DL-based estimator can learn to capture the
underlying features of channel variation to further improve
the performance of channel tracking with the aid of Ĥ(k−1).
Furthermore, the performance of the DL-based estimators
without {ub(k), r(k)} and without ĤLS(k) both exhibit severe
degradation. The performance losses of the DL-based esti-
mators without {ub(k), r(k)} and without ĤLS(k) are 5 dB
and 7 dB, respectively, when SNR is 20 dB. This implies the
DL-based estimator can not only take the advantages of the
channel features obtained by the LS estimator but also extract
additional channel features from ub(k) and y(k) to further
enhance the estimation performance. The above discussions
validate the justifiability of the proposed DL-based estimator.

C. PERFORMANCE COMPARISONS WITH LMMSE
ESTIMATOR
1) PERFORMANCE OF CHANNEL TRACKING
The proposed DL-based estimator can be applied to general
doubly selective channels. Here, we consider a special case,
i.e., the time selective channel, where the number of paths is
equal to 1. Fig. 9 plots the tracking of channel usingDL-based
and LMMSE algorithms, where SNR is set to be 20 dB and
Nb = 12. It can be observed that the DL-based estimator
exhibits more accurate tracking for the amplitude of channels

FIGURE 8. Performance comparison between the DL-based estimators
with different input data structures.
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FIGURE 9. Performance of amplitude (a) and phase (b) tracking using the DL-based and LMMSE estimators. (a) Amplitude tracking. (b) Phase tracking.

FIGURE 10. The MSE (a) and BER (b) performance of DL-based and LMMSE estimators versus SNR. (a) MSE performance versus SNR, Nb = 12. (b) BER
performance versus SNR, Nb = 12.

than the LMMSE estimator and both estimators can track the
phase of channels.

2) PERFORMANCE VERSUS SNR
Fig. 10 compares the MSE and BER performance of
DL-based and LMMSE estimators versus SNR, where
Nb = 12. As shown in Fig. 10a, the MSE performance of
both estimators improves as SNR increases and the DL-based
estimator achieves better performance than the LMMSE esti-
mator. As shown in Fig. 10b, the BER performance of both
estimators exhibits the similar results as the MSE perfor-
mance. These results show the effectiveness of the DL-based
estimator.

3) PERFORMANCE VERSUS NB
Fig. 11 compares the BER performance of DL-based and
LMMSE estimators versus Nb, where Q = 1, and SNRs are
set to 10 dB and 20 dB, respectively. As shown in Fig. 11,
the BER performance of both estimators improves as Nb

increases and are close to saturation when Nb is more
than 16. The DL-based estimator significantly outperforms
the LMMSE estimator when Nb is less than 12 while the gap
between the DL-based and LMMSE estimators decreases as
Nb increases. This is because that when Nb is less than 8, the
number of pilots is insufficient to estimate the channel for
the LMMSE estimator, which results in severe performance
degradation. While the DL-based estimator can compensate
the performance degradation resulted from insufficient pilots
with the aid of ub(k), r(k), and Ĥ(k − 1), and therefore
achieves better performance than the LMMSE estimator.

4) ROBUSTNESS ANALYSIS
In the simulations 1) - 3), the channels are generated by
the Jakes model with the same statistics, i.e., the maximum
Doppler frequency fmax is equal to fcvmax/c = 260 Hz. In
this case, the channels in the testing stage have the same
statistics with that in the pre-training and training stages
for the DL-based estimator. The second-order statistics of
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FIGURE 11. The BER performance of DL-based and LMMSE estimators
versus Nb.

the channels are also accurate for the LMMSE estimator.
However, in real-world wireless environments, the maximum
Doppler frequency is often time varying and hard to track.
Hence, statistics mismatches often occur between the testing
and training stages for the DL-based estimator. The statistics
errors are also inevitable for the LMMSE estimator.

In this example, the impacts of varying maximum Doppler
frequency on the performance of both DL-based and LMMSE
estimators are analyzed. The maximum Doppler frequency
fmax is set to be 260 Hz in the training stage while fmax
in the testing stage is set to be a random variable within
two different ranges, i.e., fmax ∈ [0, 520] Hz and fmax ∈

[0, 1444] Hz, respectively. The LMMSE estimator uses the
default channel statistics with fmax fixed as 260 Hz while the
true fmax in testing varies randomly within the same ranges as
those of DL-based estimator. The number of pilots Nb is set
to be 12.

As shown in Fig. 12, the BER performance of the LMMSE
estimator degrades when fmax varies randomly and the degra-
dation becomes severer as SNR increases. In particular, when
SNR is equal to 20 dB, the performance losses resulted
from varying fmax reach 5 dB and 9 dB, respectively, for
fmax ∈ [0, 520] Hz and fmax ∈ [0, 1444] Hz. While for the
DL-based estimator, the performance losses resulted from
varying fmax are less than 0.5 dB and 1.5 dB, respectively.
These results show that the variations on statistics of channel
models degrade the performance of the LMMSE estimator
but have no significant influence on the performance of the
DL-based estimator. These results also validate the excellent
generalization ability of DL-based estimator with respect to
the maximum Doppler frequency.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the DL-based estimation algo-
rithm for doubly selective channels. We also designed the
pre-training approach for the DNN to acquire a desired ini-
tialization, which can further improve the performance of the
DL-based estimator. Extensive numerical experiments have
been conducted to evaluate the performance of the proposed

FIGURE 12. The BER performance of DL-based estimation and LMMSE
algorithms with random Doppler frequency.

DL-based estimator, which showed that the DL-based estima-
tor outperforms the BEM-LMMSE estimator in terms of both
efficiency and robustness, and also demonstrated the great
potential of DL on channel estimation and tracking. Since the
proposed DL-based estimator is data-driven and does not rely
on the knowledge of channel statistics, it could be a promising
candidate when the channel models are unknown or difficult
to model analytically, such as in high mobility vehicular com-
munications, chemical communications, underwater commu-
nications, etc. ptimizing strategies.
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