
Received January 4, 2019, accepted March 6, 2019, date of publication March 21, 2019, date of current version April 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2906637

DLattice: A Permission-Less Blockchain Based on
DPoS-BA-DAG Consensus for Data Tokenization
TONG ZHOU 1,2, XIAOFENG LI1, AND HE ZHAO1
1Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2University of Science and Technology of China, Hefei 230026, China

Corresponding author: He Zhao (zhaoh@hfcas.ac.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602435, in part by the Natural
Science Foundation of Anhui Province under Grant 1708085QF153, and in part by the Major Project of Science and Technology of Anhui
Province under Grant 16030901057.

ABSTRACT In today’s digital information age, the conflict between the public’s growing awareness of
their own data protection and the data owners’ inability to obtain data ownership has become increasingly
prominent. The emergence of blockchain provides a new direction for data protection and data tokenization.
Nonetheless, existing cryptocurrencies such as Bitcoin using Proof-of-Work are particularly energy inten-
sive. On the other hand, classical protocols such as Byzantine agreement do not work efficiently in an open
environment. Therefore, in this paper, we propose a permission-less blockchain with a novel double-DAG
(directed acyclic graph) architecture called DLattice, where each account has its own Account-DAG and
all accounts make up a greater Node-DAG structure. DLattice parallelizes the growth of each account’s
Account-DAG, each of which is not influenced by other accounts’ irrelevant transactions. DLattice uses a
new DPoS-BA-DAG(PANDA) protocol to reach consensus among users only when the forks are observed.
Based on proposed DLattice, we introduce a process of data tokenization, including data assembling, data
anchoring, and data authorization. We implement DLattice and evaluate its performance on 25 ECS virtual
machines, simulating up to 500 nodes. The experimental results show that DLattice reaches a consensus in
10 seconds, achieves desired throughput, and incurs almost no penalty for scaling to more users.

INDEX TERMS Blockchain, data tokenization, consensus algorithm, byzantine agreement protocols,
directed acyclic graph.

I. INTRODUCTION
In this new era of digital information age, people generate a
variety of data in their daily lives. On the Internet, they leave
browse records and social data. In the Internet of Things,
user’s health data is collected by wearable devices, and
usage data is acquired by smart home applications. Massive
amounts of data are used to analyze behavioral and health
conditions without the user’s knowledge. To make matters
worse, criminals use privacy data for blackmail and extortion.
The US technology giant Facebook has leaked more than
50 million users’ personal information data, reaping huge
profits and even affecting the US election [1]. Coincidentally,
China Huazhu, a large hotel group, has been reported that
more than 100 million users’ private data has been stolen by
hackers and used for public sales online and blackmail [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Feng Lin.

In the scientific community, Piero Anversa, a well-known
professor and leading expert in the cardiovascular field, was
identified by his Harvard Medical School and Brigham and
Women’s Hospital as having 31 papers suspected of data
fraud, and major medical journals are requested to withdraw
published papers [3]. From these events we can see:

1) The control over the data is difficult to determine. Data
is not controlled by the real owner (e.g. the user entity) but
by the data producer (such as the equipment manufacturer or
the service provider). The real owner of the data lacks the
permission to agree and know about the use of data, so that
the privacy is not guaranteed [4].

2) Data reliability is poor and can be falsified. Data
producers have the ability to tamper with data or even fab-
ricate false data in the centralized database, making it dif-
ficult for data collectors (e.g. research institutions), data
producers, and real owners of data to establish data trust
relationships.

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

39273

https://orcid.org/0000-0003-3486-036X

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

3) Data cannot be shared efficiently. Because the owner-
ship of the data does not belong to the real owner, resulting
in that the data cannot be shared to other paid data collectors
conveniently [5].

The new blockchain technology has shown promising
natures to solve these issues. Blockchain is a cryptograph-
ically secure transactional singleton machine with shared-
state [6], which contains an ordered list of records linked
together through chains, trees or DAGs, etc. Blocks are gen-
erated by distributed nodes through a consensus mechanism
and spread and verified across thewhole network [7]. The dis-
tributed nature of blockchain implies no single entity controls
the ledger, but rather the participating peers together validate
the authenticity of records. It is indeed because of its features
such as decentralization, tamper-resistance and network data-
sharing, blockchain has tremendous potential in the fields of
data protection and tokenization [8], [9].

Unlike cryptocurrencies which are created on and derived
their values directly from the blockchains, digital assets are
often issued by real world entities and blockchains are merely
a medium to record their existence and exchanges [10].
Multichain [11] offers ledgers for storing and tracking asset
history. IOTA [12] issues its token and offers its public ledger
as a platform for micro-payment, which makes data been
exchanged among IoT devices. Previously, we proposed a
method of data assetization and may help promote the data
value transferring and data sharing among the Internet of
Things based on Ethereum Smart Contracts [5].

Resolution of forks is the core problem faced by any
cryptocurrency. Bitcoin [13] and most other cryptocurren-
cies [6], [14] address forks problem using Proof-of-Work
(PoW), where users must repeatedly compute hashes to grow
the blockchain, and the longest chain is considered authori-
tative [15]. The process is particularly energy intensive and
time consuming. Proof-of-Stake (PoS) [16] avoids the com-
putational overhead of proof-of-work and therefore allow
reducing transaction confirmation time. On the other hand,
although the advantage of original PBFT [17] is finality,
which once a block is appended, it is final and cannot be
replaced, Byzantine Agreement protocols do not work in an
open environment efficiently because of bandwidth limitation
and having no trusted public-key infrastructure [18].

The main contributions of this paper are as follows:
1) We propose a permission-less blockchain, called DLat-

tice, with a novel Double-DAG architecture where each
account has its own Account-DAG and all accounts
make up a greater Node-DAG structure. DLattice par-
allelizes the growth of each account’s Account-DAG,
each of which is not influenced by other accounts’
irrelevant transactions. The use of Red-Black Merkle
Tree in the account’s D-Tree speeds up the efficiency
of querying and inserting data assets.

2) We design a new DPoS-BA-DAG (PANDA) protocol
to reach consensus among users only when the forks
are observed instead of executing consensus at a fixed
interval. Experimental results show that the protocol

can reach a consensus with latency in 10 seconds while
scaling to more users.

3) We introduce a process of data tokenization based
on proposed DLattice structure, including data assem-
bling, data anchoring and data authorization.

The rest of the paper is organized as follows: Section II con-
sists of related works, Section III reviews the preliminaries
used throughout this paper. In Section IV, the blockchain
model is described in detail. A series of methods for data
tokenization is presented in Section V. Our PANDA consen-
sus is elaborated in section VI, followed by the attack vectors
and security analysis in Section VII. Section VIII presents the
implementation and evaluation. Finally, the conclusion and
future direction are presented.

II. RELATED WORKS
A. PROOF OF WORK (POW) VARIANTS
PoW protocols require miners to solve complex crypto-
graphic puzzles which is easy to be verified based on their
own computing power by cryptographic hashes. Specifically,
the solution is a random nonce n such that

H (n||H (b)) ≤ M/D,

for a cryptographic hash function H with a variable number
of arguments and range [0, M], a target difficulty D and the
current block content b [10], [19]. The faster the puzzle is
solved by miners, the higher possibility a block is created.
A new block is generated every 10 minutes on average in
Bitcoin [20].

B. PROOF OF STAKE (POS) VARIANTS
PoS protocols change the puzzle’s difficulty to be inversely
proportional to theminer’s stake in the network [10], [19]. Let
bal() be the function that returns the stake, then a miner S can
generate a new block by solving the puzzle of the following
form:

H (n||H (b)) ≤ bal(S)M/D.

Casper [21] is an Ethereum’s upcoming PoS protocol based
on smart contract. It allows miners to become validators by
depositing Ethers to the Casper account. The contract then
picks a validator to propose the next block according to
the deposit amount. If the block is confirmed, the validator
gets a small reward. But if it is not, the validator loses its
deposit [10].

C. BYZANTINE CONSENSUS VARIANTS
Byzantine Agreement (BA) protocols have been used to repli-
cate a service across a small group of servers [22] [23],
therefore they are suitable for permissioned Blockchain.
PBFT [17] is deterministic and incurs o(N 2) network mes-
sages for each round of agreement where N is the number
of nodes in the network. Tendermint [24] proposes a small
modification on top of PBFT. Instead of having an equal vote,
each node in Tendermint may have different voting power,
proportional to their stake in the network.

39274 VOLUME 7, 2019

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

Algorand [15] uses a BA∗ protocol to reach consensus
among users on the next set of transactions based on Veri-
fiable Random Function that allows users to privately check
whether they are selected to participate in the BA, and to
include a proof of their selection in their network messages.

D. DIRECTED ACYCLIC GRAPHS (DAGS) VARIANTS
Nano and HashGraph are some recent proposals for increas-
ing Bitcoin’s throughput by replacing the underlying chain
structured ledger with a DAG structure. Hashgraph [25]
is proposed for replicated state machines with guaranteed
byzantine fault tolerance and achieves its fast, fair and secure
transactions based on gossip about gossip and virtual voting
techniques.

Nano [26] proposes a novel block-lattice architecture
where each account has its own blockchain, delivering near
instantaneous transaction speed and unlimited scalability and
allowing them to update it asynchronously to the rest of the
network, resulting in fast transactions withminimal overhead.

III. PRELIMINARIES
A. SYMMETRIC AND ASYMMETRIC CRYPTOGRAPHY
Symmetric Cryptography uses the same cryptographic keys
for both encryption of plaintext and decryption of cipher
text. The keys may be identical or there may be a simple
transformation to go between the two keys. Asymmetric
Cryptography is also known as a public key cryptography and
uses public and private keys to encrypt and decrypt data. The
keys are simply large numbers that have been paired together
but are not identical. One key in the pair can be shared with
everyone and called the public key. The other key, called the
private key, in the pair is kept secretly.

B. CRYPTOGRAPHIC HASH FUNCTION
maps arbitrarily long strings to binary strings of fixed length.
And it should be hard to find two different strings x and y such
that H(x) = H(y), where H () represents the hash function.

C. DIGITAL SIGNATURES
allow users to authenticate information to each other without
sharing any secret keys, based on public key cryptography.
To create a digital signature, the hash of the message is
created firstly. The private key is then used to encrypt the
hash. The encrypted hash is the digital signature.

IV. MODEL DESCRIPTION
A. DEFINITIONS
1) CONSENSUS-PARTICIPATING NODE
Consensus-participating node, CNodei ∈ {CNode1, .,
CNodeN }, where N represents the number of nodes in the
system. A consensus-participating node is a piece of software
running on a computer that conforms system protocols and
joins in the system network. The nodes communicate with
each other through the gossip protocol, and their distribution
is as shown in Fig. 1. The CNode is responsible for recording

FIGURE 1. Overall structure of DLattice. The nodes (CNode), consisting of
normal accounts (NorAC) and consensus accounts (ConAC), communicate
with each other through the gossip protocol.

the asset ledger and the data ledger, and these ledgers in
each CNode are the same. When initialized, each CNode
creates one unique consensus account ConACi. The account
consists of a public-private key pair < Pki, Ski >. The
public key Pk is called the account address, which is used to
identify the identity of CNodei, and is exposed to the whole
network. The consensus account needs to reserve a certain
amount of consensus deposit. At the same time as enjoying
the consensus right to obtain other accounts’ fork penalty,
the node also bears the risk of forfeiture of the consensus
deposit for its malicious behaviors. Significantly, the node
that owns all tokens of the system at initial state is called
the Genesis Node, and it is responsible for the booting of the
system.

2) ACCOUNT
The account, Accountk ∈ {Account1, ,AccountM },
where M represents the number of accounts, which has no
theoretical upper limit. The account is the main body of
actual user’s participation in the system, and is composed
of a public-private key pair < Pkk , Skk >, where the pub-
lic key Pkk is used to identify the identity of the account
and is exposed to the entire network. A user can control
multiple accounts, but each account only corresponds to one
public key. The private key Skk is similar to the password
in the ordinary system. The user holding the private key has
the actual control of the account. The Skk can be used by the
account to sign the transaction block or message to clarify
the source of them. The accounts include normal account
NorAC and consensus account ConAC . The NorAC consists
of a currency ledger and a data ledger, which can be used
to send and receive currency assets and data assets and to
assign access control of the data assets. The structure of
account is also shown in Fig. 1. The ConAC has the same
function as the NorAC except for the functions described in
Definition 1. Each account has its own DAG structure called
Account-DAG, which together makes up the Node-DAG.

VOLUME 7, 2019 39275

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

3) TRANSACTION AND BLOCK
A transaction is an agreement or a certain behavior between
the sender and the receiver [27]. In this system, the con-
struction of the transaction requires the account owner to
sign with its private key, and a block contains only one
transaction, so it is called a Transaction Block in this paper,
recorded as TB. The transaction blocks include Creating
Transaction Block TBcreate, Delegating Transaction Block
TBdelegate, Sending and Receiving Transaction Block <

TBsend ,TBreceive|TBdeal >, and Authorization Transaction
Block TBauth, etc., as shown in Fig. 2. Both the transfer of
the currency asset and the data asset require the confirmation
of two transaction blocks. The TB consists of three states,
σ (StateTB) ∈ {Ssending, Spending, Sreceived }, namely the Send-
ing State Ssending, the Pending State Spending and the Received
State Sreceived . In a transaction process, the TBsend is con-
structed and broadcasted by the sender. At this time, the state
of the TBsend is Ssending. After all nodes are received (or the
consensus is completed), the state becomes Spending. When
the receiver is online, the currency assets or data assets will be
received according to TBsend , the corresponding TBreceive or
TBdeal is constructed, and the TBsend ’s state becomes Sreceived ,
and the entire transaction process is completed.

FIGURE 2. Anatomy of transaction blocks.

The Creating Transaction Block TBcreate is used to cre-
ate user accounts, including creating normal accounts and
consensus accounts. The initial DLTs of an account come
from system allocation or currency transferred from other
accounts. TBcreate = (HPRE ,Hsource,Haccount ,PoW , Sig),
where HPRE represents the hash value of the previous trans-
action block, here is the hash value of the Genesis Header;
Hsource indicates the account address of sender;Haccount
stands for the account address which created this transaction
(the public key); PoW means the proof of work required to
generate this transaction block; Sig records the signature of
this transaction block with the account’s private key.

Sending and Receiving Transaction Block TBsend ,
TBreceive and TBdeal are used to send or receive cur-
rency assets or data assets. The Sending Transaction Block
TBsend = (HPRE ,Howner ,Hdfp,Dsp,Value,Token,FP,PoW ,
Sig), where Howner represents the address of the account
receiving the block; Hdfp is a digital fingerprint of the data;
Dsp briefly describes the sending data asset; Value stands

for the price of the data; Token represents the amount of
currency sent; If only Token and no Value is in TBsend ,
it just means the transfer of currency. TheTBreceive =
(HPRE ,Hsource,PoW , Sig), where Hsource indicates the hash
value of the corresponding TBsend . If Value is included
in TBsend , it indicates the transfer of data assets. The
TBdeal = (HPRE ,Hsource,HRBMerkle,Work, Sig), where
HRBMerkle stores the root of D-Tree of the Account-DAG.
When < TBsend ,TBreceive > and < TBsend ,TBdeal > appear
in pairs, it indicates that the transfer of currency assets or data
assets has been confirmed by the system. The TBdata is the
representation of TBdeal on the D-Tree of the Account-DAG.
The TBdata is denoted asTBdata = (Hsource,Hauth,PoW , Sig),
where Hsource represents the hash value of the corresponding
TBdeal and Hauth is the hash value of the TBauth.

Authorization Transaction Block TBauth is used by the
account to determine which account has the access control
of the data assets. The Authorization Transaction Block,
TBauth = (HPRE ,Hsource,HRBMerkle,Pld,FP,Pow, Sig),
where Pld records the list of access permission gener-
ated by the account through a mixed cryptogram arithmetic
(see Section V for details). It is worth noting that these
transactions are sent and received from the same account.

Delegating Transaction Block TBdelegate is used to assign a
consensus node to wield voting power on its behalf. TBdelegate
is denoted as TBdelegate = (HPRE ,HDLG,PoW , Sig), where
HDLG represents the public key of the delegate node. It is
worth noting that TBdelegate only indicates that the node is
delegated to wield voting power, and the actual currency
assets in the account are not transferred.

4) DIGITAL ASSERT
Digital assets are assets in the form of electronic data which
are owned or controlled by enterprises, organizations or indi-
viduals and are held for sale or in production [27]. In the
proposed system, the digital assets are categorized as Cur-
rencyAsset (CA) andData Asset (DA), where CA is the token
issued by the system, denoted as DLT , which is consumed
as the equivalent in the process of data transfer and is an
important part of data tokenization and a representation of
data value. DA is the result of data tokenization. By assem-
bling the raw data and storing it in a distributed database, and
protecting the corresponding data fingerprint on the chain,
the raw data is tokenized as on-chain assets for sale and
transaction.

5) DLATTICE
As shown in Fig. 3(a), DLattice is a DAG structure called
Node-DAG, which consists of a Genesis Header and the
Account-DAG of accounts. All accounts are organized in
the form of Merkle Patricia Tree (MPT) [28] by the Gen-
esis Header. The public key of the consensus account is
used as the Key, and the hash value of TBcreate which is
created as an Account Root Block (ARB) is used as the
Value to jointly build the MPT. The Account-DAG structure
of each account is derived sequentially from its ARB, and

39276 VOLUME 7, 2019

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

FIGURE 3. (a) Overall structure of Node-DAG; (b) Anatomy of Account-DAG. An older Red-Black Merkle Tree is on the left. After receiving a
new DA (hash 0x23), the newer Red-Black Merkle Tree is on the right. And the TBdeal records the Red-Black Merkle Tree root before
updating.

is composed of the Token-Chain (T-Chain) and the Data-
Tree (D-Tree). The income and expenditure records of the
data asset and the currency asset, which are sent by the
account, is recorded by T-Chain in the form of a unidirectional
chain.

D-Tree is a Red-Black Merkle Tree [29] combining with
T-Chain, which stores the digital fingerprint of the data
asset and corresponding access control permissions, as shown
in Fig. 3(b). The digital fingerprint of the data in TBsend
is taken as the Key, while TBdata is used as the node to
jointly build the Red-Black Tree. The Merkle Root of the
Red-Black Tree is recorded in HRBMerkle of TBdeal . The com-
plete DLattice structure is formed by the Account-DAG of all
accounts.

B. ASSUMPTIONS
Assumption 1: DLattice makes standard cryptographic
assumptions such as public-key signatures and hash
functions.
Assumption 2:DLattice assumes that honest users run bug-

free software and the fraction of money held by honest users
is above some threshold h(a constant greater than 2/3), but
that an adversary can participate in DLattice and own some
money.
Assumption 3: DLattice makes a ‘‘strong synchrony’’

assumption: most honest users can send messages that will
be received by most other honest users within a known time
bound δterm. And this assumption does not allow network
partitions.
Assumption 4:DLattice also makes a ‘‘weak synchrony’’

assumption: the network can be asynchronous for a long
but bounded period of time. After an asynchrony period,
the network must be strongly synchronous for a reasonably
long period again.
Assumption 5:DLattice assumes that if some probability p

is negligible, it means it happens with probability at most
O(1/2λ) for some security parameter λ. Similarly, if some
event happens with high probability, it happens with prob-
ability of at least 1− O(1/2λ).

C. NOTIONS
Through this paper, we use these notions as shown in Table 1.

TABLE 1. Notions and detailed description.

V. DATA TOKENIZATION
A. DATA ASSEMBLING
Data assembling is to assemble the raw data Draw into a
data structure that can be used by DLattice at the gen-
eration source of data. This data structure is denoted as,
D = (PkP,PkO,EK (Draw),EEK ,T , SigSK (Draw)), where
PkP represents the public key of data producer; PkO repre-
sents the public key of data owner; the source of Draw are
rich and varied: it can be the continuous data generated by
the device in Internet of Things, or a digital file, or a medical
file, or recorded data generated between people’s communi-
cation (e.g. cases, prescriptions between doctors and patients
etc.). The types of Draw include: binary stream (images,
documents, videos, etc.), URL, etc. EK (Draw) indicates that
the data producer uses a random AES key to symmetrically

VOLUME 7, 2019 39277

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

encrypt the raw data, and the AES key is asymmetrically
encrypted with the PkO of data owner and is stored in EEK .
Only the data owner who owns the corresponding private key
SkO can decrypt the ciphertext to obtain Draw. SigSK (Draw)
indicates that the data producer uses its private key SkP to
sign Draw, the signature can be verified only by the PkP of
the data producer. T represents the timestamp of the data
generation. The data structureD can be stored in a distributed
database (IPFS [30] currently) to obtain a digital fingerprint.
The digital fingerprint is stored in the Hdfp of TBsend .

B. DATA AUTHORIZTION
If the data owner wants to authorize the data to other accounts
for access, the public key Pkother is needed for asymmetrical
encryption of < key, iv >. As shown in (1), edkk is stored in
the Pld of the TBauth. If the user obtains edkk from the Pld
of the TBauth, and acquires the symmetric encryption key by
using his private key Skother and (2), the data can be decrypted
by using (3), thereby realizing the access control of the data
asset by using the hybrid encryption mechanism.

edkk ← EECC (< key, iv > ||Pkother) (1)

< key, iv >← DECC (edkk ||Skother) (2)

Draw← DAES (Cipher|| < key, iv >) (3)

C. DATA ANCHORING
Data anchoring is to anchor the digital fingerprint of data
assets on the blockchain after data assets in distributed stor-
age. Data anchoring is the core of data tokenization. The dig-
ital fingerprint obtained from data storage is used to construct
a TBsend and it will be broadcasted to the entire network.
Once TBsend is received by all the consensus nodes in the
system, it will be added to the T-Chain of the corresponding
account. If there is a fork, it may be appended after the
consensus is reached (see Section VI for details). When the
receiver is online, the data asset is checked first to see whether
the demands of the receiving account are met, and then the
TBdeal (the current Red-Black Merkle Tree Root is saved
in HRBMerkle) will be created to receive the digital asset and
pay. Finally, the TBdata is created, and the Red-Black Merkle
Tree is updated on its D-Tree to complete the transfer of data
assets.

VI. DPoS-BA-DAG(PANDA)
A. NODE BOOTSTRAPPING
The development of system is divided into the Boot Epoch
and the Freedom Epoch as the number of consensus nodes
increases, denoted as σ (Epochnode) ∈ (Eboot ,Efreedom). In the
initial Boot Epoch, the Genesis node reviews the online and
storage capabilities of the new nodes (these nodes may be
trusted large medical institutions, companies or government
research institutions, etc., which are endorsed by their social
credibility), and assigns certain initial DLTinit to the consen-
sus account of these nodes to complete the joining of the
boot node. The committee consisting of boot nodes is called
BootCommittee, and its size is [4,CB]. The nodes less than

the threshold τ bootgood are allowed to be accidentally offline, and
the DLTtotal satisfies:

DLTtotal = CB × DLTinit ,

where CB represents the amount of boot nodes. In the Boot
Epoch, each node knows the exact number of nodes in the
current system. When the allocation of DLTtotal is completed
(the amount of nodes N > CB at this moment), the system
enters the Freedom Epoch, and the newly joined nodes can
be added to the system at will by purchasing DLT from other
accounts in the system. It is noteworthy that common users
can create a normal account at any time by purchasing DLT
from a node that has joined the system.

B. FORK OBSERVATION
It can be seen from Definition 3 that in DLattice, the transac-
tion block TB can only be constructed by the sender, so it
is impossible to be forged by a third party, which means
that a malicious account can generate a fork by constructing
different TBsend s with an identical previous hash HPRE on its
own T-Chain.

Assume that an account has constructed multiple trans-
action blocks with identical HPRE , as shown in Fig. 4,
recorded as ListTB={TBsend ,TB

′

send ,TB
′′

send ,}, and broad-
casted them to the entire network. A node will observe a
set {TBsend , ...,TB

′

send } with identical HPRE , thus forming a
fork. Because T-Chain is a unidirectional chain, it is nec-
essary for all nodes in the network to pick a certain TB
from ListTB and add it to its Account-DAG by the consensus
algorithm.

FIGURE 4. A fork occurs when two (or more) signed transaction blocks
reference the same previous block. Older transaction blocks are on the
left; newer blocks are on the right.

If a node not observe any forks, the TB will be added to
Account-DAG directly. When a fork is observed by a node
(the node is called a Candidate Consensus Node, denoted as
Candidateseed , where seed is the corresponding HPRE), due
to the incentive of Fork Penalty, theCandidateseed who wants
to get Fork Penalty will actively participate in the consensus
following these steps in Fig. 5.

FIGURE 5. Flow chart of PANDA consensus.

39278 VOLUME 7, 2019

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

C. CONSENSUS IDENTITY SETUP
When a fork is observed, each Candidateseed begins to cal-
culate its own consensus identities and participate in the
consensus to resolve this fork.

In the Eboot , each Candidateseed has a unique consensus
identity:

IDseed ←< Pk, Seed, hash, proof ,message, Sigsk >

at each phase of each term of the consensus. The generation
of hash,proof and messagewill be detailed in Part D.

In the Efreedom, the hash value:

hash ≤ wi/W

that satisfies the PoS condition is calculated locally and
secretly by Candidateseed to constitutes a consensus identity:

IDseed ←< Pk, Seed, IDpos < hash >, Sigsk >,

together with the information such as its public key to partic-
ipate in this consensus. It is worth noting that nodes are able
to generate multiple identities in local secretly for consensus
at each phase of the consensus based on their voting power
in the Efreedom. Where wi is the sum of the voting power the
node holds and represents;W is the total voting power. These
parameters together determine the computational difficulty
of the consensus identity. It can be obtained from Lemma 1
that the larger the voting power of the node, the more con-
sensus identities will be generated in the same number of
attempts, as well as the greater the probability of obtaining
Fork Penalty.

D. COMMITTEE FORMATION
The Candidateseed secretly generates the consensus iden-
tity in local, and the consensus committee that resolves
this fork is also formed at the same time. The consensus
committee is denoted as Committeeseed . In the Eboot , each
Candidateseed generates a unique consensus identity to par-
ticipate in Committeeseed . In the Efreedom, each Candidateseed
generates multiple consensus identities secretly and locally
based on its voting power to form a Committeeseed , as shown
in Algorithm 1. And the Committeeseed at the Pvote and
Pcommit are different, denoted as Committeeseed(vote) and
Committeeseed(commit) respectively.
The ConsensusIDGeneration() (Algorithm 1) is used to

generate the consensus identity at the phase Pconsensus in
e term. According to Lemma 2, each node calculates the
consensus identity for CE times secretly and locally based on
its voting power. If the identity conforms to the PoS condition,
it can vote in the corresponding consensus phase.

The Verifiable Random Function (VRF) [31] is used to
calculate a hash value secretly and locally, and the consensus
identity that satisfies the PoS condition is calculated accord-
ing to the hash value. The identity satisfies that each node
can only calculate its own consensus identity instead of being
calculated in advance by other nodes, while other nodes can
verify the identity only after being broadcasted.

Algorithm 1 ConsensusIDGeneration(): Generation of
Consensus Identity
Input: ctx, Seed , Pconsensus
1: if ctx.Eboot then
2: < hash, proof >← VRFSk (Seed ||Pconsensus||e)
3: IDseed ←< Pk, Seed, hash, proof , Sigsk >
4: if e%δMaxTerm == 1 then
5: ctx.ListID[Seed][e][Pconsensus].

append(IDseed)
6: else if ctx.Efreedom
7: for index = 0; index < ctx.CE ; index ++
8: < hash, proof >← VRFSk

(Seed ||Pconsensus||e||index)
9: message←< Seed,Pconsensus, e, index >
10: IDpos←< hash, proof ,message >
11: IDseed ←< Pk, Seed, IDpos, Sigsk >
12: if e%δMaxTerm == 1

&&hash ≤ ctx.wi/ctx.W then
13: ctx.ListID[Seed][e][Pconsensus].

append(IDseed)
14: end for
15: end if

In order to simplify the expression, in this paper, the private
key Ski and the public key Pki of each consensus account
ConACi, the sum of the voting power wi the node owns and
represents, the total voting powerW of the system, and other
information such as system configuration are collectively
referred to as the context information of ConACi, denoted
as ctx.

The VerifyID() (Algorithm 2) is used to verify whether
the consensus identity IDseed is in consensus committee
Committeeseed(Pconsensus) at the phase Pconsensus.

Algorithm 2 VerifyID(): Verifying A Consensus Identity
Whether in the Consensus Committee
Input:IDseed , Pconsensus
Output:TrueorFalse
1: < Pk, Seed, IDpos, Sig >← ProcessID(IDseed)
2: < hash, proof ,message >← IDpos
3: < Pconsensus, e, index >← message
4: if !VerifySignature(Pk, Sig) then return False
5: if ctx.Eboot then
6: if ¬VerifyVRFPk (hash, proof ,

Seed ||Pconsensus||e) then
7: return True
8: else if ctx.Efreedom
9: if ¬VerifyVRFPk (hash, proof ,

Seed ||Pconsensus||e||index)
10: &&(hash ≤ ctx.wi/ctx.W)then
11: returnTrue
12: end if
13: return Flase

VOLUME 7, 2019 39279

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

E. CONSENSUS
At the same time as the formation of the consensus com-
mittee, the consensus begins accordingly. The consensus is
divided into two phases σ (Phaseconsensus) ∈ (Pvote,Pcommit).
At the Pvote, the selected members of Committeeseed(vote)
shall select a TB to vote, and all consensus nodes collect
the vote results. At the Pcommit , the members of committees
Committeeseed(commit) will start the commit voting based on
the collected vote results, and all nodes collect the commit
voting results. If a node counts commit voting results exceeds
the threshold τgood , the consensus is reached on this node.

In a strongly synchronous network, it is optimal to reach a
consensus within the time of 2 × δterm. The message propa-
gation complexity is o(C2

P), where CP is the actual size of the
consensus committee. It is worth noting that in the Eboot , each
node has a unique identity for consensus, CP = CB; however
in the Efreedom, each node has multiple consensus identities
based on its voting power, and these consensus identities of
the node are combined and then broadcasted. At this time,
CP ≈ CE .

In a weakly synchronous network environment, if the
member of Committeeseed(vote) does not receive enough
votes, the Committeeseed(vote) continues to vote, as shown
in Algorithm (3, 4, 5), and a consensus can be reached accord-
ing to Lemma 3 and 4. If the consensus has not yet been
reached in the limited term δMaxTerm, it will be suspended.
After a certain period of time, the consensus will restart.
When the strong synchrony comes, the reaching consensus
can be guaranteed.

Algorithm 3 PANDA_CONSENSUS()
Input: ctx, Seed
Output: Mtype, e, HTB
1: e← 1;HselectedTB← Empty;HTB
← Empty;ListTB← {}

2: while e ≤ δMaxTerm do
3: ListTB← CollectTBlocks(HPRE)
4: HselectedTB← ForkSelection(ctx,ListTB)
5: CommitteeMsg(ctx,HPRE ,HselectedTB,Pvote, e)
6: HTB← CountMsg(ctx,HPRE ,Pvote)
7: if HselectedTB == HTB then
8: CommitteeMsg(ctx,HPRE ,HTB,Pcommit , e)
9: HTB← CountMsg(ctx,HPRE ,Pcommit)
10: if TIMEOUT 6= HTB then
11: return < COMMIT , e,HTB >
12: e++
13: end while

The consensus node monitors the presence of the Spy iden-
tity (definition in section B of part VII) during the counting
process, and Evd will be collected and broadcasted to the
entire networks as soon as the Spy identity is discovered
(e.g. an identity IDi discovers that an identity IDj has voted for
bothHa andHb in a certain term of the consensus voting, then
the evidence Evd < Pki,Pkj, {Ha, Siga}, {Hb, Sigb}, Sig >
will be saved and broadcasted). Upon the knowledge and

verification of other nodes, the node corresponding to the Spy
identity is blacklisted, and the voting of the blacklisted node
is ignored in the following consensus. The consensus deposit
of the node is deducted at the end of the consensus. Therefore,
the best choice for a malicious node is to select only one TB to
vote, and try to delay the consensus time as much as possible,
or not to vote at all.

The CommitteeMsg() (Algorithm 4) is the algorithm used
by members of theCommitteeseed to send messages. The type
of the sent message σ (Mtype) is divided into (Mvote,Mcommit)
according to the phase in which the consensus is located,
where Mvote is the message used by the phase Pvote to vote
for the selected TB, whileMcommit is the message used by the
phase Pcommit to commit the TB based on the collected vote
results.

Algorithm 4 CommitteeMsg(): Broadcasting Messages by
Committee Members
Input: ctx, Seed , HTB, Pconsensus, e
1: Mtype = GetMsgType(Pconsensus)
2: index = e/δMaxTerm + 1
3: if ListIDseed ← ctx.ListID[Seed][Pconsensus][index]
4: !isEmpty(ListIDseed) then
5: SendMsg(Mtype,HTB,ListIDseed , Sigctx.sk)
6: end if

The CountMsg() (Algorithm 5) is used by the consen-
sus nodes to collect and count the number of messages.
If the received message amount exceeds the threshold τgood ,
the hash of the corresponding transaction block and its term
are returned; if the threshold is not exceeded within δterm,
TIMEOUT is returned.

Algorithm 5 CountMsg(): Counting Messages
Input: ctx, Seed , Mtype
Output: HTB or TIMEOUT
1: start ← Time(); counts← {}; voters← {}
2: msgs← CollectGobalMsgs(Mtype).iterator()
3: while True do
4: if Time() > start + ctx.δTerm then TIMEOUT
5: m← msgs.next()
6: Pconsensus← GetPhase(Mtype)
7: < IDseed ,HTB >← ProcessMsg(m)
8: if !VerifyID(IDseed ,Pconsensus) then continue
9: if IDseed ∈ voters[IDseed .e][Mtype] then continue
10: counts[IDseed .e][Mtype][HTB]++
11: if counts[IDseed .e][Mtype][HTB] ≥ τgood then
12: return HTB
13 end while

VII. ATTACK VECTORS AND SECURITY ANALYSIS
A. ATTACK VECTORS
1) DOUBLE SPENDING ATTACK
Double-spending is the core problem faced by any cryptocur-
rency, where an adversary holding $1 gives his $1 to two

39280 VOLUME 7, 2019

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

TABLE 2. Potential problems in each step of PANDA protocol and the
corresponding lemmas which resolve them.

different users [15]. DLattice prevents double-spending by
Fork Penalty and PANDA consensus.

First, each transaction block TB is required to reserve the
Fork Penalty (FP) at their creation. When the fork occurs,
the honest node selects a TB from the fork set, and then
resolves the fork on the basis of PANDA consensus. All par-
ticipating identities in the consensus have the opportunity to
obtain the FP of the TB. The algorithm for allocation of fork
penalty is shown as Algorithm 6. It is worth mentioning that
the FP will be obtained only if the XOR distance between the
consensus identity IDseed and the previous hash HPRE is less
than the threshold τpenalty, so the more DLT the consensus
account holds, the greater probability to obtain the penalty.

Algorithm 6 ForkPenaltyAllocationCheck(): Allocation of
Fork Penalty

Input: ctx, Seed , e
Output: True or False
1: flag← False
2: ListIDseed ← ctx.ListID[Seed][e]
3: for i = 0; i < Len(ListIDseed); i++
4: dist = ListIDseed [i]⊕ Seed
5: if dist ≤ ctx.τpenalty then flag← True
6: end for
7: reture flag

2) SYBIL ATTACK
If there is no trusted public key infrastructure in a system,
a malicious node can simulate many virtual nodes, thereby
creating a large set of sybils. An entity could create hundreds
of nodes on a single machine [32].

However, since the identities of these nodes in consensus
process are created in proportion to their account balances,
adding extra nodes into the network will not gain an attacker
extra vote. Therefore, sybil attack will bring no advantage.

3) DDOS ATTACK
A distributed denial-of-service (DDoS) attack is a malicious
attempt to disrupt normal traffic of a targeted server, service
or network by overwhelming the target or its surrounding
infrastructure with a flood of Internet traffic [33].

According to the previous analysis, in a strongly syn-
chronous network, the consensus is reached within the
first term. At this time, the member of Committeeseed(vote)
and Committeeseed(commit)at the consensus phase are non-
interactively selected based on VRF, which has a posteriority

to prevent DDoS attacks and collusion among committee
members. If the consensus is not reached in first term (pos-
sibly due to the randomness of generation of the com-
mittee or a weakly synchronous network environment),
the Committeeseed(vote) may indeed suffer DDoS attacks due
to exposure. However, first, the attack will not affect other
consensus committee to resolve other forks. Second, the
development of the entire system will not be affected because
only the consensus committee resolving the fork generated
by malicious users will suffer from DDoS attack. Finally,
thanks to the existence of the FP, committee members who
have sufferedDDoS attacks will eliminate the DDoS attack as
soon as possible to reach consensus, so as to obtain rewards.

4) FLUCTUATION OF NODES
Generally, the amount of consensus nodes will show a
trend of growth over time, as shown by the green line
in Fig. 6. Before the time t1, the system is in the Eboot , each
Candidateseed only has a consensus identity; when the time
is at t2, the system enters the Efreedom from the Eboot , each
Candidateseed may have multiple consensus identities; but
when the time reaches t3 (on the blue curve), and the nodes in
the system have less thanCB for various reasons, the system is
still in the Efreedom (and it will not go back to the Eboot). If the
remaining active honest nodes still have the voting power of h,
although the actual amount of nodes is less than the sizeCB of
the BootCommittee, the actual amount of generated identities
CP still satisfy CE ≈ CP. According to Lemma 2, at most
CP/3−1 consensus identities are controlled by the Byzantine
node, so that an effective consensus can still be reached.

FIGURE 6. Schematic diagram of fluctuation of Nodes.

B. SECURITY ANALYSIS
In this section, we provide security analysis for how DLattice
prevents potential threats andworks securely based on several
assumptions clarified in Section IV. We also discuss how the
byzantine adversary gains no significant advantage.
Definition Spy. If the behavior of an identity is dishon-

est and is discovered, we call this identity a Spy, and we
can obtain evidence based on dishonest behavior, which we
callEvd, like voting forHaat the same time as voting forHbat
the phasePvote, or other behaviors like that.
Definition Ballot.If a node receives at leastτgoodvotes

at the phasePvote, we call it the observation of aBallot.
And the node can only vote or commit thisBallotat the
phasePvoteorPcommit in the later term [34].

VOLUME 7, 2019 39281

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

Lemma 1 (Consensus Identity Generation):In the Con-
sensus Identity Setup phase of the Efreedom, each consensus
identity is generated based on the voting power held by the
node. The generation of consensus identity and the number
of calculating attempts obey the exponential distribution.

Proof: Assume that β indicates the number of attempts
required to generate a consensus identity; θ indicates the
probability of generating a consensus identity at one attempt.
The probability of generating a legal consensus identity
within β attempts is:

P{x ≤ β} = 1− P{x > β} = 1− (1− θ)β

= 1− eβ log(1−θ).
Considering θ � 1 (in general), thus log(1 − θ) ≈ −θ ,

and we can achieve:

P{x ≤ β} ≈ 1− e−θβ .

Therefore, the consensus identity generation and the
required number of attempts obey the exponential distribu-
tion. If we set θ = wi/W , where wi refers to the voting power
of the node,W refers to the total voting power, then:

P{x ≤ β} = 1− e−
wiβ
W .

When the total voting power W = 12000 and the voting
power of two consensus nodes are wi = 10 and wj = 20
respectively, the probability of generating a legal consensus
identity in the β = 400 calculations is shown in Fig. 7. It’s
shown in the figure that when β is a fixed value, the greater
the voting power, the greater the probability of generating a
legal identity.

FIGURE 7. Generation of consensus identities and the number of
attempts obey an exponential probability distribution, where the orange
curve represents wi = 20DLT , and blue curve illustrates wi = 10DLT .

Lemma 2 (Number of Consensus Identities): In the
Committee Formation phase of the Efreedom, the candidate
consensus nodes generate consensus identities based on
their voting power and establish a consensus committee
Committeeseed(Pconsensus). The system guarantees that no mul-
tiple consensus will be reached in the consensus committee.

Proof Sketch: According to Lemma 1, the candidate
consensus nodes generate consensus identities base on their
voting power. The probability of a consensus account owned

voting power wi generating k consensus identities within β
calculations is:

P{x = k} =
(
β

k

)
(
wi
W

)k (1−
wi
W

)β−k .

The expectation is E = βwi/W . According to Assump-
tion 3, the DLTgood held by honest node and DLTtotal of the
systems always satisfy:

h = DLTgood/DLTtotal .

If the total voting power is W = DLTtotal , the voting
power of the honest nodes is whonest = DLTgood , the voting
power of the malicious nodes is wadversary = DLTbad . The
consensus identity expectation generated by the honest nodes
is Ebad = βwadversary/W , the consensus identity expectation
generated by the malicious nodes is Ebad = βwadversary/W ,
so the consensus identity that the system expects to generate
is CE ≈ β, and the honest identity accounts for about h of the
total.

Assume that the maximum and minimum identities gener-
ated by consensus nodes, the honest nodes and the malicious
nodes are allmax, allmin, hmax, hmin, amax and amin respec-
tively. We can list equations as follows:

Punit = 1
W ,Phonest = whonest × Punit ,Padversary

= wadversary × Punit

P{x < hmax} =
hmax∑
k=0

(
β/Phonest

k

)
(Punit)k (1− Punit)β/Phonest−k

P{x < amax} =
amax∑
k=0

(
β/Padversary

k

)
(Punit)k (1− Punit)β/Padversary−k

P{x < allmax} =
allmax∑
k=0

(
β/Punit

k

)
(Punit)k (1− Punit)β/Punit−k

P{hmin < x ≤ β/Phonest } =
β/Phonest∑
k=hmin

(
β/Phonest

k

)
(Punit)k (1− Punit)β/Phonest−k

P{amin < x ≤ β/Padversary} =
β/Padversary∑
k=amin

(
β/Padversary

k

)
(Punit)k (1− Punit)β/Padversary−k

P{allmin < x ≤ β/Punit } =
β/Punit∑
k=amin

(
β/Punit

k

)
(Punit)k (1− Punit)β/Punit−k

And then we set:

P{x < hmax} ≥ 1− 2−λ

P{x < hmin} ≥ 1− 2−λ

P{hmin < x ≤ β} ≥ 1− 2−λ

P{amin < x ≤ β} ≥ 1− 2−λ

P{x < allmax} ≥ 1− 2−λ

P{allmin < x ≤ β/Punit } ≥ 1− 2−λ

39282 VOLUME 7, 2019

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

FIGURE 8. The maximum and minimum number of all identities all,
honest identities h, and malicious identities a that the system may
generate with different security parameters.

Figure 8. The maximum and minimum number of all identi-
ties all, honest identities h, and malicious identities a that the
system may generate with different security parameters.

When β is equal to 100, 200, 300, 400 and 500, respec-
tively, the calculation results of different security parameters
λ are shown in Fig. 8. At the same time, the relationship
between allmax, hmin and amax should be satisfied as follows:

IDgood > 2× amax

IDgood ≤ hmin

2× IDgood > allmax

The system requires at least IDgood honest identities to avoid
multiple consensus results being reached during the consen-
sus process. The value of IDgood depends on the security
parameters. When the security parameter is λ = 20, the most
ideal result is β = 500 and IDgood = 306; when λ = 15,
the result is β = 400 and IDgood = 250; whenλ = 10,
β = 200 and IDgood = 123. The values above ensure
that no multiple consensus results will be reached at the
phase Pcommit .
Lemma 3 (Proof of Safety): In the consensus process, if the

consensus identities reach a consensus on a TBsend in the fork
set {TBsend , ..,TB

′

send }, no consensus will be reached on the
other TB

′

send .
Proof: CP represents the actual size of the consensus

committee; X indicates the number of honest identities that
have committed TBsend in the e term, while 1 ≤ X ≤ IDgood ;
at the phase Pvote in the e+1 term, X honest identities have to
continue to vote as same as in the e term due to the existence
ofBallot; Y stands for the number ofmalicious identity which
can do anything, and Y < IDgood/2; Z indicates the number
of remaining identities. And these parameters satisfy X+Y+
Z = CP; Z0 indicates the number of identities in the remain-
ing identities that have voted at the phase Pvote in term e;

Z − Z0 indicates the number of identities that have not yet
voted;

Once X identities have committed TBsend , the remaining
Y + Z identities will not reach a consensus on the TB

′

send ,
that is, to prove:

Y + Z − Z0 < IDgood .

We can prove it by contradiction, assume that:

Y + Z − Z0 ≥ IDgood ⇒ Y + Z − Z0 + X ≥ IDgood + X

⇒ CP − Z0 ≥ IDgood + X ⇒ X + Z0 ≤ CP − IDgood .
Since CP = Y + IDgood < 3 × IDgood/2, then X + Z0 <

IDgood/2.
Assume that all malicious identities have voted on the

TBsend in the term e, X + Y + Z0 > IDgood , also because
Y < IDgood/2, thenX+Z0 > IDgood/2, which is inconsistent
with the assumption; if some malicious identities Y

′

have
voted on the TBsend in the term e, X + Y

′

+ Z0 ≥ IDgood ,
also because Y

′

< Y < IDgood/2, so X + Z0 > IDgood/2,
which is also inconsistent with the assumption.
Lemma 4 (Proof of Liveness):In the consensus phase, if a

consensus identity is locked on Ballot of a TB in the e term,
when term e

′

> e, if the node find a new Ballot
′

, and the
Ballot in the e term is unlocked while the new Ballot

′

is
locked, thus ensuring the continuation of the consensus.

Proof Sketch: In the Pcommit , due to the existence of
Ballot , some nodes may commit for Ballot while the other
nodes is committing for Ballot

′

, and the votes from both
parties are just equal that led to the failure of reaching a
consensus. At the Pvote, if the node finds the Ballot

′

of higher
term, it indicates that the current system is more inclined to
reach a consensus for Ballot

′

of higher term, so the node
unlocks the Ballot of lower term and locks Ballot

′

of the
higher term. And at the Pcommit , the nodes will commit the
new locked Ballot

′

.

VIII. IMPLEMENTATION AND EVALUATION
We implement DLattice and the goals of our evaluation are
twofold. We first measure the latency and throughput of
DLattice when the network size increases. The second goal
is to compare DLattice to other related consensus protocols
including Bitcoin, Ethereum and PBFT, etc.

A. IMPLEMENTATION
We implement a prototype of DLattice in Golang [35], con-
sisting of approximately 4000 lines of code. We implement
a gossip network by using go-libp2p library (go-libp2p-
pubsub) [36] where each user selects a small random set
of peers to gossip messages to. Elliptic Curve Cryptogra-
phy (ECC) encryption algorithm is used for asymmetric
encryption while the symmetrical algorithm adopts AES
algorithm. SHA-256 is a cryptographic hash function for us
to calculate hash value. And we use the VRF outlined in
Goldberg [37]. The signature algorithm adopts Elliptic Curve
Digital Signature Algorithm (ECDSA).

VOLUME 7, 2019 39283

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

FIGURE 9. Latency to reach consensus using PANDA (a) and PBFT (b) respectively with 50 to 500 consensus nodes. The broken line in (a) represents the
number of identities participating in the PANDA consensus.

TABLE 3. Implementation Parameters.

Table 3 shows the parameters in implementation of proto-
type of DLattice; we mathematically validate these param-
eters λ, CEτ

freedom
good , etc. in Section VII. h = 4/5 means

that an adversary would need to control 20% of DLattice’s
currency in order to create a fork. δterm should be high enough
to allow users to receive messages from committee members,
but low enough to allow DLattice to make progress if it
does not hear from sufficiently many committee members.
We conservatively set δterm to 20 seconds.

B. EVALUATION
We run several experiments with different settings on Ali-
Cloud ECS servers to measure the latency and throughput
of DLattice. We vary the number of consensus nodes in the
network from 50 to 500, using up to 25 ECS instances. Each
AliCloud ECS instance is shared at most by twenty nodes,
and has 4 AliCloud vCPUs and 8 GB of memory.

1) LATENCY
Latency is the amount of time that it takes from the
creation of a transaction until the initial confirmation of
it being accepted by the network [38]. The latency of
Bitcoin and Ethereum is 576.4 seconds (from Block Height
556800 to 556810) [39] and 12 seconds (from Block Height
7002602 to 7002612) [40] respectively in the livenet.

The latency of transaction in DLattice is instantaneous,
so we just consider the consensus latency in this section.
We implement a consensus algorithm similar to PBFT for
Boot Epoch of DLattice. The consensus latency of the algo-
rithm is shown in Figure 9(b), where the consensus latency
includes the time to generate consensus identity and time to
reach consensus. As the number of consensus nodes increases
from 50 to 500, the time continues to rise. Similarly, PANDA
is implemented for Freedom Epoch of DLattice. During
the experiment, when the number of nodes increases from
50 to 500 and the corresponding votingweight decreases from
240 to 24, the consensus latency is shown in Figure 9(a).
As shown in Figure 10(a), since the size of the consensus
message of PANDA (about 0.86 kb) is larger than that of
PBFT (about 0.4 kb)messages, the latency of PBFT is smaller
than that of PANDA when the consensus nodes are less than
250. As the number of nodes increases, the number of identi-
ties participating in the consensus in PANDA is oscillating
around the expected consensus identities, as shown in the
broken line in Figure 9(b), and the consensus identity in
PBFT increases with the number of nodes, so the difference
between two latency is growing larger. Figure 10(a) shows the
comparison among the latency of DLattice with Boot Epoch
and FreedomEpoch (PBFT is used when consensus nodes are
less than 200 in the Boot Epoch, and PANDA is used when
nodes are more than 200 in the Freedom Epoch), the latency
of DLattice-PBFT (PBFT only) and that of DLattice-PANDA
(PANDA only).

39284 VOLUME 7, 2019

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

FIGURE 10. (a) Latency to reach consensus in DLattice with 50 to 500 consensus nodes; The blue curve represents DLattice, the red curve represents
DLattice-PBFT, and the green curve represents DLattice-PANDA. (b)Throughput of DLattice with 50 to 500 consensus nodes.

TABLE 4. Comparison between DLattice and existing blockchain protocols in academia and industry.

2) THROUGHPUT
One of the end goals of blockchain is to replace the current
infrastructure (like financial back-end of many institutions
around the world, which handles thousands of transactions
per second (TPS)), it will need to scale to meet and/or
exceed the TPS to prove its viability. A higher throughput
will also open the doors to more interesting and intensive
applications of blockchain technology [41]. The Bitcoin net-
work processes up to 3 TPS (from Block Height 556800 to
556810) [39] and Ethereum processes up to 127 TPS (from
Block Height 7002602 to 7002612) [40] in the livenet. And
Nano claims that it has theoretical 7000 TPS [42], and exper-
imental 756 TPS in the beta network stress test [43].

From the foregoing, transaction block types of DLattice
include TBsend , TBreceive, TBauth etc., where TBreceive has an
average size of about 0.5 kb, and the size of the TBauth
varies with the number of authorizations. and average size
of TBsend is about 0.7 kb. Therefore, during the experiment,
the time required to receive 25,000 sending transaction blocks
is counted. All numbers are averaged after 10 times. We start
with a network of 50 consensus nodes, and then rise to
500 nodes in the last setting. The throughput of DLattice is
shown in Figure 10(b). As the number of DLattice nodes
deployed per ECS instance increases, the throughput of DLat-
tice is decreasing due to hardware constraints. However, since

the sending of transaction block of each account are asyn-
chronous with other accounts so it is unnecessary to wait
for miners to pack transactions like traditional blockchains.
Although it does not reach 7000 TPS in Nano (Because
Nano’s block is smaller, and DLattice records more infor-
mation about data tokenization), it is still close to 1200 TPS
when less than four nodes are deployed per ECS instance
(However, each computer is likely to deploy only one DLat-
tice node in a real environment). We will further optimize its
throughput in the future experiments and practical scenarios.

3) COMPARISON TO RELATED SYSTEMS
The comparison between DLattice and the existing
blockchain consensus protocols is shown in Table 4. Com-
pared with the traditional Nakamoto consensus algorithm,
the DLattice with PANDA consensus solves the problem
of high energy consumption; compared with the traditional
BFT consensus, the consensus identity has a posteriority,
that is, the randomly elected consensus committee is able to
prove its identity without revealing it in advance. In addition,
as the number of nodes increases, there is no significant
change in network bandwidth consumption. The round-based
Algorand lacks economic incentives, and the signature data is
large, which has strict requirements on network bandwidth.
The chain-based Ouroboros [44] is established in a strong

VOLUME 7, 2019 39285

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

synchrony network and the slot leader has been selected
in advance (these drawbacks have been improved by [45]).
Inspired by Nano, DLattice builds a Double-DAG architec-
ture that is dedicated to the tokenization of data. Compared
with Nano, DLattice slightly sacrifices the processing speed
and throughput rate of transactions, but the random selection
of consensus identity reduces the risk of DDoS attacks and
the possibility of collusion among nodes. Moreover, if the
consensus process is in a strong synchrony network, the con-
sensus can be reached within the first term.

IX. CONCLUSION AND FUTURE WORK
In this paper, we propose a new permission-less blockchain,
called DLattice, with a Double-DAG architecture where each
account has its own Account-DAG and all accounts make
up a greater Node-DAG structure. DLattice parallelizes the
growth of each account’s Account-DAG, each of which is not
influenced by other accounts’ irrelevant transactions, result-
ing in fast transactions with minimal overhead. The core of
DLattice is DPoS-BA-DAG (PANDA) protocol which helps
users reach consensus with low latency only when the forks
are observed. Based on proposedDLattice structure, we intro-
duce a series of methods for data tokenization, including data
assembling, data anchoring and data authorization. DLattice
tokenizes data as on-chain assets for sale and transaction,
making them circulate and transfer securely and efficiently.
Through security analysis, we demonstrate DLattice can pre-
vent some attack vectors such as Double-Spend, Sybil attack,
etc. Experimental results show that DLattice reaches a con-
sensus in 10 seconds, achieves desired throughput, and incurs
almost no penalty for scaling to more users.

The shortcomings of this paper are that i) the current
DLattice prototype only anchors the digital fingerprint of
the data asset, while the raw data is stored in the IPFS, but
due to the lack of incentives, the data may be lost with the
accidental offline of the IPFS nodes. The function of the
consensus node shall be optimized in the following study,
making it not only participate in the consensus but also has
the ability to store data assets; ii) smart contracts are not
currently supported; iii) in the process of consensus, if the
consensus is not reached in the first term, and the identity of
the corresponding consensus committee membership will be
exposed and vulnerable to DDoS attacks. These issues are the
focus of research in the following work.

In the future studies, we consider introducing DLattice to
healthcare and the Internet of Things to achieve the tokeniza-
tion of medical data and IoT data. One possible application
is to manage chronic diseases by tokenizing the medical
examination data, health data collected by wearable devices
and exercise prescription data issued by doctors based on
our previous experience in the field of health informatics.
In this way, the physiological and exercise data of users are
effectively protected while being asserted, and the data can be
efficiently shared and transferred among scientific research
institutions, hospitals, health equipment manufacturers, and
even insurance companies.

REFERENCES
[1] E. Zhou. China’s Biggest Hotel Operator Leaks 500m Customer

Records in Data Breach. Accessed: Aug. 12, 2018. [Online]. Avail-
able: https://www.mingtiandi.com/real-estate/finance-real- estate/huazhu-
hotels-leaks-500m-customer-records-in-data-breach/

[2] D. Ingram. Facebook Says Data Leak Hits 87 Million Users, Widening
Privacy Scandal. Accessed: Aug. 15, 2018. [Online]. Available:
https://www.reuters.com/article/us-facebook-privacy/facebook-says-data-
leak-hits-87-million-users-widening-privacy-scandal-idUSKCN1HB2CM

[3] Braggadocio, Information Control, and Fear: Life Inside a Brigham
Stem Cell Lab Under Investigation. Accessed: Oct. 20, 2018.
[Online]. Available: https://retractionwatch.com/2014/05/30/
braggadacio-information-control-and-fear-life-inside-a-brigham-stem-
cell-lab-under-investigation/

[4] T. Zhou, X. Li, and H. Zhao, ‘‘EverSSDI: Blockchain-Based Framework
for Verification, Authorization and Recovery of Self-Sovereign Identity
using Smart Contracts,’’ Int. J. Comput. Appl. Technol., to be published.

[5] N. Sheng et al., ‘‘Data capitalization method based on blockchain smart
contract for Internet of Things,’’ J. Zhejiang Univ. (Engineering Science),
vol. 52, no. 11, pp. 2150–2153, Nov. 2018.

[6] G. Wood. Ethereum: A Secure Decentralized Generalized
Transaction Ledger. Accessed: Sep. 20, 2018. [Online]. Available:
https://ethereum.github.io/yellowpaper /paper.pdf

[7] T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, ‘‘Blockchain distributed
ledger technologies for biomedical and health care applications,’’ J. Amer.
Med. Inform. Assoc., vol. 24, no. 6, pp. 1211–1220, 2017.

[8] A. Dubovitskaya, Z. Xu, S. Ryu, M. Schumacher, and F. Wang, ‘‘Secure
and trustable electronic medical records sharing using blockchain,’’ in
Proc. AMIA Annu. Symp., 2017, pp. 650–659.

[9] S. Wang, Y. Zhang, and Y. Zhang, ‘‘A blockchain-based frame-
work for data sharing with fine-grained access control in decentral-
ized storage systems,’’ IEEE Access, vol. 6, pp. 38437–38450, 2018.
doi: 10.1109/ACCESS.2018.2851611.

[10] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang,
‘‘Untangling blockchain: A data processing view of blockchain systems,’’
IEEE Trans. Knowl. Data Eng., vol. 30, no. 7, pp. 1366–1385, Jul. 2018.

[11] Multichain: Open Platform for Blockchain Applications. Accessed:
Sep. 11, 2018. [Online]. Available: https://www.multichain.com/

[12] P. Serguei. The Tangle. Accessed: Sep. 2018. [Online]. Available:
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/
45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf

[13] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Accessed:
Sep. 20, 2018. [Online]. Available: https://bitco.in/pdf /bitcoin.pdf

[14] I. Eyal, A. E. Gencer, E. G. Sirer and R. V. Renesse, ‘‘Bitcoin-NG: A scal-
able blockchain protocol,’’ in Proc. 13th USENIX Conf. Netw. Syst. Design
Implement. Berkeley, CA, USA: USENIX Association, 2016, pp. 45–59.

[15] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, ‘‘Algorand:
Scaling byzantine agreements for cryptocurrencies,’’ in Proc. 26th Symp.
Oper Syst. Princ., 2017, pp. 51–68.

[16] S. King and S. Nadal. (2012). PPcoin: Peer-to-Peer Crypto-Currency
With Proof-of-Stake. Accessed: Sep. 20, 2018. [Online]. Available:
https://peercoin.net /assets/paper/peercoin-paper.pdf

[17] M. Castro and B. Liskov, ‘‘Practical Byzantine fault tolerance,’’ In Proc.
3rd Symp. Oper. Syst. Design Implement., Berkeley, CA, USA: USENIX
Association, 1999, pp. 173–186.

[18] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
‘‘A secure sharding protocol for open blockchains,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2016, pp. 17–30.

[19] B. Group. Proof of Stake versus Proof of Work White Paper.
Accessed: Sep. 25, 2018. [Online]. Available: https://bitfury.com/
content/downloads/pos-vs-pow-1.0.2.pdf

[20] Bitcoin Average Confirmation Time. Accessed: Mar. 25, 2018. [Online].
Available: https://blockchain.info/charts/avg-confirmation-time

[21] V. Zamfir. IntroducingCasper ’the FriendlyGhost’,’’ Accessed: Nov. 2018.
[Online]. Available: https://ethereum.github.io/blog/ 2015/08/01/
introducing-casper-friendly-ghost/

[22] M. Pease, R. Shostak, and L. Lamport, ‘‘Reaching agreement in the pres-
ence of faults,’’ J. ACM, vol. 27, no. 2, pp. 228–234, Apr. 1980.

[23] L. Lamport, R. Shostak, andM. Pease, ‘‘The Byzantine generals problem,’’
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982.

[24] E. Buchman, J. Kwon, and Z.Milosevic. (2018). ‘‘The latest gossip on BFT
consensus.’’ [Online]. Available: https://arxiv.org/abs/1807.04938

39286 VOLUME 7, 2019

T. Zhou et al.: DLattice: Permission-Less Blockchain Based on DPoS-BA-DAG Consensus for Data Tokenization

[25] L. Baird. The Swirlds Hashgraph Consensus Algorithm: Fair, Fast,
Byzantine Fault Tolerance. Accessed: Sep. 05, 2018. [Online]. Available:
http://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

[26] C. LeMahieu. Nano: A Feeless Distributed Cryptocurrency Network.
Accessed: Aug. 6, 2018. [Online]. Available: https://nano.org/en/
whitepaper

[27] X.-P. Min, Q.-Z. Li, L.-J. Kong, S.-D. Zhang, Y.-Q. Zheng, and
Z.-S. Xiao, ‘‘Permissioned blockchain dynamic consensus mechanism
based multi-centers,’’ Chin. J. Comput., vol. 41, no. 5, pp. 1005–1020,
2018. doi: 10.11897/SP.J.1016.2018.01005.

[28] C. Wong. Patricia Tree. Accessed: Mar. 25, 2018. [Online]. Available:
https://github.com/ethereum/wiki/wiki/Patricia-Tree

[29] Red-Black Merkle Tree. Accessed: Nov. 17, 2018. [Online]. Available:
https://github.com/amiller/redblackmerkle.

[30] J. Benet. IPFS-Content Addressed, Versioned, P2P File System.
Accessed: Oct. 14, 2018. [Online]. Available: https://ipfs.io/
ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.
draft3.pdf

[31] S. Micali, M. Rabin, and S. Vadhan, ‘‘Verifiable random functions,’’ in
Proc. 40th Annu. IEEE Symp. Found. Comput. Sci. (FOCS), New York,
NY, USA, Oct. 1999, pp. 120–130.

[32] J. R. Douceur, ‘‘The Sybil attack,’’ in Proc. 1st Int. Workshop Peer-Peer
Syst. (IPTPS), Cambridge, MA, USA, Mar. 2002, pp. 251—260.

[33] DDOS. Accessed: Oct. 20, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Denial-of-service_attack

[34] D. Ojha. Byzantine Consensus Algorithm. Accessed: Sep. 11, 2018.
[Online]. Available: https://github.com/tendermint/tendermint/wiki/
Byzantine-Consensus-Algorithm

[35] Golang. Accessed: Jan. 3, 2019. [Online]. Available: https://golang.org/
[36] Libp2p. Accessed: Dec. 15, 2018. [Online]. Available: https://github.

com/libp2p
[37] A VRF implementation in golang. Accessed: Dec. 22, 2018. [Online].

Available: https://github.com/r2ishiguro/vrf/
[38] A. Grigorean. Latency and Finality in Different Cryptocurrencies.

Accessed: Jan. 4, 2019. [Online]. Available: https://hackernoon.com/
latency-and-finality-in-different-cryptocurrencies-a7182a06d07a

[39] Bitcoin Explorer. Accessed: Jan. 3, 2019. [Online]. Available:
https://btc.com/

[40] Ethereum Explorer. Accessed: Jan. 3, 2018. [Online]. Available:
https://etherscan.io/

[41] Zilliqa: A High Throughput Scalable Blockchain? Accessed: Jan. 4, 2019.
[Online]. Available: https://medium.com/ @curiousinvestor/zilliqa-a-
high-throughput-scalable-blockchain-60e355d873c5

[42] A. Anand.Nano Embraces Speed, Sees Transaction Rate Jump to 750 TPS.
Accessed: Jan. 4, 2019. [Online]. Available: https://ambcrypto.com/nano-
embraces-speed-sees-transaction-rate-jump-to-750-tps/

[43] Nano. Accessed: Jan. 4, 2019. [Online]. Available: https:// nano.org/
[44] A. Kiayias, R. Russell, B. David, and R. Oliynykov, ‘‘Ouroboros: A

provably secure proof-of-stake blockchain protocol,’’ in Proc. Annu. Int.
Cryptol. Conf. Cham, Switzerland: Springer, 2017, pp. 357–388.

[45] B. Davi et al. Ouroboros PRAOS: An Adaptively-Secure,
Semi-synchronous Proof-of-Stake Blockchain. Accessed: Mar. 25, 2018.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-
78375-8_3

[46] T. Hanke, M. Movahedi and D. Williams. Dfinity Whitepaper.
Accessed: Nov. 13, 2018. [Online]. Available: https://dfinity.org/
static/ dfinity-consensus-0325c35128c72b42df7dd30c22c41208.pdf

[47] I. Grigg. EOS Whitepaper. Accessed: Oct. 15, 2018. [Online]. Available:
https://eos.io/documents/EOS_An_Introduction.pdf

[48] The Bitshares Blockchain. Accessed: Oct. 25, 2018. [Online]. Available:
https://www.bitshares.foundation/download/articles/BitSharesBlockchain.
pdf

[49] I. Research. Blockchain/DLT: A Game-Changer in Managing MNCs
Intercompany Transactions. Accessed: Oct. 28, 2018. [Online]. Available:
https://www.ibm.com/think/fintech/wp-content/uploads/2018/03/IBM_
Research_MNC_ICA_Whitepaper.pdf

TONG ZHOU received the B.S. degree in soft-
ware engineering from Hubei University, Wuhan,
China, in 2013, and the M.S. degree in informa-
tion systems and signal processing from Anhui
University, Anhui, China, in 2016. He is currently
pursuing the Ph.D. degree in computer applied
technology with the University of Science and
Technology of China, Hefei, China. His research
interests include blockchain technology, consen-
sus algorithm, and health informatics.

XIAOFENG LI received the B.S. degree from
Tianjin University, in 1987. He is currently a
Research Professor with the Hefei Institutes of
Physical Science, Chinese Academy of Sciences
(CASHIPS), and a Doctoral Supervisor with the
University of Science and Technology of China.
He is also the Director of the Internet Network
Information Center, CASHIPS, the Vice Chairman
of the Hefei Branch of Association for Computing
Machinery (ACM), and the Vice Chairman of the

Anhui Radio Technology Association. His current research interests include
blockchain technology, computer applied technology andmeasurement, con-
trol technology, and automation instrument.

HE ZHAO received the B.S. and M.S. degrees
from the NanjingUniversity of Posts and Telecom-
munications, in 2007 and 2010, respectively, and
the Ph.D. degree from the University of Science
and Technology of China, in 2016. He has been
with Huawei Technologies, from 2010 to 2011.
He is currently a Senior Engineer with the Hefei
Institutes of Physical Science, Chinese Academy
of Sciences. His research interests include com-
puter networking, health informatics, blockchain
technology, and software architecture.

VOLUME 7, 2019 39287

	INTRODUCTION
	RELATED WORKS
	PROOF OF WORK (POW) VARIANTS
	PROOF OF STAKE (POS) VARIANTS
	BYZANTINE CONSENSUS VARIANTS
	DIRECTED ACYCLIC GRAPHS (DAGS) VARIANTS

	PRELIMINARIES
	SYMMETRIC AND ASYMMETRIC CRYPTOGRAPHY
	CRYPTOGRAPHIC HASH FUNCTION
	DIGITAL SIGNATURES

	MODEL DESCRIPTION
	DEFINITIONS
	CONSENSUS-PARTICIPATING NODE
	ACCOUNT
	TRANSACTION AND BLOCK
	DIGITAL ASSERT
	DLATTICE

	ASSUMPTIONS
	NOTIONS

	DATA TOKENIZATION
	DATA ASSEMBLING
	DATA AUTHORIZTION
	DATA ANCHORING

	DPoS-BA-DAG(PANDA)
	NODE BOOTSTRAPPING
	FORK OBSERVATION
	CONSENSUS IDENTITY SETUP
	COMMITTEE FORMATION
	CONSENSUS

	ATTACK VECTORS AND SECURITY ANALYSIS
	ATTACK VECTORS
	DOUBLE SPENDING ATTACK
	SYBIL ATTACK
	DDOS ATTACK
	FLUCTUATION OF NODES

	SECURITY ANALYSIS

	IMPLEMENTATION AND EVALUATION
	IMPLEMENTATION
	EVALUATION
	LATENCY
	THROUGHPUT
	COMPARISON TO RELATED SYSTEMS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	TONG ZHOU
	XIAOFENG LI
	HE ZHAO

