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ABSTRACT In wireless sensor networks, most of the previous NLOS identification is based on error
estimation model established by raw data. In this paper, we propose a method of NLOS identification named
NIMQ based on multidimensional scaling (MDS) and Quasi-Accurate detection (QUAD). In this method,
we first map NLOS information into gross error information by MDS, then we use QUAD to identify the
gross errors which contain the NLOS information. This method relies only on distance measurements and is
independent of the measured error estimation model. In addition, using the network topology constraints in
higher dimensional space, the identified distance can be corrected by multiple iterations. Finally, an NLOS
iterating correction algorithm (NICA) is proposed. Simulations show that in different scenarios our proposed
NIMQ and NICA can well identify and correct NLOS measurement.

INDEX TERMS NLOS identification, NLOS correction, MDS, gross error.

I. INTRODUCTION
In indoor positioning, the placement constantly changes [23].
Due to the obstruction of middle obstacle, the radio waves
are distorted by the diffraction between a pair of nodes,
which makes the measured distance between these two nodes
larger than its true value [4], [16]. This is a non-line-of-sight
(NLOS) problem and is ubiquitous [15].

In the study of wireless sensor network (WSN) and 5G
small cells, the research on the NLOS problem mainly
includes the state identification of NLOS and the error miti-
gation of NLOS [7], [13], [26], [28], [29].

At present, the NLOS identification mainly uses the error
estimation model [7], [15], [27]–[29], the dependent param-
eters are time of arrive (TOA) [1], [5], [10], [25], [26],
phase difference of arrival (PDOA) [12], [24], received sig-
nal strength (RSS) [9], [18], [20], or channel state infor-
mation (CSI) [3], [8], [19]. However, the identification of
NLOS based on these measured data has a large time
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overhead, usually in an exponential relation with the number
of stations [15]. In fact, we can use only measured distances
to identify NLOS measurements in large scale networks.
Instead of the error mitigation, we can also do correction
of NLOS measurements based on the constraint relation in
geometric topology.

Additionally, a large number of sensors deployed in posi-
tioning system deployment generates lots of raw data, which
will inevitably produce gross measurement error [11]. It will
make the measurements far from true values. To identify
and eliminate the gross errors or correct them, the only
information we can use is the measured data. Fortunately,
many contributions in the gross error identification can
be found in the past decades. For example, the theory of
residues [6], [14], [17] can be employed here to gain useful
results.

Intuitively, the problem of NLOS identification is similar
to the problem of the gross error identification so that we can
use theories and results of gross error to solve the problem
of NLOS. However, there is difference between NLOS iden-
tification and gross error identification in details. We know
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that gross error is the deviation under the same measurement
conditions, while for NLOS identification, the conditions are
different with each distance measurement. If we establish
a model to map the NLOS problem into the gross error
problem, the results achieved in the gross error problem can
be utilized to do NLOS identification.

The method of multidimentional scaling (MDS) can be
used in the mapping problem. MDS [2], [21], [22] is a kind of
transformation method to produce relative coordinates from a
squared distance matrix in any dimensional space. Based on
this method, we can treat the coordinates in high dimensional
space as raw data under the same measurement conditions.
Thus we can map the problem of NLOS identification into
the problem of gross error identification.

The contributions of this paper are as follows.
• Based on the MDS theory, we propose a method
which does not rely on the measured error estimation
model, but only uses the geometric topology constraints
of nodes to identify NLOS distance in large-scale
networks.

• For the gross error identification, we use Quasi-Accurate
Detection [17] which is a gross error identification
method based on true errors and definite analytic rela-
tionship between the true error and the observed value.
The method is accurate and reliable according to the
distribution characteristic of true error estimation. It can
effectively locate multiple gross errors and closely
assess the evaluation accuracy [17].

• We propose an NLOS correction method to make more
efficient use of geometric topology constraints in large
scale networks. Using this method, the NLOS value can
be gradually corrected to the true value by iterating it
several times until a precision threshold is reached.

The rest of this paper is organized as follows: the math-
ematical model is established in Section 2, and based on
this model, Section 3 proposes the NLOS identification
algorithm NIMQ. After that, Section 4 proposes an algo-
rithm named NLOS iterating correction algorithmNICA, and
Section 5 concludes the paper.

II. MATHEMATICAL MODEL OF NLOS IDENTIFICATION
We suppose there are N isomorphic nodes in an indoor
positioning system. When we use ToA, TDoA or ultrasound
technologies, the measured distance d̃ij between node i and
node j can be derived. Thus these N 2 measured distances of
N nodes constitute a N -dimensional raw data matrix

D̃ =


d̃11 d̃12 · · · d̃1N
d̃21 d̃22 · · · d̃2N
...

...
. . .

...

d̃N1 d̃N2 · · · d̃NN

 (1)

Let D̃ be composed of true values and measured errors as

D̃ = D+1D (2)

where

D =


d11 d12 · · · d1N
d21 d22 · · · d2N
...

...
. . .

...

dN1 dN2 · · · dNN

 (3)

is the martix of true distances, and

1D =


1d11 1d12 · · · 1d1N
1d21 1d22 · · · 1d2N
...

...
. . .

...

1dN1 1dN2 · · · 1dNN

 (4)

is the matrix of measured errors.
Since all nodes in this indoor positioning system are iso-

morphic, we suppose that the true distance dij equals to dji,
hence D is symmetric.
In this indoor positioning environment, if there is an

obstacle between two nodes, we have NLOS distance mea-
surements in D̃. To simplify NLOS identification problem,
we assume that only one pair of distances is NLOS distance
measurement, namely d̃ij and d̃ji. Now our problem becomes
identifying which distance measurement is the NLOS one by
the given D̃ and correcting the NLOS measurement to its true
value.

FIGURE 1. Dimension extension. (a) 2-dimension. (b) 3-dimension.

In order to clearly explain the idea of this paper, we give
an intuitive illustration in Fig.1. We suppose there are only
two nodes in a positioning scenario and an obstacle between
them. The true distance between these two nodes is d and the
measured one is d̃ . If we solve this problem in 2-dimensional
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space using optimizationmethod such as the least square (LS)
algorithm, we can get the coordinates as shown in Fig.1(a).
However, if this problem is solved in 3-dimensional space as
shown in Fig.1(b), the coordinates of the projection in the
original 2-dimensional space could be more accurate than
those in Fig.1(a). The longer the distance ismeasured, the big-
ger the 3rd coordinate is. Therefore, this mapping from the
measured distances to the coordinates can be used to identify
which measured distance is the most inaccurate one.

In a 2-dimensional space, for D̃ with N nodes, to find
the coordinates, the 2-dimensional planar coordinates can be
extended to 3-dimensional space by a matrix X , under the
assumption that the third extended dimension is a matrix Z
as follows.

X =


X1
X2
...

XN

 =

x1 y1 z1
x2 y2 z2
...

...
...

xN yN zN

 (5)

Z =


z1
z2
...

zN

 (6)

When the distances in D̃ are all true ones, there are no
measured errors, which means that the elements of X in
Z -field noted as Z should be all zeroes. If we introduce a
small measured error to one of the distances, the elements
of Matrix X in Z -field vary. The Z -field coordinates reflect
the total size of general error and the gross deviation. In this
way, the measured error in D̃ is converted to the Z -field of
X . Then we can estimate the gross error in Z -domain for the
identification of the NLOS distance in D̃.
To make further verification, we conduct some experi-

ments to see whether Z -field reflects the gross error. For a
planar topology shown in Fig.2, the true distance between
node 5 and node 11 is 83. We use MDS to calculate the
coordinates. When we introduce a gross error making the
distance to 100, Fig.3 shows an intuitive result that there are
2 peaks at node 5 and node 11 in Z -field. When we introduce
another gross error making the distance to 60, less than its true
value in the experiment, we find that node 5 and node 11 can
still reflect the gross error in Fig.4. Interestingly, when the
measured distance introduced is longer than its true value the
2 peaks noted by node 5 and node 11 are on different sides
of in Fig.3, and when the measured distance introduced is
shorter than its true value the 2 peaks noted by node 5 and
node 11 are on the same side of Fig.4.

III. NLOS IDENTIFICATION BASED ON MDS AND QUAD
A. MDS PROCESS
For indoor positioning, MDS can be used to obtain coordi-
nates in higher-dimensional space, so that higher dimension
can be treated as raw data with gross error. A square distance

FIGURE 2. Planar layout.

FIGURE 3. Three-dimensional topology with gross error greater than true
value.

FIGURE 4. Three-dimensional topology with gross error less than true
value.

matrix is used in MDS as follows [2], [21], [22]

D̃(2)
=


d̃211 d̃212 · · · d̃21N
d̃221 d̃222 · · · d̃22N
...

...
. . .

...

d̃2N1 d̃2N2 · · · d̃2NN

 (7)
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Multiplying the left and the right sides of D̃(2) by a center-
ing matrix P = I − 11′/N and a factor -1/2 gives

−1/2PD̃(2)P = B (8)

where I is the unit matrix, 11′ is the all 1 matrix. Then,
to find the MDS coordinates from B, we factor B through the
eigen-decomposition

B = Q3Q′ = (Q31/2)(Q31/2)′ (9)

where Q is the eigenvector matrix and 3 is the eigenvalue
matrix.

Let the matrix of the first m eigenvalues greater than zero
be 3+, and Q+ be the first m columns of Q, then the relative
coordinates of the nodes can be written as

X = Q+3
1/2
+ (10)

where X has a total of N rows and m columns. Each row
of X represents the relative coordinate value of a node in
m-dimensional space.

In [21], we know that MDS can be used to estimate the
coordinates in 2-dimensional space. In fact, if D(2) is the
true distances which can be derived from coordinates X in
2-dimensional space, we have

rank(−1/2PD(2)P) = rank(B) (11)

Since rank(B) = rank(XX ′) = rank(X ) = 2, there
are only 2 positive eigenvalues in eigen-decomposition of B,
so that the coordinates we get are in 2-dimensional space.

However, when we introduce NLOS measurement to D(2),
the rank of 1/2PD̃(2)P could increase. In our experiments,
eigenvalues of 1/2PD̃(2)P could be 4 or more, therefore
we can get the coordinates in higher dimensions. Base on
this result, we will explore the coordinate estimation in
3-dimensional space.

B. PRINCIPLE OF NLOS IDENTIFICATION
In the proposed mathematical model, we suppose that matrix
X̃ is the coordinates derived from D̃ by MDS, and X is the
coordinates derived from D, let

X̃ = X +1X (12)

For any real matrix A, we know that its Euclid norm is
‖A‖2 =

√
31, where 31 is the maximum eigenvalue of A′A.

Then we have following useful result.
For any m × n real matrix A, ‖A′‖2 = ‖A‖2, since |λIn −

A′A| = λn−m|λIn−AA′|, whichmeansA′A andAA′ have same
non-zero eigenvalues.

In addition, for any real symmetric matrix A, ‖A′A‖2 =
‖A‖22 = ‖A

′
‖
2
2, since for a real symmetric matrix A, the eigen-

values of A2 = A′A is the square of the eigenvalues of A.
Based on the above results, the principle of NLOS identi-

fication can be concluded in the following two lemmas.
Lemma 1: For X̃ = X + 1X derived from D̃ = D + 1D

and X derived from D using MDS,

|‖X +1X‖2 − ‖X‖2| ≤
1
√
2
‖1D(2)

‖

1
2
2 (13)

The proof of this lemma is in Appendix A.

Lemma 2: For X̃ = X + 1X derived from D̃ = D + 1D
and X derived fromD usingMDS, if there is only one distance
error in 1D which can be written as

1D2
=


0 0 · · · 0

0
. . . 1d2ij 0

... 1d2ij
. . .

...

0 0 · · · 0

 (14)

then,

|‖Xt +1Xt‖2 − ‖Xt‖2|

≤



√
1/2‖ 1

N 21d̃
2
ij +

1
N 21d̃

2
ji‖, t 6= i, t 6= j.

√
1/2‖(1− 1

N )
21d̃2ij +

1
N 21d̃

2
ji‖, t = i.

√
1/2‖ 1

N 21d̃
2
ij + (1− 1

N )
21d̃2ji‖, t = j.

(15)

The proof of this lemma is in Appendix B.
From Lemma 2, we can see that there is an inequality

relationship among 1Xi, 1Xj and 1d̃ij, 1d̃ji. It implies that
whenN is big enough, the NLOSmeasurement d̃ij and d̃ji will
be reflected in the coordinates of node i and node j. That is
why we can use QUAD to identify the NLOS measurements
in higher dimension.

C. PRINCIPLE OF GROSS ERROR IDENTIFICATION
For indoor positioning problems with NLOS measurements,
if an NLOS measurement is treated as a true value, there is
an exact solution in high-dimensional space and the NLOS
deviation will be reflected in the data of this space. Therefore,
we can identify the NLOSmeasurement if we can identify the
deviation in high-dimensional space. We define the following
linear equation

AX0 = L +1 (16)

whose evaluation form is

AX t = L + V (17)

where A is the N × M coefficient matrix whose rank is m
and dimension is n × m. X0 is the m-dimensional vector to
represent the true value of the position parameter, X t is the
estimate ofX0, L is the n-dimensional observation vector,1 is
the error of the observed vector, and V is the residual of the
observed value L [17].

A definite relationship between 1 and L is

A1 = −RL (18)

which can be treated as a linear system for1, whereR = I−J
is the orthogonal projection of J , and J = A(ATA)−1AT is the
adjustment factor matrix.

If we consider a topology with n nodes in 2-dimensional
space, we can calculate the coordinates in 3-dimensional
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space (we treat the 3rd dimension as Z dimension). Using this
QUAD process on the calculated coordinates, we have

(1)The true values of Z are all 0;
(2)Every weight of Z is the same, we can set A with all 1;
(3)Z is used as the measurement value of L and is intro-

duced to the QUAD algorithm for calculation.
Since the number of identified gross errors may be two,

three or more, we first consider the simplest case with only
two gross errors.

D. NLOS IDENTIFICATION ALGORITHM BASED
ON MDS AND QUAD(NIMQ)
We suppose there are N nodes and only one NLOS mea-
surement in a plane indoor positioning scenario. To identify
the NLOS measurement, our algorithm needs to check the
validity of the input distance matrix first to ensure that the
input distance matrix is available. Then, MDS algorithm is
performed on the squared distance matrix in 3-dimensional
space and the third dimension Z -field is derived. Then,
the coordinates in 3-dimensional space are introduced in
QUAD algorithm to obtain the nodes’ index of the NLOS
measurement. It is noteworthy that, in the initialization of
QUAD, A is initialized to all 1 matrix. The process of NLOS
identification algorithm is shown in Fig.5.

FIGURE 5. Identification process.

To verify this NLOS identification algorithm, we con-
duct the experiments under random topology, grid topology,
L-type topology, and C-type topology as shown in Fig.6.

FIGURE 6. Planar Topologies. (a) random. (b) L-type. (c) grid. (d) C-type.

The original data used in our experiments are actually mea-
sured manually, and the error of the manual measurement
simulates the natural error of the radio wave measurement
between two nodes. For the topology in Fig.6(a), we ran-
domly select 20 nodes in a plane, and the distances between
the nodes are measured with millimeter unit in order to form
an original distance matrix (19).

D̃ =



0 65 82 118 129 · · · 56
65 0 55 88 114 · · · 28

82 55 · · · · · · · · · · · ·
...

118 88 · · · · · · · · · · · ·
...

129 114 · · · · · · · · · · · ·
...

...
...

...
...

...
. . .

...

56 28 · · · · · · · · · · · · 0


(19)

Moreover, in the experiments, we introduce NLOS mea-
surement into the distance between node 1 and node 20 in D̃
as the gross error. The distance increases from 56 to 120 to
conduct a simulated distance matrix D̃m as shown in
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TABLE 1. Coordinates by MDS.

Matrix (20).

D̃m =



0 65 82 118 129 · · · (120)
65 0 55 88 114 · · · 28

82 55 · · · · · · · · · · · ·
...

118 88 · · · · · · · · · · · ·
...

129 114 · · · · · · · · · · · ·
...

...
...

...
...

...
. . .

...

(120) 28 · · · · · · · · · · · · 0


(20)

We transform D̃m by MDS, and obtain the coordinates
given in Table 1. The intuitive topology from Table 1 as X
in 3-dimensional space is shown in Fig.7(a).

The QUAD gross error identification is performed on each
column respectively, and the gross error index number matri-
ces are recorded as Rx , Ry, Rz as shown in Table 1 in brackets.

In order to choose the dimension of data information of the
coarse error, we examine the size of Rx , Ry and Rz in order.
If one of them has a size of 2 and the corresponding values

FIGURE 7. Comparison of random topology. (a) original random topology.
(b) random topology by NICA.

of the two indices are obviously beyond the mean value in
the field, the gross error data information can be locked with
this dimension. Therefore, the position of the gross error is
determined. We give several experiment results by introduc-
ing different NLOS measurements into the topologies. In the
experiments, a dozen distances are introduced in the NLOS
measurements. After MDS and QUAD, the results presented
in Table 2 show that it is efficient to identify these NLOS
measurements by NIMQ.

IV. NLOS CORRECTION
A. NLOS ITERATING CORRECTION ALGORITHM (NICA)
In a deterministic network topology, nodes are mutually
constrained with each other. By using the mutual relations
between these nodes, it is possible to correct the distance with
gross errors under the supervision of constraint relationship.

TABLE 2. Identification of gross errors.

53982 VOLUME 7, 2019



Y. Zhu et al.: NLOS Identification and Correction Based on Multidimensional Scaling and Quasi-Accurate Detection

TABLE 3. NLOS iterating correction algorithm (NICA).

From the experiments in Section 2, we know that the
measured error can be reflected in higher dimensions. The
experiment results given in Fig.3 and Fig.4 shows that when
the measurement is bigger than the true distance, the 2 peaks
are on different sides of the original plane, and when the
measurement is smaller than the true distance, the 2 peaks
are on the same side of the original plane. This important
property can be used to correct the NLOS measurement to
its true distance.

We assume that the distance to be corrected is d̃mn, the true
distance is dmn and the Z -coordinate of the two points in X is
zm,zn respectively. If d̃mn is an NLOS measurement, it should
be bigger than dmn where dmn satisfies

dmn ∈ (0, d̃mn)

According to our experiments, if zm and zn have opposite
signs, indicating d̃mn > dmn, we should reduce dmn. If zm
and zn have the same sign, indicating d̃mn < dmn, we should
increase dmn. Hence, we propose an iterative algorithm to
correct the NLOS distance in Table 3, and the process of the
algorithm is shown in Fig.8. The final result of the correction
will make d̃mn approximate dmn.

B. EXPERIMENTS RESULTS AND ANALYSIS
Our experiments are carried out with 4 typical topologies,
random topology, L-type topology, grid topology, and C-type

FIGURE 8. Process of NLOS iterating correction algorithm.

topology shown in Fig.6 to verify the validity of NICA for dif-
ferent topological networks. Fig.7, Fig.10, Fig.9, and Fig.11
show the comparisons before and after NICA is applied
in 3-dimensional space with these topologies respectively.
In these results, Fig.7(a), Fig.10(a), Fig.9(a), and Fig.11(a)
are original three-dimensional coordinate graphs. Within the
same coordinate scale, we can see from these figures that
there exist obvious distance gross errors in Z -domain. After
NICA is applied, we can see from Fig.7(b), Fig.10(b),
Fig.9(b), and Fig.11(b), that the distance gross errors are
corrected and the topologies are restored into 2-dimension
topologies.

The process of NICA shows more details about these cor-
rections. Take random topology shown in Fig.7 for example,
after we conduct MDS on this topology, we get the coordi-
nates shown in Table 1. From the results in this table, we find
that the NLOS information is transformed from the distance

D̃′m =



0.0 65.0 82.0 118.0 129.0 · · · (56.54)
65.0 0.0 55.0 88.0 114.0 · · · 28.0

82.0 55.0 · · · · · · · · · · · ·
...

118.0 88.0 · · · · · · · · · · · ·
...

129.0 114.0 · · · · · · · · · · · ·
...

...
...

...
...

...
. . .

...

(56.54) 28.0 · · · · · · · · · · · · 0.0


(21)
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FIGURE 9. Comparison of grid topologies before and after correction.
(a) before correction. (b) after correction.

matrix D to Z , and there is an NLOS distance obviously.
We also find that the distance between node 1 and node 20 is
NLOS. Using QUAD, we can accurately locate the position
where the gross error appears. After that, the identified NLOS
distance is corrected by iteration correction in NICA shown
in Fig.8. The modified distance matrix D̃ is accepted by
NICA to approximate its original matrix until a threshold
requirement is met. In our experiments, the threshold is set
to 0.1. From the results in Table 4, we can see that the distance
between node 1 and node 20 in Fig.7 is corrected from 120 to
56.54, the relative error of the corrected distance is 0.0096
(0.54/56). (21), as shown at the bottom of the previous page.

To verify the effect and validity of our proposed method,
more experiments are carried out in the random topology
network and the experimental results are provided in Table 4.
In the algorithm, we use an interval [dl, dh] to approximate
the range of NLOS measurement dmn. Each time we choose
the center point of the interval to make two sub-intervals
[dl, (dl + dh)/2] and [dl + dh)/2, dh], then we judge which
sub-interval the true value of NLOS measurement is in from
the signs of zm and zn. All the steps in the algorithm guar-
antee that the true value of NLOS measurement is in the
sub-intervals which are getting smaller and smaller. Finally,
when the range of the sub-interval is less than the threshold
we set, the algorithm terminates and the true value of NLOS
measurement is approximated by this interval.

Fig.12 presents the relationship between the corrected iter-
ation number and the distance error size. In the case of low
precision, our proposed algorithm quickly converges and the
corrected result is close to the true value after 6 iterations.

FIGURE 10. Comparison of L-type topologies before and after correction.
(a) before correction. (b) after correction.

FIGURE 11. Comparison of C-type topological before and after correction.
(a) before correction. (b) after correction.

The increase of the iteration number can not further improve
the correction accuracy.We believe that the algorithm reaches
themodified saturation at this time, and this saturation is actu-
ally determined by the constraints of the distance matrix D̃.
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FIGURE 12. Correction efficiency. (a) random-type. (b) L-type. (c) grid-type. (d) C-type.

TABLE 4. Identification and correction of different position gross errors.

Therefore, in an actual system, we should balance the correc-
tion precision and the correction time.

V. CONCLUSION AND FUTURE WORK
In this paper, we explore the problem of NLOS identifica-
tion and correction only using the constraints of distance
matrix. We find that, if there is an NLOS measurement
in 2-dimensional topologies, when we use MDS to derive
coordinates from squared distance matrix in 3-dimensional
space, we can identify the NLOS measurements in Z -domain
using gross error detection methods such as QUAD. The
proposed NLOS identification algorithm NIMQ is based on
this important finding, and our experiments show the validity
of NIMQ to identify NLOSmeasurements in different topolo-
gies. We find that performing MDS in a higher-dimensional
space can harvest another property that could be used to cor-
rect the measured error.When the Z -coordinates of the NLOS
measurement have opposite signs, it indicates that the mea-
surement is longer than its true value and when they have the

same sign, the measurement is shorter. The proposed NICA
does NLOS correction based on this property. The experi-
ments show that NICA can correct NLOSmeasurements very
close to their true value, and the iteration converges quickly.
The conclusion is based on the assumption that only one pair
of NLOS distance is in the system, which will be extended
in future work for identification and correction of multiple
ones.

APPENDIX B PROOF OF LEMMA 1
From Equation 8-10, we have

−1/2PD̃(2)P = X̃ X̃ ′

Applying ˜D(2) = D(2)
+ 1D(2) and X̃ = X + 1X to this

equation yields

‖−1/2P(D(2)
+1D(2))P‖2 = ‖X +1X‖22
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Thus,

|‖X +1X‖22 − ‖X‖
2
2| = 1/2|‖P(D(2)

+1D(2))P‖2 − ‖PD(2)P‖2|

≤ 1/2‖P(D(2)
+1D(2))P− PD(2)P‖2

= 1/2‖P1D(2)P‖2
≤ 1/2‖P‖ − 2‖1D(2)

‖−2‖P‖2
= 1/2|‖P‖22‖1D

(2)
‖2|

It is easy to know that the eigenvalues of the real sym-
metric matrix P are 1, . . . , 1, 0, the eigenvalues of P′P are
12, . . . , 12, 02, and ‖P‖2 = 1, therefore, (13) holds.

APPENDIX B
PROOF OF LEMMA 2
We define et = (0, · · · 1 · · · , 0), where only the elements at
t column are 1s, the rest of the elements are all 0s. Assuming
X̃t is the t line of X̃ , Pt is the t line of P, 1Xt is the t line of
1X . From Equation 8-10, we have

−1/2PD̃(2)P = X̃ X̃ ′

Multiplying both left and right sides by et gives

−1/2etPD̃(2)Pe′t = et X̃ X̃ ′e′t

or

−1/2Pt D̃(2)P′t = X̃t X̃ ′t

Therefore,

‖−1/2Pt D̃(2)P′t‖2 = ‖X̃t X̃
′
t ‖2 = ‖X̃t‖

2
2

Applying ˜D(2) = D(2)
+1D(2) to this equation yields

‖−1/2Pt (D(2)
+1D(2))P′t‖2 = ‖(Xt +1Xt )‖

2
2

Therefore,

|‖Xt +1Xt‖22 − ‖Xt‖
2
2| = 1/2|‖Pt (D(2)

+1D(2))P′t‖2 − ‖PtD
(2)P′t‖2|

≤ 1/2‖Pt (D(2)
+1D(2))P′t

−PtD(2)P′t‖2=1/2‖Pt1D
(2)P′t‖2

Since

1D2
=


0 0 · · · 0

0
. . . 1d2ij 0

... 1d2ij
. . .

...

0 0 · · · 0


and

Pt = (−
1
n
, . . . , 1−

1
n
, . . . ,−

1
n
)

we finally have (15).
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