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ABSTRACT Wireless sensor network (WSN) technologies are used to provide mobile object tracking
due to advantages such as mobility, scalability, and flexibility. However, wireless interaction between the
network nodes is often accompanied by missing data, which requires robustness from the estimator. This
paper develops an iterative distributed unbiased finite impulse response (dUFIR) filtering algorithm for
object tracking via WSNs with consensus on estimates and shows that it has higher robustness than the
distributed Kalman filter (dKF). The tracking problem is viewed as a real-time position estimation of an
unmanned ground vehicle (UGV). The extensive simulations are provided using real sensor parameters and
measurements of the UGV position with missing data. Two different scenarios are considered when: 1) each
sensor is capable of measuring the UGV position and 2) sensors have different time-varying noise variances,
as in practical WSNs. The higher robustness of the dUFIR against the dKF is demonstrated under diverse
operation conditions.

INDEX TERMS Distributed wireless sensor network, object tracking, unbiased FIR filter, Kalman filter,
robustness, consensus on estimates.

I. INTRODUCTION
Target tracking of moving objects is an application that ben-
efits from unique advantages of wireless sensor networks
(WSNs) [1]–[3] such as a massive nodes deployment, capac-
ity of distributed processing, and ubiquitous integration with
the environment. An example of indoor target tracking is
shown in Fig. 1, where a WSN covers the moving object
trajectory. A specific is that, due to the WSN restrictions,
algorithms capable of estimating the position of a mobile
object must comply with a sufficient accuracy and robust-
ness required to provide tracking in the presence of model
errors, missing data, and not completely known noise statis-
tics. Therefore, optimal estimators and fusion techniques tak-
ing advantages of redundant and distributed measurements
are often used to provide best noise reduction for WSN
structures [4]–[11].

For target tracking, the WSNs can be organized to have
either a centralized, decentralized, or distributed structure [5].
The latter is known to be most powerful, flexible, and energy
efficient [12]–[14]. Furthermore, it may provide even better
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estimates if to take advantage of different kinds of consen-
suses such as on measurements [15], estimates [16], infor-
mation matrices [17], or other dynamic features [18], [19].

Among possible fusion techniques, the Kalman filter (KF)-
based estimator remain most popular due to simplicity, opti-
mality, and low computational burden [20]–[23]. However,
it is known that the optimality does not always go along
with the robustness and fault tolerance required by the
WSN operation conditions. The problem is that opti-
mal estimators require all information about an object
and its measurement, which is typically unavailable in
practice [24], [25].

Another issue is that measurements via WSNs are often
accompaniedwithmissing data due to external factors such as
electromagnetic interference, unstable links, faulty behavior
of the sensors, etc. [26]. Therefore, an algorithm must be
capable of providing accurate estimation under temporarily
lost data as shown in many papers. For example, the state
error covariance is bounded in [27] by introducing a critical
value for the data arrival rate. In [20], the issue was solved
by combining node estimates at the previous and current
time points. The problem complicates by the fact that the
KF estimate is affected by model errors and inappropriate
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FIGURE 1. An example of a WSN composed of 150 nodes with 687 links
(dotted). The WSN covers the moving object trajectory (solid) with the
number of the links limited with the nodes ranges.

noise behavior. Moreover, errors caused by missed data prop-
agate along the entire estimation process.

As an alternative to the KF, there was developed a
more robust approach employing properties of finite impulse
response (FIR) filtering [25], [28]. Based upon this approach,
the authors of [21] proposed a fusion technique using the
optimal unbiased FIR (OUFIR) filter, which is more robust
than the KF. In [11], [29], different types of consensus were
taken into account using advantages of the unbiased FIR
(UFIR) filter, which performs better than the KF under the
real world operation conditions. Nevertheless, still no UFIR
solution was addressed to designers of distributedWSNswith
missing data that motivates our present work.

In this paper, we design a distributed UFIR (dUFIR) filter
for object tracking via WSNs with consensus on estimates
under measurements with missing data. We show that the
dUFIR filter outperforms the distributed KF (dKF) in terms
of accuracy and robustness. The rest of the paper is organized
as follows. Section II discusses the model and formulates the
problem. In Section III, a design of the tracking predictive
dUFIR filter is given both in the batch and fast iterative forms
along with the predictive dKF. Simulations are provided in
Section IV and conclusions are drawn in Section VI.

II. MOVING OBJECT MODEL IN DISTRIBUTED WSNs AND
PROBLEM FORMULATION
In the state-space formulation, dynamics of a moving object
can be described in discrete time index k and K -state space
for a general scenario of distributed WSNs with missing data

using the following equations,

xk = Fkxk−1 + Bkwk , (1)

ȳ(i)k = H (i)
k Fkxk−1, (2)

y(i)k = γk (H
(i)
k xk + v

(i)
k )+ (1− γk )ȳ

(i)
k , (3)

yk = Hkxx + vk , (4)

where xk ∈ RK , Fk ∈ RK×K , and Bk ∈ RK×L . Mea-
surements of Qk are provided at each k with J , Jk
nodes. The ith, i ∈ [1, J ], node measures xk by y(i)k ∈ Rp,
p 6 K , with H (i)

k ∈ Rp×K and each node has J inclu-
sive neighbors. Local data y(i)k are united in the observa-

tion vector yk = [ y(i)k
T
. . . y(J )k

T
]T ∈ RJp with Hk =

[H (i)
k
T
. . . H (J )

k
T
]T ∈ RJp×K . Noise vectors wk ∈ RL and

vk = [ v(1)k
T
. . . v(n)k

T
]T ∈ RJp are zero mean, not obligato-

rily white Gaussian, uncorrelated, and with the covariances
Qk = E{wkwTk } ∈ RL×L , Rk = diag[R(1)k

T
. . . R(n)k

T
]T ∈

RJp×Jp, and R(i)k = E{v(i)k v
(i)T

k }.
A binary variable γk serves as an indicator of whether data

exist (γk = 1) or not (γk = 0). When γk = 0, the predicted
measurement ȳ(i)k (2) is used by substituting xk−1 with the
estimate. In the following section, we will present the design
of a batch dUFIR filter with optimal consensus on estimates
that minimizes the mean square error (MSE). We will also
show that the dUFIR filter designed outperforms the dKF in
terms of the localization robustness for measurements with
missing data.

III. TRACKING FILTERING ALGORITHMS WITH
CONSENSUS ON ESTIMATES
If to regard a WSN as an undirected graph G = (V, E) where
each vertex v(i) ∈ V is a node and each link is an edge of
set E , for i ∈ I = {1, . . . , n} and n = |V|. As stated in [15],
nodes v(i) and v(j) reach an agreement if and only if states are
related as x(i) = x(j), {i, j} ∈ I, i 6= j. Under such a condition,
the network reaches a consensus with the common value of
all nodes called the group decision value.

For the nodes to reach an agreement, a consensus protocol
must minimize the total disagreement in the network by
minimizing the Laplacian potential of the graph9 = 1

2x
TLx,

where L is the Laplacian matrix. A known linear distributed
protocol for minimizing the total disagreement is

u(i) =
J∑
j

(x(j) − x(i)). (5)

In what follows, we achieve the consensus of estimates
by implementing (5) in two different algorithms: one based
on the dKF and the other one on the dUFIR filter. The
dKF requires that every first order neighbor shares the esti-
mate of a local KF and that the ith node implements another
KF with the consensus protocol (5) to reach the group deci-
sion value. In the dUFIR, the consensus on estimates is
achieved using data only of the inclusive neighbors in (5).
Details of the designed algorithms follow next.

VOLUME 7, 2019 39449



M. Vazquez-Olguin et al.: Object Tracking Over Distributed WSNs With Consensus on Estimates and Missing Data

A. DISTRIBUTED KF ALGORITHM
The dKF with consensus on estimates was proposed in [16].
An idea behind this solution is to provide individual estimates
in each node using the KF and then use another KF to
fuse them. A pseudo code of the dKF algorithm augmented
with a prediction option for temporarily lost data is shown
as Algorithm 1.

Algorithm 1 Iterative dKF Algorithm

Data: P(i)0 , Qk , R
(j)
k , x̄(j)k , y(j)k , x̄(i)0 = x0

Result: x̂(i)k
1 begin
2 for k = 0 : ∞ do
3 if γk = 0 then
4 y(j)k = H (j)

k Fk x̂
(j)
k−1;

5 end if

6 z(j)k = H (j)T

k R(j)
−1

k y(j)k ;
7 s(i)k =

∑
j∈J z

(j)
k ;

8 Z (j)
k = H (j)T

k R(j)
−1

k H (j)
k ;

9 S(i)k =
∑

j∈J Z
(j)
k ;

10 M (i)
k = (P(i)

−1

k + S(i)k )−1;
11 x̂(i)k = x̄(i)k +M

(i)
k (s(i)k − S

(i)
k x̄

(i)
k )+

εM (i)
k
∑

j∈J (x̄
(j)
k − x̄

(i)
k );

12 P(i)k ← FkM
(i)
k F

T
k + BkQkB

T
k ;

13 x̄(i)k ← Fk x̂
(i)
k ;

14 end for
15 end

Its specific is that, in order to reach a consensus on estimate
when some data are temporarily lost, an unavailable measure-
ment at k is predicted (lines 3–5) via the available estimate x̄(j)k
at k−1 in each of the nodes. Because all data are needed from
all of the neighbors, the dKF algorithm must ensure that the
prediction is available from all of the neighbors.

B. DISTRIBUTED UFIR FILTER ALGORITHM
Unlike the dKF, which operates from one point to another
using optimal recursions, the UFIR filter operates on finite
horizons of N points and therefore exists in the convolution-
based batch form and fast iterative form using recursions.
Below, we show both these forms.

1) EXTENDED STATE-SPACE MODEL
To apply FIR filtering, model (1)–(4) for γk = 1 must be
extended on a horizon [m, k] ofN points, fromm = k−N+1
to k , as in the following [28],

Xm,k = Am,kxm + Dm,kWm,k , (6)

Ym,k = Cm,kxm +Mm,kWm,k + Vm,k , (7)

Y (i)
m,k = C (i)

m,kxm +M
(i)
m,kWm,k + V

(i)
m,k , (8)

where

Xm,k =
[
xTm xTm+1 . . . x

T
k

]T
,

Ym,k =
[
yTm yTm+1 . . . y

T
k

]T
,

Wm,k =

[
wTm wTm+1 . . . w

T
k

]T
,

Vm,k =
[
vTm vTm+1 . . . v

T
k

]T
,

Y (i)
m,k =

[
y(i)

T

m y(i)
T

m+1 . . . y
(i)T

k

]T
,

V (i)
m,k =

[
v(i)

T

m v(i)
T

m+1 . . . v
(i)T

k

]T
,

and the extended matrices are

Am,k = [ I FTm+1 . . . (F
m+1
k−1 )

T ]T , (9)

Dm,k =


Bm 0 . . . 0 0

Fm+1Bm Bm+1 . . . 0 0
...

...
. . .

...
...

Fm+1
k−1 Bm Fm+2

k−1 Bm+1 . . . Bk−1 0
Fm+1
k Bm Fm+2

k Bm+1 . . . FkBk−1 Bk

,
(10)

Cm,k = C̄m,kAm,k , Mm,k = C̄m,kDm,k , C
(i)
m,k = C̄ (i)

m,kAm,k ,
M (i)
m,k = C̄ (i)

m,kDm,k , where

C̄m,k = diag(Hm Hm+1 . . . Hk ), (11)

C̄ (i)
m,k = diag(H (i)

m H (i)
m+1 . . . H

(i)
k ), (12)

Fg
r =


FrFr−1 . . .Fg, g < r + 1
I , g = r + 1
0, g > r + 1.

(13)

Based on model (6)–(8), the batch dUFIR filter can be
designed as shown below.

2) BATCH DUFIR FILTER
The FIR estimate for model (6)–(8) can be obtained as

x̂k = 2m,kYm,k , (14)

where2m,k is the FIR filter gain (impulse response) obeying
some cost function [28]. To obtain the dUFIR filter, let us
suppose that the ith node provides a local estimate over
data (8) as x̂(i)k . Then, referring to [16], the consensus between
the local estimates can be found if to introduce a vector
6k =

∑J
j [x̂

(j)
k − x̂(i)k ], combine it with (14), and write the

estimate as

x̂ck = 2m,kYm,k + λk6k , (15)

where λk is a scaling factor to be optimized in theMSE sense.
For the dUFIR filter, gain 2m,k must be found to obey the

unbiased condition

E{x̂ck } = E{x̂(i)k } = E{xk}

and the dUFIR estimate will thus be robust against errors in
the noise statistics and initial values [28].
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Referring to (6)–(8), estimate (15) can be rewritten as

x̂ck = 2m,kYm,k + Jλk2m,kYm,k − Jλk2
(i)
m,kY

(i)
m,k , (16)

where gains 2m,k and 2(i)
m,k , which obey the unbiasedness

condition [28], are represented with

2m,k = (I + Jλk )(HT
m,kHm,k )

−1HT
m,k , (17a)

= (I + Jλk )GkHT
m,k , (17b)

2
(i)
m,k = (H(i)T

m,kH
(i)
m,k )
−1

H(i)T

m,k , (18a)

= G(i)
k H(i)T

m,k , (18b)

where G(i)
k = (H(i)T

m,kH
(i)
m,k )
−1

is the generalized noise power
gain (GNPG) [30], and

Hm,k =


Hm(Fm+1

k )−1

Hm+1(Fm+2
k )−1
...

Hk−1F
−1
k

Hk

, (19)

H(i)
m,k =


H (i)
m (Fm+1

k )−1

H (i)
m+1(F

m+2
k )−1

...

H (i)
k−1F

−1
k

H (i)
k

 . (20)

As can be seen, information required to compute2m,k and
2

(i)T

m,k is entirely provided by the K -state space model, which
can be preloaded on the nodes. Thus, only measurement
data will be sent by the node, unlike the dKF case implying
that each node must wait for the individual estimate of its
neighbors. This reduces the number of exchange messages
and improves battery life.

The optimal scaling factor λoptk can be obtained by solving
the optimization problem

λ
opt
k = argmin

λk

{trPk (λk )},

where Pk = E{εkεTk } is the error covariance matrix and εk =
xk − x̂ck is the estimation error. By solving the optimization
problem, λoptk can be shown to be (see Appendix A)

λ
opt
k = −

1
J
(2̃m,k R̄m,k2̃T

m,k − GkG
(i)−1

k 2
(i)
m,k

×R̄(i)m,k2
(i)T

m,k )(2̃m,k R̄m,k2̃T
m,k − 2GkG

(i)−1

k

×2
(i)
m,k R̄

(i)
m,k2

(i)T

m,k +2
(i)
m,k R̄

(i)
m,k2

(i)T

m,k )
−1. (21)

where 2̃m,k = GkHT
m,k and

R̄m,k = E{vm,kvTm,k} = diag(Rm . . .Rk ), (22)

R̄(i)m,k = E{v(i)m,kv
(i)T

m,k} = diag(R(i)m . . .R
(i)
k ). (23)

Although (21) is affected bymeasurement noise, it remains
invariant to system noise, that definitely results in higher
robustness of the dUFIR filter.
A flaw of the batch dUFIR filter is that the implementation

of (15) with (21) on a high-densityWSN and large horizonsN
require a large-dimension matrix operation, which is not suit-
able for smart sensors. A fast computation can be provided
using an iterative algorithm, which we will consider next.

3) ITERATIVE dUFIR FILTERING ALGORITHM
An iterative form of the estimate x̂ck can be obtained if to
represent x̂ck with a sum of a centralized estimate x̂k defined
by (14) and a local estimate x̂(i)k = 2

(i)
m,kY

(i)
m,k . That allows

writing (16) as

x̂ck = (I + Jλk )x̂k − Jλk x̂
(i)
k , (24)

and, following [11], [28], find recursions. Namely, for x̂k , one
can employ from [28]

Gl = [HT
l Hl + (FlGl−1FTl )

−1]−1, (25)

x̂−l = Fl x̂l−1, (26)

x̂l = x̂−l + GlH
T
l (yl − Hl x̂

−

l ), (27)

and

G(i)
l = [H (i)T

l H (i)
l + (FlG

(i)
l−1F

T
l )
−1]−1, (28)

x̂(i)
−

l = Fl x̂
(i)
l−1, (29)

x̂(i)l = x̂(i)
−

l + G(i)
l H

(i)T

l (y(i)l − H
(i)
l x̂

(i)−

l ), (30)

where l is an iterative variable starting at s = k − N + K ,
where K is the number of the states, and ending when l = k .
Iterations using (25)–(27) can be initialized with Gl−1 =

Gs and x̂l−1 = x̂s in short batch forms of

Gs = (HT
m,sHm,s)−1, (31)

x̂s = GsHT
m,sYm,s. (32)

Following the same strategy, iterations (28)–(30) for x̂(i)k
can be initialized with

G(i)
s = (H(i)T

m,sH(i)
m,s)
−1, (33)

x̂(i)s = G(i)
s H(i)T

m,sY
(i)
m,s. (34)

Finally, fast computation of factor λoptk can be provided if
to represent (21) as

λ
opt
k = −

1
J
(αk − GkG

(i)−1

k βk )

×(αk − 2GkG
(i)−1

k βk + βk )−1, (35)

where αk = 2̃m,k R̄m,k2̃T
m,k and βk = 2

(i)
m,k R̄

(i)
m,k2

(i)T

m,k , and
use the recursions (see Appendix B and Appendix C)

αk = Gk (HT
k RkHk + F

−T
k G−1k−1αk−1G

−1
k−1F

−1
k )Gk (36)

βk = G(i)
k (H (i)T

k R(i)k H
(i)
k + F

−T
k G(i)−1

k−1 βk−1G
(i)−1

k−1 F
−1
k )G(i)

k ,

(37)
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which initial values αk−1 and βk−1 can be computed in short
batch forms as

αs = GsHT
m,sR̄m,sHm,sGTs , (38)

βs = G(i)
s H(i)T

m,s R̄
(i)
m,sH(i)

m,sG
(i)T
s . (39)

A pseudo code of the predictive iterative dUFIR algorithm
with consensus on estimates designed for measurements with
temporary missing data is listed as Algorithm 2. Given a

Algorithm 2 Iterative dUFIR Filtering Algorithm

Data: yk , R
(i)
k , Rk , N

Result: x̂k
1 begin
2 for k = N − 1 : ∞ do
3 m = k − N + 1, s = m+ K − 1;
4 Gs = (HT

m,sHm,s)−1;

5 G(i)
s = (H(i)T

m,sH(i)
m,s)−1;

6 if γk = 0 then
7 y(j)k = H (j)

k Fk x̂
(j)
k−1;

8 end if
9 x̃s = GsHT

m,sYm,s;

10 x̃(i)s = G(i)
s H(i)T

m,sY
(i)
m,s;

11 αs = GsHT
m,sR̄m,sHm,sGTs ;

12 βs = G(i)
s H(i)T

m,s R̄
(i)
m,sH(i)

m,sG
(i)T
s ;

13 for l = s+ 1 : k do
14 x̂−l = Fl x̂l−1;

15 x̂(i)
−

l = Fl x̂
(i)
l−1;

16 Gl = [HT
l Hl + (FlGl−1FTl )

−1]−1;

17 G(i)
l = [H (i)T

l H (i)
l + (FlG

(i)
l−1F

T
l )
−1]−1;

18 x̂l = x̂−l + GlH
T
l (yl − Hl x̂

−

l );

19 x̂(i)l = x̂(i)
−

l + G(i)
l H

(i)T

l (y(i)l − H
(i)
l x̂

(i)−

l );
20 αl =

Gl(HT
l RlHl + F

−T
l G−1l−1αl−1G

−1
l−1F

−1
l )Gl ;

21 βl = G(i)
l (H (i)T

l R(i)l H
(i)
l +

F−Tl G(i)−1

l−1 βl−1G
(i)−1

l−1 F
−1
l )G(i)

l ;
22 end for
23 λk =

−
1
J (αk − GkG

(i)−1

k βk )(αk − 2 GkG
(i)−1

k βk + βk )
x̂ck = (I + Jλk )x̃k − Jλk x̃

(i)
k ;

24 end for
25 end
26 † First data y0, y1,..., yN−1 must be available.

horizon of N points, Algorithm 2 starts computing the initial
values at s = m+K−1 and then updates the results beginning
at s+1 until the iterative variable l reaches k . It then computes
the optimal consensus factor λk and finishes with the output
estimate x̂ck .

In what follows, we will test Algorithm 2 along with the
dKF Algorithm 1 originally proposed in [16]. A numerical
example will be given for tracking of a circularly traveling

TABLE 1. Nodes sorted by the number of available links with neighbors.

FIGURE 2. WSN over a ground truth trajectory available from the MagPIE
project dataset [31].

and rapidly maneuvering object. Experimental verification
will be provided for robot localization with measured ground
truth.

IV. MANEUVERING OBJECT TRACKING WITH MISSING
DATA
To conduct this experiment, we employ the ground truth
trajectory available for free from the MagPIE project
dataset [31]. We consider a random WSN composed
of 18 nodes whose connections are sketched in Fig. 2 and
listed in Table 1. Every node is capable of measuring the
object Cartesian coordinates x and y of the mobile robot loca-
tion. Measurements were simulated by adding white Gaus-
sian noise to the ground truth data in each of the sensors.
Noise was generated to have the variance σ (i)

v = 0.25 + φ,
where φ is uniformly distributed as φ = U (0.5,−0.5).

Supposing that some data can be lost in communication
channels, we remove some data obeying the binomial distri-
bution with the probability of P = 0.9 as shown in Fig 3.
Note that each node has different sets of lost data.

The moving object dynamics are given in state space by

A =


1 τ 0 0
0 1 0 0
0 0 1 τ

0 0 0 1

, H (i)
=

[
1 0 0 0
0 0 1 0

]
,

B =


τ/2 0
1 0
0 τ/2
0 1

, Q =
[
σ 2
w 0
0 σ 2

w

]
,

where σw = 0.76 m/s. For dUFIR, the optimal horizon
Nopt was found at a test stage to be 53 in average.

As stated by (21), the optimal factor λoptk depends on the
appropriate knowledge of the noise statistics. To analyze the
robustness of the algorithms, we let Qk ← (0.1)2Qk and
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FIGURE 3. Measurements along coordinate x with missing data for: a)
node 10 and b) node 12.

FIGURE 4. RMSE produced by each node of the WSN.

R(i)k ← q(i)
2
R(i)k where q(i) = U (1, 2), meaning that each

sensor has different errors in the noise statistics.
As has been shown in [11], the estimation error decreases

by an increase in the number of the links. As follows from
Fig. 4 sketching the RMSE produced by each node, this also
holds true for the consensus on estimates. In fact, despite
the effect of noise uncertainties in (20), the dUFIR filter
errors range in Fig. 4 much lower than by the dKF. Also,
the dUFIR filter demonstrates lesser variations in the individ-
ual RMSEs. The latter means that the dUFIR filter provided
a better consensus than the dKF. Effect of errors in the noise
covariance on the dKF estimate is easily seen in Fig. 5. Under
large uncertainties in noise, the dKF fails to produce low
estimation errors, which is more evident for a small number
of the neighbors (Fig. 5 a). But even under the larger number
of the neighbors, the dUFIR filter still outperforms the dKF
(Fig. 5 b).

FIGURE 5. Estimation error produced by the dUFIR filter and dKF under
error in the noise covariances: a) node 12 with 2 links and b) node
10 with 9 links.

V. VEHICLE LOCALIZATION OVER WSN WITH MISSING
DATA AND TIME-VARYING MODEL NOISE
In this section we consider a WSN with 30 nodes, which
covers a trajectory of an unmanned ground vehicle (UGV)
(robot). The trajectory shown in Fig. 6 is available for free use
from the MagPIE dataset [31]. Each node is equipped with a
time-of-flight (ToF) ranging sensor VL53L0X and a MEMS
gyro ADXRS649. The measuring distance ρ(i)k of the ith ToF
sensor is limited with 2 m and an accuracy of1ρ(i)k = 4.8 cm.
The MEMS gyro has an angular resolution of 1φ(i)k = 0.47◦

for a measured angle φ(i)k . The communication range of each
node is limited with 5 m.

When an UGV enters in the node range, a distance and
an angle are measured as ρ(i)k = ρ̄

(i)
k + 1ρ

(i)
k and φ(i)k =

φ̄
(i)
k +1φ

(i)
k , respectively, with a sampling time of T = 0.01 s,

where ρ̄(i)k and φ̄(i)k are average values and1ρ(i)k and1φ(i)k are
white Gaussian and uncorrelated with the standard deviations
of σρk = |1ρ

(i)
k |/3 and σφk = |1φ

(i)
k |/3. The UGV altitude

is ignored in our experiment. To avoid nonlinearities inher-
ent to polar coordinates, we represent the UGV Cartesian
coordinates as x(i)k = ρ

(i)
k cosφ(i)k = x̄(i)k + 1x

(i)
k and y(i)k =

ρ
(i)
k sinφ(i)k = ȳ(i)k +1y

(i)
k and approximate with

x(i)k = (ρ̄(i)k +1ρ
(i)
k ) cos(φ̄(i)k +1φ

(i)
k ),

∼= ρ̄
(i)
k cos φ̄(i)k +1ρ

(i)
k cos φ̄(i)k −1φ

(i)
k ρ̄

(i)
k sin φ̄(i)k , (40)

y(i)k = (ρ̄(i)k +1ρ
(i)
k ) sin(φ̄(i)k +1φ

(i)
k ),

∼= ρ̄
(i)
k sin φ̄(i)k +1ρ

(i)
k sin φ̄(i)k +1φ

(i)
k ρ̄

(i)
k cos φ̄(i)k , (41)

where x̄(i)k = ρ̄
(i)
k cos φ̄(i)k , ȳ(i)k = ρ̄

(i)
k sin φ̄(i)k , 1x(i)k =

1ρ
(i)
k cos φ̄(i)k −1φ

(i)
k ρ̄

(i)
k sin φ̄(i)k , and1y(i)k = 1ρ

(i)
k sin φ̄(i)k +

1φ
(i)
k ρ̄

(i)
k cos φ̄(i)k .

For this model, we define the measurement noise variances
as σ (i)2

xk = E{1x(i)
2

k } and σ
2
yk = E{1y(i)

2

k }, ignore products of
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FIGURE 6. A WSN covering the UGV trajectory available from the MagPIE dataset [31]. The labeled nodes are used in the reconstruction of the
trajectory. The dashed circle exhibits the 2 m range of a ToF sensor.

small and uncorrelated values 1ρ(i)k and 1φ(i)k , provide

σ
(i)
xk = σ

2
ρk cos

2 φ̄k + σ
2
φk ρ̄

2
k sin

2 φ̄k

=
(1ρ(i)k )2

9
cos2 φ̄k +

(1φ(i)k )2

9
ρ̄2k sin

2 φ̄k (42)

σ
(i)
yk = σ

2
ρk sin

2 φ̄k + σ
2
φk ρ̄

2
k cos

2 φ̄k

=
(1ρ(i)k )2

9
sin2 φ̄k +

(1φ(i)k )2

9
ρ̄2k cos

2 φ̄k , (43)

and describe the time-varying measurement noise covariance
matrix as

R(i)k =

[
σ
(i)
xk 0
0 σ

(i)
yk

]
.

The UGV dynamics and the covariance Q are exactly the
same as in the previous section. The nodes available for the
UGV at each k due to limited range are listed in Table 2.

Estimation of the UGV trajectory via the WSN has
been obtained by combining estimates by the nodes labeled
in Fig. 6 and bolded in Table 2, which communicate with
nearest neighbors (not bolded in Table 2). To test the
algorithms for different available information about noise,
we consider several possible scenarios of filter tuning.
In each of the cases, we evaluate effects of deviations from
1ρk = 4.8 cm and 1φk = 0.47◦ specified in the maximum
sense on the filter performance via (42) and (43).

In the first and second scenarios, measurement data are
simulated assuming that the normally distributed zero mean
noise has the same variances of (1ρ(i)k )2 = 4.82 and
(1φ(i)k )2 = 0.472 for i = {1, . . . , 30} in all sensors. In the
remaining four scenarios, we generate different measurement
data supposing that the normally distributed zero noise has
different variances in each sensor. In this case, the variances
are uniformly distributed with (1ρ(i)k )2 ∼ U(3.62, 4.82) and
(1φ(i)k )2 ∼ U(0.11732, 0.472) for i = {1, . . . , 30}. In the
first four scenarios, the dUFIR filter is tuned to Nopt = 13. In
the first five scenarios, the dKF undergoes the effect of errors
in the noise statistics caused by Q← p2 Qk with p = 4. The
scenarios are the following:

1) SC-1: Set 1ρ(i)k = 4.8 cm and 1φ(i)k = 0.47◦.
2) SC-2: Reduce 1ρ(i)k and 1φ(i)k by the factor of 3 as an

error of the known sensor noise.

TABLE 2. Nodes available in different time intervals of index k .

TABLE 3. RMSEs produced by dKF and dUFIR filter.

3) SC-3: Distribute sensor errors uniformly as 1ρ(i)k ∼
U(3.6, 4.8), in cm, and1φ(i)k ∼ U(0.1173◦, 0.47◦), but
set 1ρ(i)k = 4.8 cm and 1φ(i)k = 0.47◦.
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FIGURE 7. Absolute estimation errors along the coordinate x produced by
the dKF and dUFIR filter for six scenarios, (SC-1)–(SC-6).

4) SC-4: as in SC-3, distribute errors uniformly as1ρ(i)k ∼
U(3.6, 4.8), in cm, and1φ(i)k ∼ U(0.1173◦, 0.47◦) and
set 1ρ(i)k =

4.8
3 cm and 1φ(i)k =

0.47
3
◦
.

5) SC-5: Set 1ρ(i)k randomly taken from U(3.6, 4.8),
in cm, and 1φ(i)k from U(0.1173◦, 0.47◦). Set N (i)

opt
individually to each sensor.

6) SC-6: Consider SC-5 for Q← p2 Qk with p = 0.1.

In terms of the absolute estimation errors, the results are
sketched in Fig. 7 along the coordinate x and in Fig. 8 along y

FIGURE 8. Absolute estimation errors along the coordinate y produced by
the dKF and dUFIR filter for six scenarios, (SC-1)–(SC-6).

and one can easily trace the differences. The first point to
notice is that the dUFIR filter in general outperforms the dKF
in each of the above scenarios. To support this inference,
the RMSEs computed by the root square of the sum of the
MSEs along coordinates x and y are listed in Table 3, where
the minimum values are bolded.

Of a particular interest is the case of SC-6 illustrated
in Fig. 8.While the dUFIR estimate remains here unaltered by
errors in Q, the dKF reduces the estimation random errors in
specific time intervals, such as 1500 ≤ k ≤ 2000. However,
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FIGURE 9. Estimates provided by the dKF and dUFIR filter along the
coordinate y for scenario SC-6.

in 1300 ≤ k ≤ 1500 the bias error produced by dKF grows
considerably (Fig. 9) that speaks in favor of higher robustness
of the dUFIR filter.

VI. CONCLUSION
In this paper, the problem of object tracking over distributed
WSNs with consensus on estimates and missing data has
been solved by designing and using the dUFIR filter. Better
performance of the dUFIR filter-based localization system
has been proven with respect to known ground truth through
simulations formeasurements withmissing data and referring
to real sensor specifications. Extensive experimental investi-
gations have shown that the dUFIR filter produces smaller
errors than the dKF under uncertainties in the noise statistics
and model errors. It was also verified that the dUFIR filter
allows reaching a better consensus in estimates than the dKF
in terms of errors in individual estimates. Another noticeable
advantage of the dUFIR filter, which was observed in sim-
ulations, is that it requires a smaller number of the nodes to
achieve the same performance as in the dKF. Referring to the
above advantages of the dUFIR filter, we are now designing
a hybrid estimator of a moving object trajectory to reach a
consensus on both the estimates and measurements.

APPENDIX A
CONSENSUS FACTOR λ

opt
k

Consider the error covariance Pk = E{εkεTk } as function of
λk , to be

Pk = (D̄m,k − 2̃m,kMm,k )Qm,k (D̄m,k − 2̃m,kMm,k )T

+ Jλk (2̃m,k R̄m,k2̃T
m,k −2

(i)
m,k R̃

(i)T 2̃T
m,k )

+ J [λk (2̃m,k R̄m,k2̃T
m,k −2

(i)
m,k R̃

(i)T 2̃T
m,k )]

T

+ J2λk (2̃m,k R̄m,k2̃T
m,k − 2̃m,k R̃

(i)
m,k2

(i)T

m,k )λ
T
k

+J2λk (2
(i)
m,k R̃

(i)T 2̃T
m,k +2

(i)
m,k R̄

(i)
m,k2

(i)T

m,k )λ
T
k , (A.1)

where 2̃m,k = GkHT
m,k and

R̄m,k = E{vm,kvTm,k} = diag(Rm . . .Rk ),

R̄(i)m,k = E{v(i)m,kv
(i)T

m,k} = diag(R(i)m . . .R
(i)
k ),

R̃(i)m,k = E{vm,kv
(i)T

m,k} = diag(R̃(i)m . . . R̃
(i)
k ).

We next apply the derivative with respect to λk to the trace
of (A.1) by using the identities ∂

∂X tr(XTBX ) = BX + BTX ,
and ∂

∂X tr(XA) = AT . Putting the derivative to zero yields

λ
opt
k = −

1
J
(2̃m,k R̄m,k2̃T

m,k − 2̃m,k R̃
(i)
m,k2

(i)T

m,k )

×(2̃m,k R̄m,k2̃T
m,k − 2̃m,k R̃

(i)
m,k2

(i)T

m,k

− (2̃m,k R̃
(i)
m,k2

(i)T

m,k )
T
+2

(i)
m,k R̄

(i)
m,k2

(i)T

m,k ), (A.2)

and with the identities

2̃m,k R̃
(i)
m,k2

(i)T

m,k = (2̃m,k R̃
(i)
m,k2

(i)T

m,k )
T ,

2̃m,k R̃
(i)
m,k2

(i)T

m,k = GkG
(i)−1

k 2
(i)
m,k R̄

(i)
m,k2

(i)T

m,k , (A.3)

we obtain the final form of (21).

APPENDIX B
RECURSION FOR αl
Consider αk = 2̃m,k R̄m,k2̃T

m,k in (35) and rewrite it as

αk = GkHm,k R̄m,kHT
m,kGk . (B.1)

Represent the product Hm,k R̄m,kHT
m,k by the sum of

Hm,k R̄m,kHT
m,k =

N−1∑
l=0

(Fm+1+l
k )−T

×HT
m+lRm+lHm+l(F

m+1+l
k )−1 (B.2)

= HT
k RkHk + F

−T
k

[
N−2∑
l=0

(Fm+1+l
k−1 )−T

× HT
m+lRm+lHm+l(F

m+1+l
k−1 )−1

]
F−1k

(B.3)

= HT
k RkHk
+F−Tk Hm,k−1R̄m,k−1HT

m,k−1F
−1
k .

(B.4)

Referring to αk−1 = Gk−1Hm,k−1R̄m,k−1HT
m,k−1Gk−1, find

Hm,k−1R̄m,k−1HT
m,k−1 = G−1k−1αk−1G

−1
k−1. (B.5)

Finally, combine (B.1), (B.4), and (B.5) and end up with the
recursion (36) for αk .

APPENDIX C
RECURSION FOR βk

Rewrite βk = 2
(i)
m,k R̄

(i)
m,k2

(i)T

m,k in (35) as

βk = G(i)
k H(i)

m,k R̄
(i)
m,kH

(i)T

m,kG
(i)
k , (C.1)
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represent by the sum, and transform as

H(i)
m,k R̄

(i)
m,kH

(i)T

m,k =

N−1∑
l=0

(Fm+1+l
k )−T

×H (i)T

m+lR
(i)
m+lH

(i)
m+l(F

m+1+l
k )−1 (C.2)

= H (i)T

k R(i)k H
(i)
k + F

−T
k

[
N−2∑
l=0

(Fm+1+l
k−1 )−T

×H (i)T

m+lR
(i)
m+lH

(i)
m+l(F

m+1+l
k−1 )−1

]
F−1k

(C.3)

= H (i)T

k R(i)k H
(i)
k

+F−Tk H(i)
m,k−1R̄

(i)
m,k−1H

(i)T

m,k−1F
−1
k .

(C.4)

From G(i)
k−1H

(i)
m,k−1R̄

(i)
m,k−1H

(i)T

m,k−1G
(i)
k−1 find

H(i)
m,k−1R̄

(i)
m,k−1H

(i)T

m,k−1 = G(i)−1

k−1 βk−1G
(i)−1

k−1 , (C.5)

combine (C.1), (C.4), and (C.5), and arrive at the recur-
sion (37) for βk .
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