
SPECIAL SECTION ON SECURITY AND PRIVACY FOR CLOUD AND IOT

Received February 28, 2019, accepted March 18, 2019, date of publication March 21, 2019, date of current version December 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2906726

Efficient Attribute-Based Access Control With
Authorized Search in Cloud Storage
JIALU HAO 1, (Student Member, IEEE), JIAN LIU1, HUIMEI WANG 1,
LINGSHUANG LIU2, MING XIAN1, AND XUEMIN SHEN3, (Fellow, IEEE)
1College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
2Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
3Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Corresponding author: Huimei Wang (freshcdwhm@163.com)

This work was supported by the National Natural Science Foundation of China under Grant No. 61801489.

ABSTRACT Attribute-based encryption has been widely employed to achieve data confidentiality and fine-
grained access control in cloud storage. To enable users to identify accessible data in numerous dataset, clear
attributes should be appended to the ciphertext, which results in the exposure of attribute privacy. In this
paper, we propose an efficient attribute-based access control with authorized search scheme (EACAS) in
cloud storage by extending the anonymous key-policy attribute-based encryption (AKP-ABE) to support
fine-grained data retrieval with attribute privacy preservation. Specifically, by integrating the key delegation
technique into AKP-ABE, EACAS enables data users to customize search policies based on their access
policies, and generate the corresponding trapdoor using the secret key granted by the data owner to retrieve
their interesting data. In addition, a virtual attribute with no semantic meaning is utilized in data encryption
and trapdoor generation to empower the cloud to perform an attribute-based search on the outsourced
ciphertext without knowing the underlying attributes or outsourced data. The data owners can achieve fine-
grained access control on their outsourced data, and the data users are flexible to search their interesting data
based on protected attributes through customizing the search policies. Finally, we demonstrate that EACAS
is more efficient than existing solutions on computation and storage overheads.

INDEX TERMS Access control, authorized search, cloud storage, data sharing, key-policy attribute-based
encryption.

I. INTRODUCTION
Cloud storage as one of the most popular cloud-based
applications supplies users with scalable and elastic stor-
age resources for remote data sharing, which dramati-
cally reduces the local cost on data management and
maintenance [1]–[3]. However, once the data is outsourced
to the cloud, the security and privacy threats become huge
concerns for data owners as they lose the physical control
over their data [4], [5]. Moreover, the frequently happened
data leakage incidents undermine the trust on the cloud ser-
vice provider, which significantly impedes the wide adoption
of outsourced cloud storage [6], [7]. Traditional one-to-one
encryption is able to protect data confidentiality [8], but it
is quite incompetent for data owners sharing their data with
authorized users efficiently and flexibly. As well known,
attribute-based encryption (ABE) [9] can be used to achieve

The associate editor coordinating the review of this manuscript and
approving it for publication was Kuan Zhang.

fine-grained access control and protect data confidential-
ity simultaneously, and key-policy attribute-based encryp-
tion (KP-ABE) [10] enables the data owner to label each
ciphertext with a set of descriptive attributes, and gener-
ate the private key that is related to an access policy to
specify which type of ciphertext can be decrypted. After
acquiring this private key, the data user can decrypt the
specified ciphertext shared by the data owner. With the prop-
erty of designated data sharing, KP-ABE has been widely
used in electronic medical record systems and remote cloud
storage [11], [12].

To enable remote data access, the data owners have to
explicitly append the attributes to the ciphertext and then
upload the attributes and ciphertext to the cloud; other-
wise, the data users cannot identify their accessible data.
Although this simple approach is quite popular in con-
ventional KP-ABE schemes [9], [10], the public attributes
may cause the privacy leakage, indicating that anyone who
obtains the ciphertext can infer some secret information

182772 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-2008-3600
https://orcid.org/0000-0002-0726-2850

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

about the data content. For example, the medical record of
a patient is encrypted with the following attributes, {Affilia-
tion: Hospital A, Department: Cardiology, Gender: Male}
and uploaded to the cloud. In such situation, anyone who has
the ciphertext is able to deduce from the public attributes that
the patient may suffer from heart disease, even they cannot
access the plaintext. Therefore, it is necessary to introduce
anonymous KP-ABE to preserve attribute privacy. However,
if the attribute information is hidden, the data users cannot
identify and retrieve their accessible data shared by the data
owners.

To achieve fine-gained access control and flexible data
retrieval simultaneously, a general scheme [13] has been
proposed based on the generic construction [14] that com-
bines ABE with expressive searchable encryption (ESE),
i.e., encrypt the data with ABE and encrypt the corre-
sponding keywords with ESE. Unfortunately, simply com-
bining them suffers from the following problems. Firstly,
any user, even unauthorized one, is able to search the
ciphertext, even if he cannot decrypt to obtain data. Sec-
ondly, the double encryption (ABE+ESE) brings about
large computation and storage overheads. Thirdly, the trap-
door obtained from the data owner for ciphertext search
is one-time, which means that the data user has to
request a new trapdoor for every data retrieval. Recently,
some authorized keyword search (AKS) schemes [15], [16]
were proposed to allow only authorized data user to per-
form ciphertext search, but they are either restricted with
less expressive search policy or inefficient for practical
applications.

In this paper, we propose an efficient attribute-based access
control with authorized search scheme (EACAS) in cloud
storage by extending the anonymous key-policy attribute-
based encryption (AKP-ABE). Our EACAS is character-
ized by employing the key delegation to empower the data
users to independently generate the trapdoor for ciphertext
retrieving, and a virtual attribute is introduced in both cipher-
text and trapdoor to protect data confidentiality against the
semi-honest cloud server while performing data search. The
main contributions of this paper can be summarized as
threefold.

1) Firstly, we propose AKP-ABE with partially hid-
den attributes based on the expressive keyword
search (EKS) scheme proposed by Cui et al. [17].
In AKP-ABE, the attribute values in the attribute set are
protected for preventing attribute privacy leakage, and
the linear splitting technique [18] is utilized to protect
the attribute values against offline guessing attack. The
AKP-ABE is proved secure under the q-2 Decisional
Bilinear Diffie-Hellman (DBDH) assumption [9] and
the Decisional Linear (D-Linear) assumption [19].

2) Secondly, we propose EACAS by extendingAKP-ABE
to support fine-grained access control with authorized
search over the cloud data. Specifically, we use the
key delegation technique to empower the data user
to generate trapdoor associated with the search policy

only based on his secret key. Additionally, we bind
a virtual attribute in the data encryption and trapdoor
generation process to prevent the cloud server decrypt-
ing the ciphertext while performing ciphertext search
on behalf of the data users.

3) Thirdly, we analyze the property, security and effi-
ciency of EACAS, and implement it by using the
rapidly prototyping tool called Charm [20]. The exten-
sive experiments demonstrate that EACAS is more effi-
cient than existing solution on computation and storage
overheads and is practical to be implemented in cloud
storage.

The remainder of this paper is organized as follows.
We first review some related work and preliminaries in
Section II and III. In Section IV, we present the AKP-ABE
primitive. The detailed construction of EACAS can be
found in Section V, followed by the property and security
discussions in Section VI. The performance evaluation is
given in Section VII. Finally, we conclude the paper in
Section VIII.

II. RELATED WORK
We discuss the existing works related to our proposed
scheme, including ABE, PEKS and AKS.

A. ATTRIBUTE-BASED ENCRYPTION (ABE)
ABE mainly includes two forms: ciphertext-policy ABE
(CP-ABE) [21] and KP-ABE [10]. In CP-ABE, the data is
encrypted under a specified access policy, and only the users
possessing attributes that satisfy the access policy are able
to decrypt the ciphertext. While in KP-ABE, the data is
encrypted under several attributes, and the user is assigned
with an access policy [22]. With the above properties, ABE
soon became popular in the outsourced data access control
systems [23], [24]. However, most of the existing schemes
expose attribute information in the ciphertext, which may
incur data or user privacy leakage, thus the research on
anonymity of ABE is also necessary [25]. Some anonymous
CP-ABE schemes [26] have been proposed to prevent the
unauthorized user presuming attribute information from the
access policy attached to the ciphertext. Nishide et al. [19]
proposed the first construction of anonymous CP-ABE by
partially hiding the attributes in access policy, in which the
attribute is split into an attribute name and multiple attribute
values, and only the values are concealed. Based on it,
some works [27], [28] improved the construction in terms of
efficiency and security, but only AND gates are supported
in the access policy. Later, Lai et al. [29] constructed an
anonymous CP-ABE primitive based on the composite-order
groups, which supports more expressive access policy. With
the same form of the access policy, Cui et al. [30] com-
bined the large universe CP-ABE [9] with the linear split-
ting technique [18] to give a more efficient construction in
the prime-order groups. Obviously, the ideas in anonymous
CP-ABE can somehow be used to achieve anonymity in
KP-ABE.

VOLUME 7, 2019 182773

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

B. PUBLIC-KEY ENCRYPTION WITH KEYWORD
SEARCH (PEKS)
The concept of PEKS was introduced by Boneh et al. [31],
and two constructions were given in their scheme to sup-
port equality queries. Later, many other PEKS schemes with
better security or new functionalities are proposed to make
it more practical [32], in which the following two directions
are mainly included: (1) how to support more expressive and
flexible search policy on keywords; and (2) how to resist
the offline guessing attack. With regard to the first one,
Park et al. [33] presented a PEKS construction to support
searching with conjunctive keywords. Boneh andWaters [34]
proposed a public-key based scheme supporting arbitrary
conjunctive queries over the encrypted data. In addition,
with the idea of viewing attribute in KP-ABE as keyword,
some search schemes [35], [36] supporting arbitrary mono-
tone boolean search policy on the keywords are proposed,
but they are constructed in composite-order groups which
make them impractical. Recently, Cui et al. [17] utilized the
large universe KP-ABE [9] to achieve expressive keyword
search (EKS) in prime-order groups. The offline guessing
attack was introduced by Byun et al. [37], and it was demon-
strated that the popular PEKS construction proposed in [31]
is vulnerable to this kind of attack, since the keywords can be
guessed from the trapdoor. As discussed in [38], the vulner-
ability against the offline guessing attack is an essential fea-
ture for searchable encryption in public-key situation. Rhee
et al. [39] considered a tradeoff solution, where a designated
tester is introduced to perform search such that any adversary
without the private key assigned to the designated tester
cannot launch offline guessing attack.

C. AUTHORIZED KEYWORD SEARCH (AKS)
Sun et al. [40] first considered fine-grained search autho-
rization in their attribute-based keyword search scheme, but
only single keyword is supported. Shi et al. [15] put forward
an authorized keyword search (AKS) scheme supporting
expressive authorization policies and query predicates, but
too much cost is incurred due to the composite-order groups
and the data owner need generate trapdoor for each search
policy. Jiang et al. [16] presented a public key based scheme
supporting authorized ciphertext search which only supports
single keyword. However, these schemes mainly focus on
the authorization of keyword search, but do not consider
the ability of decryption. Lately, Cui et al. [13] designed a
generic attribute-based encryption with expressive and autho-
rized keyword search (ABE-EAKS) scheme, in which ABE
is applied to encrypt the data, and EKS is used to encrypt
the corresponding keywords. Their scheme can better meet
the real demand for data sharing in the cloud storage envi-
ronment, but the double encryption incurs large computation
and storage overheads. Compared with [13], only AKP-ABE
primitive is utilized to realize fine-grained access control with
authorized search in EACAS, thus the cost is significantly
smaller than the cumulative cost of ABE and EKS.

III. PRELIMINARIES
In this section, we briefly review the technical preliminaries
closely related to our work.

A. ACCESS STRUCTURE
An access structure [10] on an attribute universeU is a collec-
tion C, which includes non-empty sets of attributes. The sets
in C are defined as the authorized sets. In addition, an access
structure which satisfies the following requirement is called
monotone: if X ∈ C and X ⊆ Y , then Y ∈ C. Note that, only
monotone access structures are considered in this paper.

B. ACCESS TREE
The access tree structure can be used to represent the access
policy [10]. In an access tree T , each non-leaf node represents
a threshold gate, and each leaf node is associated with an
attribute. For a non-leaf node x, let kx , numx denote the
threshold value and the number of its children respectively,
where kx = 1 means the OR gate and kx = numx means
the AND gate. Let par(x) be x’s parent node, id(x) be the
index of x ordered by its parent. atts(T) means the set of
attributes (leaves) in T , and Tx means the subtree with a root
node x.
To share a secret α based on an access tree T , a random

polynomial px is defined for each node x in the top-down
manner, where the degree dx = kx − 1. For the root node
r , pr (0) = α. For each non-root node, px(0) = ppar(x)(id(x)).
For an attribute (leaf) node i, pi(0) = ppar(i)(id(i)) can be seen
as the secret share assigned to it.

If an attribute set S satisfies the access tree Tx , we denote
that Tx(S) = 1. Specifically, if x is an attribute node, Tx(S)
returns 1 only if x ∈ S. If x is a non-leaf node, Tx(S) = 1
only if at least kx children nodes of x return 1. In addition,
for an access tree with root node r , if Tr (S) = 1, the secret α
associated with r can be recovered by combining the shares
assigned to the attributes belonging to S in the bottom-up
manner using the Lagrange polynomial interpolation tech-
nique recursively.

C. KEY-POLICY ATTRIBUTE-BASED ENCRYPTION
Four algorithms are included in the KP-ABE primitive [10].

• Setup(ξ)→ (PK ,MSK). This algorithm takes as input
a security parameter ξ , and generates the master secret
key MSK as well as the public key PK .

• Encrypt(PK ,M , S) → CT . This algorithm takes as
input PK , a messageM , and an attribute set S. It gener-
ates the ciphertext CT .

• KeyGen(PK ,MSK ,AP) → SK . This algorithm takes
as input PK , MSK , and the access policy AP . It gener-
ates the secret key SK associated with AP .

• Decrypt(CT , SK) → M/⊥. This algorithm takes as
input CT and SK . It outputs the message M only if the
attribute set S of CT satisfies the access policy related
to SK , otherwise it outputs ⊥.

182774 VOLUME 7, 2019

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

The AKP-ABE primitive consists of the same algorithms,
except that the attribute information is hidden in the cipher-
text.

IV. ANONYMOUS KP-ABE WITH PARTIALLY HIDDEN
ATTRIBUTES
In this section, we propose an anonymous key-policy
attribute-based encryption (AKP-ABE) with partially hidden
attributes as the main building block of our EACAS based on
the expressive keyword search (EKS) scheme proposed by
Cui et al. [17].

A. DEFINITIONS
An attribute in AKP-ABE is split into two parts: an
attribute name and multiple attribute values. More specif-
ically, an attribute in the attribute set S is represented as
[nx : sx], where nx means the generic attribute name, and
sx is the corresponding attribute value. We denote NS as the
attribute name set related to S. In addition, an access policy
AP is represented as (T , {[nx : tx]}nx∈atts(T)), where T is an
access tree structure taking the attribute name as leaf node,
and each attribute name nx is bound with an attribute value
tx . Furthermore, for the access tree structure T in the access
policy AP , we define N as a set of minimum subsets of
atts(T), where for each attribute name set NI ∈ N , T (NI) =
1 and NI cannot be smaller.
An attribute set S satisfies an access policy AP =

(T , {[nx : tx]}nx∈atts(T)), if there exists an attribute name set
NI in N such that

NI ⊂ NS , and ∀nx ∈ NI , sx = tx ,

where NI ⊂ NS guarantees that the attribute name set NS
related to S satisfies the access tree structure T , and sx = tx
means the attribute values of the same attribute name nx are
identical in the access policy and attribute set.

Note that, in our scheme, the attribute value sx in an
attribute set S is hidden in the ciphertext to protect the
attribute privacy, which means it is embedded into the cipher-
text component implicitly, while the corresponding attribute
name nx is public to simplify the matching process in
decryption.

B. SECURITY MODEL
The security model with partially hidden attributes for AKP-
ABE is described as the following game between a challenger
and an adversary.
• Init. The adversary commits to the challenger two
attribute sets S0 and S1.
Note that the attribute name set is the same for the
two attribute sets (e.g. NS0 = NS1), and there exists
at least one different attribute value. Otherwise, one
can distinguish the ciphertext from the different attribute
name sets, since it is explicitly attached in the ciphertext.

• Setup.The challenger runs theSetup algorithm to gen-
erate PK and MSK . Then, it sends PK to the adversary
and keepsMSK .

• Phase 1. The adversary queries the secret key related
to an access policy AP from the challenger. The only
restriction is that AP cannot be satisfied by either S0 or
S1. Then, the challenger calls the KeyGen algorithm to
generate SK for the adversary. Multiple queries can be
requested by the adversary.

• Challenge. The adversary submits two messages M0
and M1 with the same size to the challenger. The
challenger picks a random bit β in {0, 1}, and runs
the Encrypt(PK ,Mβ , Sβ) algorithm to generate the
ciphertext CT for the adversary.

• Phase 2. Phase 1 is repeated.
• Guess. If the adversary outputs a guess β ′ that equals to
β, it wins the game.

In the game, we use |Pr[β ′ = β] − 1
2 | to define the

advantage of an adversary.
Definition 1: The AKP-ABE with partially hidden

attributes is selectively secure under the chosen plaintext
attack if no probabilistic polynomial-time (PPT) adversary
has non-negligible advantage in the above security game.

C. AKP-ABE SCHEME
We utilize the linear splitting technique [18] on the ciphertext
components to protect the attribute values against offline
guessing attack. The concrete construction of the AKP-ABE
is as follows.

• Setup(ξ)→ (PK ,MSK)

With the input of a security parameter ξ , the algorithm first
generates a bilinear map e : G × G → GT , where G and
GT are multiplicative cyclic groups of prime order p, and g
is a generator of G. It computes g1 = gτ1 , g2 = gτ2 , g3 =
gτ3 , g4 = gτ4 , where α, τ1, τ2, τ3, τ4 ∈ Z∗p are random values.
Then, it randomly picks three group elements u, h,w fromG.
The public key PK is produced as

PK = 〈g, u, h,w, e(g, g)α, g1, g2, g3, g4〉.

The master secret key isMSK = 〈α, τ1, τ2, τ3, τ4〉.

• Encrypt(PK ,M , S)→ CT

This algorithm takes as input the message M , the public
key PK , and the attribute set S. As noted, each attribute in S is
represented as [nx : sx], where nx means the generic attribute
name, and sx ∈ Z∗p is the corresponding attribute value. It first
randomly picks s ∈ Z∗p , and computes Ẽ = M ·e(g, g)αs, E =
gs. Then, it picks three random exponents sx,1, sx,2, zx ∈ Z∗p
for every attribute in S, and computes

Ex,0 = w−s(usxh)zx , Ex,1 = g
zx−sx,1
1 , Ex,2 = g

sx,1
2 ,

Ex,3 = g
zx−sx,2
3 , Ex,4 = g

sx,2
4 .

Finally, the algorithm outputs the ciphertext as CT =
〈NS , Ẽ,E, {Ex,0,Ex,1,Ex,2,Ex,3,Ex,4}x∈S〉. Note that, only
the attribute name set NS is included in the ciphertext to
protect the attribute privacy.

• KeyGen(PK ,MSK ,AP)→ SK

VOLUME 7, 2019 182775

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

FIGURE 1. System model.

This algorithm takes as input the public key PK , the master
secret keyMSK , and the access policyAP . The access policy
AP is represented as (T , {[nx : tx]}nx∈atts(T)), where T is an
access tree structure taking the attribute name as the leaf node,
and each attribute name nx is bound with an attribute value tx .
It first splits the secret α inMSK based on the access tree T ,
such that the secret share for the leaf node nx in T is px(0).
Then, for each leaf node, it randomly selects tx,1, tx,2 ∈ Z∗p ,
and computes

Dx = gpx (0)wτ1τ2tx,1+τ3τ4tx,2 ,

Dx,0 = gτ1τ2 tx,1+τ3τ4 tx,2 ,

Dx,1 = (utxh)−τ2tx,1 , Dx,2 = (utxh)−τ1tx,1 ,

Dx,3 = (utxh)−τ4tx,2 , Dx,4 = (utxh)−τ3tx,2 .

Finally, the secret key associated with the access policy
AP is produced as

SK = 〈AP, Dx ,Dx,0,Dx,1, Dx,2,Dx,3,Dx,4}nx∈atts(T)〉.

• Decrypt(CT , SK)→ M/⊥
This algorithm first checks whether the attribute name set

NS in CT satisfies the access tree structure T in the access
policy AP of the secret key SK . If not, it terminates with ⊥.
Otherwise, it computes N from the access tree structure T ,
where N means a set of minimum subsets of the attribute
names in atts(T) that satisfy T .
Then, it tests whether there exists an attribute name set

NI ∈ N can decrypt successfully. Concretely, if NI ⊂ NS ,
for each attribute name nx ∈ NI , it computes

Px = e(E,Dx)e(Ex,0,Dx,0)e(Ex,1,Dx,1)

e(Ex,2,Dx,2)e(Ex,3,Dx,3)e(Ex,4,Dx,4)

= e(g, g)px (0)se(u, g)zx (sx−tx)(τ1τ2 tx,1+τ3τ4 tx,2).

If the attribute values in the access policy and the attribute
set are matching for the same attribute name nx (e.g. sx = tx),

then Px = e(g, g)px (0)s. Furthermore, if the attribute values
are matching for all the attribute names in NI , e(g, g)αs can
be calculated through combining {Px}nx∈NI in the bottom-up
manner recursively with the Lagrange polynomial interpola-
tion technique. Thus, the message M can be calculated with
Ẽ/e(g, g)αs. Finally, if no such NI ∈ N exists, the algorithm
outputs ⊥.

D. SECURITY PROOF
Theorem 1: If the q-2 DBDH assumption [9] and the

D-Linear assumption [19] hold, AKP-ABE with partially
hidden attributes is selectively secure under chosen plaintext
attack.

Proof: The proof can be completed by proving that any
PPT adversary has negligible advantage in the security game.
The detailed proof is presented in Appendix.

V. ATTRIBUTE-BASED ACCESS CONTROL WITH
AUTHORIZED SEARCH
In this section, we define the system model and design goals,
give an overview of EACAS, and describe EACAS in detail.
Note that, since EACAS is primarily based onAKP-ABE pro-
posed in Section IV, we denote the algorithms in AKP-ABE
as ABE = {ABE.Setup,ABE.Encrypt,ABE.KeyGen,
ABE.Decrypt}.

A. SYSTEM MODEL AND DESIGN GOALS
As shown in Figure. 1, the following three parties are included
in our system.

• Data owner (DO). DO encrypts the data based on its
attributes before uploading it to the cloud, and assigns
access policies over the data attributes to the data users
based on their system roles or credentials. DO is fully

182776 VOLUME 7, 2019

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

trusted in our system, and is in charge of the generation
of keys.

• Data user (DU). DU is allowed to decrypt the cipher-
text whose attributes satisfy his access policy. In addi-
tion, DU is able to define a search policy which is
more restrictive than his access policy, and generate
the corresponding trapdoor only based on his secret
key. To obtain the ciphertext that satisfies the search
policy, DU uploads the trapdoor to the cloud server
to request the matching data. DU are not trusted, and
they may collude to obtain data content outside the
scope of their individual access privileges. They are
also interested in the attribute information about the
data.

• Cloud server (CS). CS is assumed with abundant stor-
age and computing resources and is always online to
render service. CS includes two parts: cloud storage
server (CSS) and designated search server (DSS), where
CSS helps DO store their data, and DSS performs data
search on behalf of DU, and returns the matching data
to DU. CS is semi-honest, which means it will follow
the requests from DO and DU faithfully, but it is curious
about the data information, including data content and
attribute privacy. Note that, DSS is assigned with an
extra private key to guarantee that others without the
private key cannot deduce the attribute values in trapdoor
through offline guessing attack.

The following goals should be fulfilled in EACAS.

• Fine-grained access control. The data stored at CSS is
encrypted using its attributes, and can only be decrypted
by DU whose access policy is satisfied by the ciphertext
attributes. The access control should be embedded into
the decryption process, but not performed by CS. Addi-
tionally, the expressive access policy with any threshold
gate should be supported to guarantee the fine-graininess
of access control.

• Flexible and authorized search. With the help of DSS,
DU should be able to acquire the data ciphertext whose
attributes satisfy the search policy. However, DU is only
allowed to search the data within the scope of his access
permission, which means he should only be able to
generate trapdoor for a search policy which is more
restrictive than his access policy. At the same time,
the search policy should also be in an expressive form
to support flexible search.

• Attribute privacy preservation. The generic attribute
name is public in ciphertext and trapdoor, while the
corresponding attribute value should be hidden to protect
the data and user privacy. Any attacker cannot guess
attribute values embedded in the ciphertext. In addition,
the trapdoor should not leak attribute values in the search
policy to any attackers without the private key for DSS.

• Practical implementation.The system operations should
be completed with lower computation and storage over-
heads for practical applications.

B. OVERVIEW
AKP-ABE enables DO to define expressive access policy for
DU and embed attribute values in the ciphertext implicitly,
thus it can be applied to achieve fine-grained and privacy-
preserving access control on the outsourced data. However,
the hidden attribute information makes data search a chal-
lenge problem. To address this issue, we adopt the key del-
egation technique into AKP-ABE to enable DU to specify a
search policy which is more restrictive than his access policy,
and generate the corresponding trapdoor only based on his
secret key. Figure. 1 gives an example of the access policy
and search policy. Note that, the attribute values in the trap-
door are also concealed to protect the attribute information.
In addition, a virtual attribute is introduced into both the
ciphertext and trapdoor to prevent DSS accessing the data
content. Concretely, the ciphertext is generated as two parts:
(1) the original data encrypted under the original attribute set;
(2) a trivial data ‘‘1’’ encrypted under the original attribute
set added with the virtual attribute. While in the trapdoor,
the virtual attribute is bound with the root node of the search
tree through an AND gate, which makes it prerequisite for
successful matching. When performing search on the cipher-
text, DSS is able to retrieve the ciphertext whose attribute
set satisfies the search policy by testing whether the trivial
data ‘‘1’’ can be recovered, but cannot decrypt the ciphertext
of the original data which is encrypted without the virtual
attribute. As a result, EACAS is able to achieve fine-grained
access control with authorized search on the data outsourced
to cloud, simultaneously the data confidentiality and attribute
privacy are protected effectively.

C. DETAILED EACAS
EACAS consists of six phases: system setup, key generation,
data encryption, trapdoor generation, data search, and data
decryption.
• System Setup
DO selects a security parameter ξ and calls the Setup(ξ)

algorithm to generate PK andMSK . The Setup algorithm is
the same with ABE.Setup, except that (1) a virtual attribute
Attv with the value v (different from the value of any real
attribute) is included in the public key, and (2) an additional
public and private key pair (pkD, skD) for DSS is generated
as pkD = gγ , and skD = γ , where γ is a random value in Z∗p .
Then, the system public key is published as

PK = 〈g, u, h,w, e(g, g)α, g1, g2, g3, g4, [Attv : v], pkD1
〉.

The system master secret key is hold by DO as MSK =
〈α, τ1, τ2, τ3, τ4〉. Additionally, DO sends the private key
skD = γ to DSS.
• Key Generation
When DU joins the system, DO specifies an access policy

AP according to his role, and distributes the secret key SK =
〈AP, {Dx ,Dx,0,Dx,1,Dx,2,Dx,3,Dx,4}nx∈atts(T)〉 generated

1For simplicity, the public key pkD for DSS is included in the system
public key PK .

VOLUME 7, 2019 182777

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

by the KeyGen(PK ,MSK ,AP) algorithm to DU. Note that
the KeyGen algorithm is the same with ABE.KeyGen. With
the secret key SK , DU can decrypt the ciphertext whose
attribute set satisfies AP .
• Data Encryption
Before uploading the dataM to CS, DO defines an attribute

set S according to the data characteristics, and calls the
Encrypt(PK ,M , S) algorithm to produce the ciphertext
CT . In the Encrypt algorithm, DO first picks two random
values s and s′, and computes Ẽ = M · e(g, g)αs, Ẽ ′ =
e(g, g)αs

′

,E = gs,E ′ = gs
′

. Then, for each attribute in
S, it chooses random exponents sx,1, sx,2, zx from Z∗p , and
computes

Ex,0 = w−s(usxh)zx , E ′x,0 = w−s
′

(usxh)zx ,

Ex,1 = g
zx−sx,1
1 , Ex,2 = g

sx,1
2 ,

Ex,3 = g
zx−sx,2
3 ,Ex,4 = g

sx,2
4 .

While for the virtual attribute Attv, DO chooses a random
value rv ∈ Z∗p , and computes Ev,0 = w−s

′

(uvh)rv ,Ev,1 = grv .
Finally, the ciphertext to be uploaded to the cloud is produced
as

CT = 〈NS , Ẽ, Ẽ ′,E,E ′,Ev,0,Ev,1,

{Ex,0,E ′x,0,Ex,1,Ex,2,Ex,3,Ex,4}x∈S〉.

Remarks: The data encryption phase is based on
the ABE.Encrypt algorithm, and the final ciphertext
consists of two parts: CT1 and CT2, where CT1 =

〈NS , Ẽ,E, {Ex,0,Ex,1,Ex,2,Ex,3,Ex,4}x∈S〉 can be seen as
the ciphertext generated from ABE.Encrypt(PK ,M , S),
which is the real data ciphertext, and CT2 = 〈NS , Ẽ ′,E ′,
{E ′x,0,Ex,1,Ex,2,Ex,3,Ex,4}x∈S ,Ev,0,Ev,1〉 can be seen as
the ciphertext generated from ABE.Encrypt (PK , 1, S ∪
Attv), which is designed for data search. Note that there
are two subtle points here. First, the ciphertext components
{Ex,1,Ex,2,Ex,3,Ex,4}x∈S related to the attributes in S are
shared between CT1 and CT2 to reduce computation and stor-
age overheads. Second, since the virtual attribute is public,
there is no need to hide its value, thus the corresponding
ciphertext components Ev,0 and Ev,1 are computed as in the
underlying KP-ABE [9], without using the linear splitting
technique.
• Trapdoor Generation
DU first defines a search policy SP based on his access

policy AP , where SP has the similar expression form with
AP , and the search tree structure in SP should be more
restrictive than the access tree structure in AP , and the
attribute value bound with the attribute name cannot be
changed. Then, DU calls the TrapGen(PK , SK ,SP) algo-
rithm to generate the trapdoor TD associated with the search
policy SP based on his secret key SK related with the
access policy AP . The key delegation technique is applied
in the TrapGen algorithm, where a set of basic operations
are executed step by step to convert the secret key SK for
the access policy AP to the trapdoor for the search policy

FIGURE 2. Operations of converting the access tree to a search tree.
(a) Converting an (n, t)-gate to an (n + 1, t)-gate. (b) Converting an
(n, t)-gate to an (n, t-1)-gate.

SP . Specifically, following three steps are included in the
TrapGen algorithm. The first step is to transfer the original
secret key to a new trapdoor key by manipulating the existing
gates, the second step is to prevent DSS decrypting the data
ciphertext by adding an AND gate to the root node, and the
last is to protect the attribute information in trapdoor against
offline guessing attack from the attackers without the private
key skD for DSS.
1) Manipulating an existing gate

This step can be executed multiple times on the gates of
the access tree T in AP to convert it to a more restric-
tive search tree T̃ , in which the two types of operations
shown in Figure. 2 are included. Considering that the
AND and OR gates can be seen as special cases of an
(n, t)-gate, where n is the threshold and t is the number
of children, we only give generic operations on the
(n, t)-gate.
a) Converting an (n, t)-gate to an (n+ 1, t)-gate

Assume that node z is an (n, t)-gate associated
with a polynomial pz with the degree (n − 1).
In order to change the threshold to n + 1,
DU defines a new polynomial p′z(X) = (X +
1)pz(X), such that the degree of p′z is increased
by 1 and p′z(0) = pz(0). Then, for each child y of
z, it computes δy = index(y)+ 1. Thus, the secret
share for each leaf node x of the subtree Ty is
changed to p′x(0) = δypx(0), and the correspond-
ing key components are computed as

D′x = (Dx)δy , D′x,0 = (Dx,0)δy ,

D′x,1 = (Dx,1)δy , D′x,2 = (Dx,2)δy ,

D′x,3 = (Dx,3)δy , D′x,4 = (Dx,4)δy .

Note that, for those unaffected leaf nodes, δy can
be seen as 1.

b) Converting an (n, t)-gate to an (n, t − 1)-gate
This operation can be easily achieved by remov-
ing the key components associated with the leaves
of the (n, t)-gate node from the original secret key.

2) Converting T̃ to {T̃ AND Attv}
DU first adds a new node R representing a trivial (1,1)-
gate above the root node r of T̃ . Since the threshold

182778 VOLUME 7, 2019

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

of R is 1, its corresponding polynomial is a constant,
i.e., pR = pr (0) = α, which has no effect on the secret
shares related to the leaf nodes. Then, DU changes the
(1,1)-gate into a (2,2) by adding the virtual attributeAttv
as a new child. It first picks a random value k ∈ Z∗p , and
changes the secret share related to the node r as p′r (0) =
pr (0)+k , while the secret share for the node Attv is−k ,
such that with the two secret shares associated with the
node r and the node Attv, the secret α related to node R
can be recovered. Then, DU splits the secret k based on
the search tree T̃ , such that the secret share of k for the
leaf node x is qx(0). Thus, the final secret share for the
leaf node x in T̃ is changed to p̂x(0) = p′x(0) + qx(0),
and the corresponding key component is computed
as

D̂x = D′xg
qx (0).

While for the node Attv, pAttv (0) = −k , and the
related key components are computed as Dv =

g−kwλv ,Dv,0 = gλv ,Dv,1 = (uvh)−λv , where λv
is a random number in Z∗p . Note that, if the linear
splitting technology is used to produce the ciphertext
components for the virtual attribute in Data Encryp-
tion phase, DU cannot generate the corresponding key
components without the master secret key here.

3) Binding with pkD
DU selects a random valueω ∈ Z∗p , and computesW =
gω. For every leaf node x in T̃ , DU computes D̂x,0 =
(pkd)ωD′x,0.

Then, the trapdoor is composed as

TD = 〈T̃ ,W ,Tv,Tv,0,Tv,1,
{Tx ,Tx,0,Tx,1,Tx,2,Tx,3,Tx,4}nx∈atts(T̃)〉,

where Tx = D̂x , Tx,0 = D̂x,0, Tx,1 = D′x,1, Tx,2 = D′x,2,
Tx,3 = D′x,3, Tx,4 = D′x,4, Tv = Dv, Tv,0 = Dv,0 and
Tv,1 = Dv,1. To protect the attribute privacy in the trapdoor,
only the search tree T̃ in the search policy SP is included in
TD, while the attribute values corresponding to the leaf nodes
are embedded into the trapdoor key components implicitly.
Finally, DU sends the trapdoor TD to DSS.
• Data Search
To search the data ciphertext on behalf of DU, DSS calls

theSearch(PK ,TD,CT , skD) algorithm for each ciphertext
CT stored in CSS, and returns the reassembled ciphertextCT ′

to DU if CT satisfies the search policy associated with TD.
Specifically, in the Search algorithm, DSS first tests

whether the attribute name set NS in CT satisfies the search
tree T̃ in TD. If not, it returns ⊥. Otherwise, DSS com-
putes Ñ from the search tree T̃ , where Ñ means a set
of minimum subsets of the attribute names in atts(T̃) that
satisfy T̃ .

Then, DSS tests whether there exists an attribute name set
ÑI ∈ Ñ can pass the following test. During the test, it first
computes W ′ = (W)skD . Then, for each attribute name nx ∈

ÑI , where it requires that ÑI ⊂ NS , it computes

Qx = e(Ex,1,Tx,1)e(Ex,2,Tx,2)e(Ex,3,Tx,3)e(Ex,4,Tx,4)

= e(utxh, g)−δyzx (τ1τ2 tx,1+τ3τ4 tx,2),

P′x = e(E ′,Tx)e(E ′x,0,Tx,0/W
′) · Qx

= e(g, g)(δypx (0)+qx (0))s
′

e(u, g)δyzx (sx−tx)(τ1τ2 tx,1+τ3τ4 tx,2)

= e(g, g)p̂x (0)s
′

e(u, g)δyzx (sx−tx)(τ1τ2 tx,1+τ3τ4 tx,2).

If the attribute values in the attribute set and trapdoor are
matching for the same attribute name nx (e.g. sx = tx),
then P′x = e(g, g)p̂x (0)s

′

. Furthermore, if the attribute val-
ues are matching for all the attribute names in ÑI , P′r =
e(g, g)p

′
r (0)s

′

= e(g, g)(α+k)s
′

can be calculated through com-
bining {P′x}nx∈ÑI recursively with the Lagrange polynomial
interpolation technique. In addition, for the virtual attribute,
DSS computes Pv = e(E ′,Dv)e(Ev,0,Tv,0)e(Ev,1,Tv,1) =
e(g, g)−ks

′

. Thus, Ẽ ′ = P′rPv, which means that the ciphertext
CT matches with the trapdoor. Finally, if no such ÑI ∈ Ñ
exists, the Search algorithm outputs ⊥.

For the ciphertext CT that matches with the trapdoor, DSS
composes CT ′ = 〈ÑI , Ẽ,E, {Ex,0,Qx}nx∈ÑI 〉, and returns it
to DU.
• Data Decryption
After receiving the ciphertext from DSS, DU calls the

Decrypt(CT ′, SK) algorithm to recover the data content.
In the Decrypt algorithm, for each attribute name nx ∈ ÑI ,
it computes

Px = e(E,Dx)e(Ex,0,Dx,0) · (Qx)1/δy = e(g, g)px (0)s

As in the ABE.Decrypt algorithm, the term e(g, g)αs can
be recovered, andM can be calculated through Ẽ/e(g, g)αs.
Remarks: In this phase, we take advantage of the pairing

result Qx for each attribute computed in the phase of Data
Search, such that a lot of computation cost is saved. In addi-
tion, since the leaf nodes in ÑI satisfy the search tree T̃ , they
also satisfy the access tree T , thus e(g, g)αs can be recovered
successfully. Note that, δy is the exponent used in the first step
of the Trapdoor Generation phase.

VI. DISCUSSIONS
A. PROPERTY DISCUSSION
• Fine-grained access control. In EACAS, the data is
encrypted under an attribute set, and DU is assigned
with an access policy on those data attributes. DU can
only decrypt the ciphertext whose attributes satisfy his
access policy. Additionally, the expression of access
policy supports any threshold gate, thus fine-graininess
of the access control can be guaranteed.

• Flexible and authorized search. As shown in the phase
of Data Encryption, in addition to the data ciphertext
CT1, the ciphertext CT2 generated by encrypting the
trivial data ‘‘1’’ under the attribute set S ∪ Attv is also
contained in the final ciphertext stored in CSS. The
trapdoor generated by DU can be seen as the decryption
key related to the tree structure T̃ AND Attv. If the

VOLUME 7, 2019 182779

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

data ‘‘1’’ can be recovered with the decryption key in
the trapdoor, which means the attribute set S ∪ Attv
satisfies the policy of T̃ AND Attv, then the attribute
set S of the corresponding data ciphertext satisfies the
policy associated with T̃ . Thus, the ciphertext search
is achieved through testing whether the trivial data ‘‘1’’
can be recovered. Additionally, with the key delegation
technology, DU is only able to generate trapdoor for a
search policy which is more restrictive than his access
policy, thus only authorized search is allowed.

B. SECURITY DISCUSSION
• Data confidentiality. The user secret key SK and the data
ciphertext CT1 in EACAS have the same structures with
those in AKP-ABE, such that DU cannot decrypt any
ciphertext out of the scope of his access privilege, even
by colluding. In addition, with the trapdoor submitted
by DU, DSS may be able to recover the trivial data
‘‘1’’ from CT2, but it cannot decrypt the data ciphertext
CT1 to get the data M . Because the trapdoor given to
DSS can be seen as the decryption key bound with the
additional virtual attribute through an AND gate, thus
only the ciphertext possessing the virtual attribute can
be decrypted successfully.

• Attribute privacy. We protect the attribute privacy from
two levels. On the first level, for both the ciphertext and
trapdoor, the attribute values are embedded into the cor-
responding components implicitly, and only the generic
attribute name is public. On the second level, the linear
splitting technique introduced in AKP-ABE can protect
attribute privacy against the offline guessing attack on
the ciphertext. While for the issue of offline guessing
attack on trapdoor, we embed the public key pkD of the
designated search server (DSS) into the trapdoor TD,
such that anyone without the private key skD for DSS
cannot eliminate the random term gωγ in Tx,0, thus no
attribute values can be derived from the trapdoor.

VII. PERFORMANCE EVALUATION
In this section, we evaluate the performance of EACAS on
its storage and computation overheads, and conduct extensive
experiments to show its practicality.

A. NUMERICAL ANALYSIS
Both AKP-ABE and EKS proposed in [17] are designed
based on the large universe KP-ABE [9], and they only sup-
port either fine-grained access control or flexible keyword
search, as shown in Table 1. ABE-EAKS in [13] realizes the
same properties with EACAS, but it triggers large overheads.

Table 2 and 3 demonstrate the numerical analysis results
of storage overhead and computation cost, respectively.2 The
storage and computation overheads in AKP-ABE is larger

2Since the instantiation of the ABE-EAKS is not given in [13], we just
take the cumulative analysis results of AKP-ABE and EKS as a contrast.

TABLE 1. Comparisons of functionalities.

than that in the underlying KP-ABE [9]. This is due to the
application of the linear splitting technique to protect attribute
privacy. The same situation also occurs in the EKS [17],
where the TrapGen and Search algorithms have the sim-
ilar design as the KeyGen and Decrypt in AKP-ABE.
Compared with both AKP-ABE and EKS, EACAS only has a
small additional storage and computation overheads brought
by the virtual attribute, but simultaneously achieves fine-
grained access control and expressive ciphertext search. The
cost of EACAS is far less than the cumulative cost of the
double encryption in [13]. Additionally, the Decrypt algo-
rithm in EACAS only requires a small number of paring and
exponentiation operations in Table 3, sincemost of the pairing
results calculated during the searching process are reused.

Notions in Table 2 and 3 are clarified as follows.

- E,P: The operations of exponentiation and pairing,
respectively.

- |Zp|, |G|, |GT |: The bit-length of the element in Zp, G
and GT , respectively.

- lC , lA, lT : The number of attributes in the ciphertext,
access policy and trapdoor, respectively.

- k: The number of attributes affected during the
TrapGen algorithm in EACAS.

- lI : The number of attributes for the final successful
decryption.

- χA,1: The number of elements in N = {I1, . . . , IχA,1},
where N means the set of minimum subsets satisfying
the access tree.

- χA,2: The total number of attributes in all the subsets of
N , i.e., |I1| + · · · + |IχA,1 |.

- χT ,1: The number of elements in Ñ = {Î1, . . . , ÎχT ,1},
where Ñ means the set of minimum subsets satisfying
the search tree.

- χT ,2: The total number of attributes in all the subsets of
Ñ , i.e., |Î1| + · · · + |ÎχT ,1 |.

- ⊥: It is not applicable for this scheme.

B. SIMULATION RESULTS
We implement EACAS with python 3.6 on a notebook
equipped with Core i7 2.80GHz CPU and 16GB RAM. The
operation system is Ubuntu 18.04. The Charm framework
(v0.5) is used to perform the cryptographic operations with
the supporting of the PBC library (v0.5.14) and the OpenSSL
library (v1.0.2). Since Charm only supports operations in
asymmetric groups, i.e., e : G1 × G2 → GT , we trans-
form our constructions into asymmetric groups by choosing
another element g′ in G2 and computing g1, g2, g3, g4,Dx,0
with g′. We conduct the experiments over MNT224,

182780 VOLUME 7, 2019

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

TABLE 2. Comparisons of storage overhead.

TABLE 3. Comparisons of computation cost.

FIGURE 3. Comparisons of the running time for the Encrypt,KeyGen,TrapGen,Search and Decrypt algorithms. (a) Encrypt.
(b) KeyGen and TrapGen. (c) Search and Decrypt.

TABLE 4. Algorithm execution time in EACAS.

a 224-bit asymmetric elliptic curve providing 112-bit security
level. The experiments are run 20 times and the average value
of running time is shown.

We collect the running time of the Encrypt, KeyGen,
TrapGen, Search and Decrypt algorithms with a simple
access policy in AND gates, and the number of attributes are
from 5 to 50. To enable a visible comparison, we illustrate the
results of KeyGen and TrapGen, Search and Decrypt
in Figure. 3(b) and Figure. 3(c), respectively. The running
time of the algorithms increases linearly with the number of
attributes. Figure. 3(a) demonstrates that the encryption time
in EACAS is almost the same as that in AKP-ABE and EKS.
Figure. 3(b) shows that the total execution time of KeyGen
and TrapGen algorithms in EACAS is less than the cumu-
lative time of TrapGen in EKS and KeyGen in AKP-ABE.
Figure. 3(c) exhibits that the total running time of Search
and Decrypt algorithms in EACAS is also less than the
cumulative time of Search in EKS and Decrypt in AKP-
ABE, because more bilinear pairing should be computed in
the combination of AKP-ABE and EKS.

Table 4 shows the algorithm execution time in EACAS
under the specified polices shown in Figure. 1. All the oper-
ations can be completed less than 150ms, especially the

TrapGen and Decrypt operations can be performed by
DU within 31ms and 38ms. The Search algorithm is exe-
cuted by DSS, which is powerful on computation, so that the
time cost can be much lower than 150ms.

VIII. CONCLUSION
In this paper, we have proposed an efficient attribute-based
access control with authorized search scheme (EACAS),
which can meet the requirements for data sharing in cloud
storage and protect the data confidentiality and attribute pri-
vacy effectively. In EACAS, the data users are able to specify
the search policy based on their access policies granted by the
data owner, and generate the corresponding trapdoor without
the help of the data owner. Meanwhile, the cloud server
is allowed to search the ciphertext on behalf of data users
without knowing the attribute information and underlying
plaintext. We have discussed the property, security and per-
formance of EACAS, and implemented it to demonstrate that
EACAS is efficient and effective for practical applications.
In the future work, we will introduce anonymous KP-ABE
with flexible data sharing and efficient data storage for e-
health cloud.

APPENDIX
SECURITY PROOF OF THEOREM 1
Theorem 1: If the q-2 DBDH assumption [9] and the
D-Linear assumption [19] hold, AKP-ABEwith partially hid-

VOLUME 7, 2019 182781

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

den attributes is selectively secure under chosen plaintext
attack.

Proof: The proof utilizes a series of security games
to argue that no adversary has non-negligible advantage
to win the original game denoted by Game. Since the
attribute name set NS included in the ciphertext is the same
for the two different challenge attribute sets, we remove
it from the ciphertext for simplicity, and we define the
challenge ciphertext for the adversary in Game as CT =
〈Ẽ∗,E∗, {E∗τ,0,E

∗

τ,1,E
∗

τ,2,E
∗

τ,3,E
∗

τ,4}τ∈[1,m]〉, where m repre-
sents the number of attributes in S.
We first modify the original game Game into Game0 by

replacing the component Ẽ∗ with a random element Z ∈
GT . Then, from Game0 to Gamem, we change E∗τ,1 to Xτ
one by one for τ ∈ [1,m], and from Gamem to Game2m
change E∗τ,3 to Yτ one by one for τ ∈ [1,m], where
{Xτ }τ∈[1,m], {Yτ }τ∈[1,m] are random elements in G.

• Game:
CT = 〈Ẽ∗,E∗, {E∗τ,0,E

∗

τ,1,E
∗

τ,2,E
∗

τ,3,E
∗

τ,4}τ∈[1,m]〉.

• Game0:
CT0 = 〈Z ,E∗, {E∗τ,0,E

∗

τ,1,E
∗

τ,2,E
∗

τ,3,E
∗

τ,4}τ∈[1,m]〉.

• Game1:
CT1 = 〈Z ,E∗, (E∗1,0,X1,E

∗

1,2,E
∗

1,3,E
∗

1,4),

{E∗τ,0,E
∗

τ,1,E
∗

τ,2,E
∗

τ,3,E
∗

τ,4}τ∈[2,m]〉.
•
• Gamem:

CTm = 〈Z ,E∗, {E∗τ,0,Xτ ,E
∗

τ,2,E
∗

τ,3,E
∗

τ,4}τ∈[1,m]〉.

• Gamem+1:
CTm+1 = 〈Z ,E∗, (E∗1,0,X1,E

∗

1,2,Y1,E
∗

1,4),

{E∗τ,0,Xτ ,E
∗

τ,2,E
∗

τ,3,E
∗

τ,4}τ∈[2,m]〉.
•
• Game2m:

CT2m = 〈Z ,E∗, {E∗τ,0,Xτ ,E
∗

τ,2,Yτ ,E
∗

τ,4}τ∈[1,m]〉.

Note that in the last game Game2m, the component Ẽ∗

bound with the message M is replaced with the random
element Z , thus the adversary has a negligible advantage to
distinguish between M0 and M1 from Game2m. In addition,
the components E∗τ,1 and E∗τ,3 bound with each attribute
have also be replaced with random values, which prevent
the adversary deducing any valuable information about zτ ,
thus the adversary has a negligible advantage to distinguish
between S0 and S1 according to the componentE∗τ,0. Based on
the above analysis, the adversary has a negligible advantage
to win the game Game2m. Furthermore, if the advantage for
an adversary to distinguish the sequence of the games is
negligible, then the advantage for it to win the original game
Game is negligible.
Lemma 1: If the q-2 DBDH assumption holds, all PPT

adversaries have a negligible advantage to distinguish
between Game and Game0.
Lemma 2: If the D-Linear assumption holds, all PPT

adversaries have a negligible advantage to distinguish
between Gamej and Gamej+1 for j ∈ [0, 2m− 1].

According to the lemmas above, it can be concluded that
no PPT adversary can distinguish the sequence of the games
with non-negligible advantage, thus no PPT adversary can
win the original game Game with non-negligible advantage.
Specifically, Lemma 1 guarantees the data confidentiality,
and Lemma 2 guarantees the privacy of attribute values.
Please refer to [17] for more details of the proof of Lemma 1
and Lemma 2.

REFERENCES
[1] Cloud Storage. Accessed: Jan. 1, 2019. [Online]. Available: https://en.

wikipedia.org/wiki/Cloud-storage
[2] Cloud Storage Service. Accessed: Feb. 1, 2019. [Online]. Available:

https://searchstorage.techtarget.com/definition/cloud-storage-service
[3] The Best Cloud Storage Services. Accessed: Feb. 1, 2019. [Online].

Available: https://www.digitaltrends.com/computing/best-cloud-storage-
services-compared/

[4] G. Wang, R. Lu, and Y. L. Guan, ‘‘Enabling efficient and privacy-
preserving health query over outsourced cloud,’’ IEEE Access, vol. 6,
pp. 70831–70842, 2018.

[5] J. Ni, X. Lin, and X. S. Shen, ‘‘Efficient and secure service-oriented
authentication supporting network slicing for 5G-enabled IoT,’’ IEEE J.
Sel. Areas Commun., vol. 36, no. 3, pp. 644–657, Mar. 2018.

[6] W. Guo, J. Shao, R. Lu, Y. Liu, and A. A. Ghorbani, ‘‘A privacy-preserving
online medical prediagnosis scheme for cloud environment,’’ IEEE Access,
vol. 6, pp. 48946–48957, 2018.

[7] C. Huang, R. Lu, H. Zhu, J. Shao, and X. Lin, ‘‘FSSR: Fine-grained EHRs
sharing via similarity-based recommendation in cloud-assisted ehealthcare
system,’’ in Proc. 11th ACM Asia Conf. Comput. Commun. Secur., 2016,
pp. 95–106.

[8] D. Harnik, B. Pinkas, and A. Shulman-Peleg, ‘‘Side channels in cloud
services: Deduplication in cloud storage,’’ IEEE Security Privacy, vol. 8,
no. 6, pp. 40–47, Nov./Dec. 2010.

[9] Y. Rouselakis and B. Waters, ‘‘Practical constructions and new proof
methods for large universe attribute-based encryption,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Berlin, Germany, 2013,
pp. 463–474.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ‘‘Attribute-based encryption
for fine-grained access control of encrypted data,’’ inProc. 13th ACMConf.
Comput. Commun. Secur., 2006, pp. 89–98.

[11] S. Yu, C. Wang, K. Ren, and W. Lou, ‘‘Achieving secure, scalable, and
fine-grained data access control in cloud computing,’’ in Proc. IEEE
INFOCOM, San Diego, CA, USA, Mar. 2010, pp. 1–9.

[12] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, ‘‘Flexible and fine-grained
attribute-based data storage in cloud computing,’’ IEEE Trans. Serv. Com-
put., vol. 10, no. 5, pp. 785–796, Sep./Oct. 2017.

[13] H. Cui, R. H. Deng, J. K. Liu, and Y. Li, ‘‘Attribute-based encryption
with expressive and authorized keyword search,’’ in Proc. Conf. Inf. Secur.
Privacy. Auckland, New Zealand: Springer, 2017, pp. 106–126.

[14] Y. Chen, J. Zhang, D. Lin, and Z. Zhang, ‘‘Generic constructions of
integrated PKE and PEKS,’’ Des., Codes Cryptogr., vol. 78, no. 2,
pp. 493–526, 2016.

[15] J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng, ‘‘Authorized keyword search
on encrypted data,’’ in Proc. Eur. Symp. Res. Comput. Secur. Wroclaw,
Poland: Springer, 2014, pp. 419–435.

[16] P. Jiang, Y. Mu, F. Guo, and Q. Wen, ‘‘Public key encryption with autho-
rized keyword search,’’ in Proc. Conf. Inf. Secur. Privacy. Melbourne, VIC,
Australia: Springer, 2016, pp. 170–186.

[17] H. Cui, Z. Wan, R. H. Deng, G. Wang, and Y. Li, ‘‘Efficient and expressive
keyword search over encrypted data in cloud,’’ IEEE Trans. Depend. Sec.
Comput., vol. 15, no. 3, pp. 409–422, May/Jun. 2016.

[18] X. Boyen and B. Waters, ‘‘Anonymous hierarchical identity-based encryp-
tion (without random oracles),’’ in Proc. CRYPTO. San Diego, CA, USA:
Springer, 2006, pp. 290–307.

[19] T. Nishide, K. Yoneyama, and K. Ohta, ‘‘Attribute-based encryption with
partially hidden encryptor-specified access structures,’’ in Proc. ACNS.
New York, NY, USA: Springer, 2008, pp. 111–129.

[20] J. A. Akinyele et al., ‘‘Charm: A framework for rapidly prototyping
cryptosystems,’’ J. Cryptograph. Eng., vol. 3, no. 2, pp. 111–128, 2013.

182782 VOLUME 7, 2019

J. Hao et al.: Efficient Attribute-Based Access Control With Authorized Search in Cloud Storage

[21] F. Guo, Y.Mu,W. Susilo, D. S.Wong, andV. Varadharajan, ‘‘CP-ABEwith
constant-size keys for lightweight devices,’’ IEEE Trans. Inf. Forensics
Security, vol. 9, no. 5, pp. 763–771, May 2014.

[22] L.-Y. Yeh, P.-Y. Chiang, Y.-L. Tsai, and J.-L. Huang, ‘‘Cloud-based fine-
grained health information access control framework for lightweightiot
devices with dynamic auditing andattribute revocation,’’ IEEE Trans.
Cloud Comput., vol. 6, no. 2, pp. 532–544, Apr./Jun. 2018.

[23] S. Yu, C. Wang, K. Ren, and W. Lou, ‘‘Attribute based data sharing with
attribute revocation,’’ in Proc. 5th ACM Symp. Inf., Comput. Commun.
Secur. Beijing, China: ACM, 2010, pp. 261–270.

[24] Z. Yan, X. Li, M. Wang, and A. V. Vasilakos, ‘‘Flexible data access control
based on trust and reputation in cloud computing,’’ IEEE Trans. Cloud
Comput., vol. 5, no. 3, pp. 485–498, Jul./Sep. 2017.

[25] K. Yang, K. Zhang, X. Jia, M. A. Hasan, and X. Shen, ‘‘Privacy-preserving
attribute-keyword based data publish-subscribe service on cloud plat-
forms,’’ Inf. Sci., vol. 387, pp. 116–131, May 2017.

[26] J. Hao, C. Huang, J. Ni, H. Rong,M. Xian, andX. Shen, ‘‘Fine-grained data
access control with attribute-hiding policy for cloud-based IoT,’’ Comput.
Netw., vol. 153, pp. 1–10, Apr. 2019.

[27] J. Lai, R. H. Deng, and Y. Li, ‘‘Fully secure cipertext-policy hid-
ing CP-ABE,’’ in Proc. ISPEC. Guangzhou, China: Springer, 2011,
pp. 24–39.

[28] J. Li, K. Ren, B. Zhu, and Z. Wan, ‘‘Privacy-aware attribute-based encryp-
tion with user accountability,’’ in Proc. ISC. Pisa, Italy: Springer, 2009,
pp. 347–362.

[29] J. Lai, R. H. Deng, and Y. Li, ‘‘Expressive CP-ABE with partially hidden
access structures,’’ in Proc. 7th ACM Symp. Inf., Comput. Commun. Secur.,
Seoul, South Korea, 2012, pp. 18–19.

[30] H. Cui, R. H. Deng, G. Wu, and J. Lai, ‘‘An efficient and expressive
ciphertext-policy attribute-based encryption scheme with partially hidden
access structures,’’ in Proc. PROVSEC. Nanjing, China: Springer, 2016,
pp. 19–38.

[31] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public
key encryption with keyword search,’’ in Proc. EUROCRYPT. Interlaken,
Switzerland: Springer, 2004, pp. 506–522.

[32] Y. Yu, J. Ni, H. Yang, Y. Mu, and W. Susilo, ‘‘Efficient public key
encryption with revocable keyword search,’’ Secur. Commun. Netw., vol. 7,
no. 2, pp. 466–472, 2014.

[33] D. J. Park, K. Kim, and P. J. Lee, ‘‘Public key encryption with conjunctive
field keyword search,’’ in Proc. WISA. Jeju Island, South Korea: Springer,
2004, pp. 73–86.

[34] D. Boneh and B. Waters, ‘‘Conjunctive, subset, and range queries on
encrypted data,’’ in Proc. TCC. Amsterdam, The Netherlands: Springer,
2007, pp. 535–554.

[35] J. Lai, X. Zhou, R. H. Deng, Y. Li, and K. Chen, ‘‘Expressive search on
encrypted data,’’ in Proc. 8th ACM SIGSAC Symp. Inf., Comput. Commun.
Secur., Hangzhou, China, 2013, pp. 243–252.

[36] Z. Lv, C. Hong,M. Zhang, and D. Feng, ‘‘Expressive and secure searchable
encryption in the public key setting,’’ in Proc. ISC. Hong Kong: Springer,
2014, pp. 364–376.

[37] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H. Lee, ‘‘Off-line keyword
guessing attacks on recent keyword search schemes over encrypted data,’’
in Proc. SDM. Seoul, South Korea: Springer, 2006, pp. 75–83.

[38] E. Shen, E. Shi, and B. Waters, ‘‘Predicate privacy in encryption systems,’’
in Proc. TCC. San Francisco, CA, USA: Springer, 2009, pp. 457–473.

[39] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, ‘‘Trapdoor security in a
searchable public-key encryption scheme with a designated tester,’’ J. Syst.
Softw., vol. 83, no. 5, pp. 763–771, 2010.

[40] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, ‘‘Protecting your right:
Attribute-based keyword search with fine-grained owner-enforced search
authorization in the cloud,’’ in Proc. IEEE Conf. Comput. Commun.,
Toronto, ON, Canada, Apr./May 2014, pp. 226–234.

JIALU HAO received the B.E. degree from Shan-
dong University, Jinan, Shandong, in 2013, and
the M.S. degree from the National University of
Defense Technology, Changsha, Hunan, in 2015,
where he is currently pursuing the Ph.D. degree.
In 2018, he joined the Department of Electrical
and Computer Engineering, University of Water-
loo, as a Visiting Student. His research interests
include wireless network security, cloud security,
and applied cryptography.

JIAN LIU received the B.S., M.S., and Ph.D.
degrees from the National University of Defense
Technology, in 2009, 2011, and 2016, respectively,
where he is currently a Lecturer with the School of
Electronic Science and Technology. His research
interests include secure data outsourcing in cloud
computing, public auditing, and access control
mechanisms.

HUIMEI WANG received the B.S. degree from
Southwest Jiaotong University, in 2004, and the
M.S. and Ph.D. degrees from the National Uni-
versity of Defense Technology, in 2007 and 2012,
respectively, where she is currently a Lecturer with
the College of Electronic Science and Technol-
ogy. Her research interests include evaluation tech-
niques in network security, cloud computing, and
distributed systems.

LINGSHUANG LIU received the B.E. and M.S.
degrees from the School of Computer Science
and Engineering, University of Electronic Sci-
ence and Technology of China, Chengdu, China,
in 2014 and 2017, respectively. She is currently
an Assistant Engineer with the Science and Tech-
nology on Reactor System Design Technology
Laboratory, Nuclear Power Institute of China,
Chengdu. Her research interests include mobile
security, smartphone authentication, and cloud
storage security.

MING XIAN received the B.E., M.S., and Ph.D.
degrees from the National University of Defense
Technology, in 1991, 1995, and 1998, respec-
tively, where he is currently a Professor with the
College of Electronic Science and Technology.
His research interests include cryptography and
information security, cloud computing, and system
modeling, and simulation and evaluation.

XUEMIN SHEN (M’97–SM’02–F’09) is cur-
rently a University Professor with the Department
of Electrical and Computer Engineering, Uni-
versity of Waterloo, Waterloo, ON, Canada. His
research interests include resource management in
interconnected wireless/wired networks, wireless
network security, social networks, smart grid, and
vehicular ad hoc and sensor networks. He is a reg-
istered Professional Engineer of Ontario, Canada,
an Engineering Institute of Canada Fellow, a Cana-

dian Academy of Engineering Fellow, a Royal Society of Canada Fellow,
and a Distinguished Lecturer of the IEEE Vehicular Technology Society and
Communications Society.

Dr. Shen received the Joseph LoCicero Award, in 2015, the Education
Award, in 2017, from the IEEE Communications Society, and the James
Evans Avant Garde Award, in 2018, from the IEEE Vehicular Technology
Society. He is the Editor-in-Chief of the IEEE INTERNET OF THINGS JOURNAL
and the Vice President on Publications of the IEEECommunications Society.

VOLUME 7, 2019 182783

