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ABSTRACT In recent years, as the number of Web services, increases dramatically, the personalized Web
service recommendation has become a hot topic in both academia and industry. The quality-of-service (QoS)
prediction plays a key role in Web service recommendation systems. However, how to further improve
the accuracy of QoS prediction is still a problem. Traditional QoS predicting models do not consider the
impact of sampling methods on the accuracy of QoS prediction. However, the outstanding sampling method
can train the predicting model more effectively and obtain higher accuracy. Therefore, it is necessary to
study sampling methods based on the QoS dataset in order to obtain sample distribution closer to the
original distribution, so as to improve the accuracy of the predicting models. In this paper, we first discuss
how to apply several existing sampling methods to QoS datasets and then analyze their advantages and
disadvantages. Finally, a novel sampling method, enhanced importance resampling (EIRS), is proposed and
applied. The experiments on the real-world datasets show that our method can not only sample efficiently

and accurately but also can greatly improve the accuracy of Web service QoS prediction.

INDEX TERMS Quality of service, Web services, sampling methods, enhanced importance resampling.

I. INTRODUCTION
With the rapid growth of the number of Web services, person-
alized Web service recommendation has become a hot topic
in both academia and industry. Web service QoS(Quality of
Service) prediction plays an important role in the process of
personalized Web service recommendation. However, how to
further improve the accuracy of Web services QoS prediction
is still a problem. Traditional researches [1]-[3] mainly focus
on increasing the complexity of the predicting models for fix-
ing the problem and simply assume that the probability distri-
bution of QoS datasets is uniform. However, in the real world,
QoS datasets tend to follow a complex distribution, that the
sampled data (training data of the predicting models) based
on such assumption is biased and leads inaccurate prediction.
Therefore, it is necessary to study sampling methods based
on QoS dataset which can obtain sampling distribution closer
to the original distribution, so as to improve the accuracy of
predicting models.

In this paper, we firstly discuss how to apply several
existing methods [4]-[7] to QoS datasets and then analyze
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their advantages and disadvantages. Finally, a novel sam-
pling method (Enhanced Importance ReSampling, EIRS) is
proposed and applied. Experiments on real-world datasets
show that our method can not only sampling efficiently and
accurately, but also can greatly improve the accuracy of Web
service QoS prediction.

The remainder of the paper is organized as follows.
Section IV discusses related works. Section III provides the
background and motivations of our work. In Section 1V,
we firstly discuss how to apply several existing sampling
methods to QoS datasets and analyze their advantages and
disadvantages. Then a novel sampling method is proposed
and applied based on QoS dataset. In section V, we discuss
our experimental results in detail. Finally, we conclude our
work in Section VI.

Il. RELATED WORK

Collaborative filtering (CF)-based approach has been widely
used in Web services QoS prediction. There are two main
types of CF methods, memory-based CF method and model-
based CF method. Memory-based CF methods can be further
divided into three categories: User based CF methods [8], [9],
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Item based CF methods [10], [11] and hybrid based CF meth-
ods [12], [13]. The main steps of memory-based CF methods
firstly obtain preferences of users, then calculate similarities
between users or services and finally predict QoS values.
Memory-based CF method is simple to be implemented and is
a computational model of early commercial recommendation
system. However, problems such as cold start and inability to
handle large-scale and time-aware datasets hinder the popu-
larity of memory-based CF methods.

The model-based prediction methods [14], [15] utilize sta-
tistical learning and machine learning techniques to mine
and extract the learning model from the historical records
of web service invocations, and achieve QoS prediction by
matrix decomposition technique. Model-based CF methods
can deal with sparse and large-scale datasets better than
memory-based CF methods while predicting web services
QoS. However, they are more complex and time-consuming.
Furthermore, most of the recent model-based CF methods
[11], [16] focus on adding additional domain information
including context, time and location to improve the accuracy
of QoS prediction. Although such additional information can
improve the predicting accuracy, those models all use simple
random sampling method to obtain training data from the
original datasets, which makes the training data biased and
leads to poor prediction accuracy.

In the field of statistics, many representative sampling
methods such as Rejection Sampling method (RJS) [17],
Metropolis-hastings sampling method (MHS) [18] and
Importance ReSampling(IRS) [19] have been proposed. RJS
is an advanced random sampling method for complex prob-
lems with high complexity. MHS is a sampling method based
on Markov chain Monte Carlo (MCMC) stochastic process
[20], random number sequences with specific probability are
sampled to make the sample distribution approximately to
target distribution and IRS is an effective sampling method
for estimating the target distribution of original datasets.
However, to the best of our knowledge, those sampling meth-
ods have not yet been used on the QoS dataset. Therefore,
in section 4 of this paper, we will discuss them in detail
and apply those sampling methods to the QoS datasets, and
analyze their advantages and disadvantages.

lll. MOTIVATION

In this section, we firstly observe the distribution of a real
world QoS data (WSDream'), then we propose a frame-
work of on-line Web service recommendation system and
emphasize the importance of sampling in the process of QoS
prediction.

A. OBSERVATIONS OF REAL WORLD QoS DATASET

WSDream is a real world QoS dataset which has been widely
utilized by many mainstream predicting models. There are
two sub-data sets in the dataset, Response Time (RT) and
Throughput (TP) respectively. In Figure 1, the upper and

1 github.com/wsdream/wsdream-dataset
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FIGURE 1. The distributions of QoS according to 5 randomly selected
users.
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FIGURE 2. The framework of on-line web service recommendation
system.

lower parts show the distribution of the QoS value according
to five randomly selected users based on RT and TP respec-
tively. We can obviously see that the data present a long tail
distribution rather than uniform distribution and most of the
values are concentrated in a very small ranges.

Traditional Web Services QoS prediction models use Sim-
ple Random Sampling method to obtain the samples, which
mean they simply assume the distribution of the original data
is uniform, resulting in inaccuracy prediction results.

B. THE FRAMEWORK OF ON-LINE WEB SERVICES
RECOMMENDATION SYSTEMS
Figure 2 shows the framework of QoS prediction based on-
line Web service recommendation system. We can see that
the framework contains five steps. First, the system collects
the original QoS values. Second, the system uses sampling
method to obtain training data. Third, prediction algorithms
are used to train the model. Fourth, the system predicts the
QoS value based on the trained model and personal user
requirements. Fifth, the system recommends the personalized
web services. Finally, once the user selected one of the rec-
ommended services, the scheduling system will schedule the
service to the user.

QoS Prediction is the key step in the on-line Web Services
Recommendation System. It requires not only accuracy but
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also efficiency. The mainstream works focus on designing
prediction models to improve the accuracy of QoS Prediction.
However, such behavior often brings unnecessary system
overhead and longer response time due to the complexity of
the models. In order to improve the accuracy of recommenda-
tion without reducing user experience, we take the sampling
step of on-line web service recommendation system into
account, not only because the sampling step is off-line and
has no affects of the user experience, but also a good sampling
method effectively reduces the bias between training data
and original data which helps improving the accuracy of
predicting models.

IV. OUR WORK

As far as we know, existing works only use simple random
sampling without considering the influence of different sam-
pling methods when predicting Web services QoS. In this
section, we will discuss how to apply different sampling
methods to the QoS datasets and analyze their advantages and
disadvantages, then propose a novel sampling method named
Enhanced Importance ReSampling method (EIRS).

A. USER-BASED AND SERVICE-BASED RANDOM
SAMPLING BASED ON QoS DATASET

Traditional simple sampling method (RS) assumes that the
dataset is uniform distribution and samples globally accord-
ing to a certain sampling density. However, we observed that
some users or services data will never be sampled by using
RS, resulting recommendation system unable to recommend
services for such users. There are two variants of RS can
fix such problem, one is user-based random sampling (URS)
method which samples the data randomly according to each
user for all users in the dataset and the other is service-
based random sampling method (SRS) which samples the
data randomly according to each service for all services in
the dataset. RS, URS and SRS are all easy to be conducted
on the QoS dataset.

B. DOMAIN BASED RANDOM SAMPLING BASED ON QoS
DATASET

The domain information such as location and time is closely
related to the QoS of Web services. By considering those
domain information, domain based random sampling (DRS)
method firstly divides the services into different domains
and then samples the data randomly in each domain. When
conducting a Domain based random sampling method (DRS)
on WSDream, we firstly divide the dataset into different parts
according to the *AS’ attribute which describe the location
of services, then use RS on each part to obtain the samples.
However, the sample distribution will be unbalanced because
some parts have more data while others have less or even no
data.

C. REJECTION SAMPLING BASED ON QoS DATASET
Rejection sampling (RJS) is an advanced random sampling
method which can generate complex sample distribution.
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FIGURE 3. An example of RJS.

Algorithm 1 Rejection Sampling

Require: g(x), &, p(x)

Ensure: S
1. Sampling s; from the distribution q(x) randomly;
2. Generate a number u; from the distribution U(0,1);
3. Ifu; < 15;(55,-))’ then accept s;;

If not, then reject the value and repeat the step 1-3;

Until the new generated s; is accepted.
4. Add s; to S;
Until a certain number of samples are obtained.
return S

Figure 3 shows an example of RJS, where q(x) represents a
presumed sample distribution (reference distribution) which
can be adjusted after the process of sampling, p(x) represents
the distribution of the original dataset (target distribution) and
k represents a parameter for scaling all x subject to kg(x) >
p(x), where p(x) represents the distribution of the sampled
data in the process of sampling (observation distribution).

RIS firstly samples the data xo randomly according to q(x),
then samples the value uy randomly in the interval [0, kg(xo)]
and compares p(xp) to ug. If ug < p(xp), then accepts the sam-
ple with a certain probability, otherwise, rejects. The accep-
tance probability of the sample can be calculated according
to equation (1)

p(x) 1 [
kq(x)q(X)dx =z / p(x)dx ey

The RJS can be conducted on the QoS dataset according to
Algorithm 1.

The inputs of Algorithm 1 include the reference distri-
bution q(x), the scale parameter k and the observation dis-
tribution p(xp). We choose the normal distribution for q(x)
according to the distributions of WSDream and specify a
large number k in order to cover the range of the target
distribution p(x). However, in real applications, it is diffi-
cult to find a suitable q(x) because of that when the target
distribution is a distribution with spikes, a large number of
unwanted samples will be sampled. The algorithm terminates
until a certain number of samples are obtained. However,

placcept) = /
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Algorithm 2 Metropolis-Hastings Sampling
Require: p(x), g(x)
Ensure: S
Initialize:
1. Pick an initial state sq;
2. Set t=0;
Iterate:
1. Generate a candidate state s’ , where g(s'|s;) ;

2. Calculate the acceptance probability
{1 P() glsils ))

A(s'|s;) = min
3. Accept or Reject:
1. Generate a number u € [0, 1];
2. If u < A(s'|x;), accept, set s, = 5,
add s’ to S;
3.If u > A(s|sy), reject, set s,41 = s¢;
4. Increment:
set t=t+1;
Until: a certain number of samples are obtained
return S

[’(Yt) q(s’|s¢)

it converges slowly because lots of data are probably be
rejected in the iteration step.

D. METROPOLIS-HASTINGS SAMPLING
Metropolis-hastings sampling (MHS) is based on Markov
chain Monte Carlo (MCMC) stochastic process [20] . The
basic idea of MHS is firstly constructing Markov Chain from
the reference distribution q(x), then randomly selects an ini-
tial state of Markov Chain and begin to transfer until the state
to be stable. Finally, the obtained state sequence can be used
to estimate the target distribution.

Considering the complexity of distribution of the QoS

dataset and in order to satisfy the fine stationary condition
of Markov chain, we calculate the acceptance probability of
samples according to equation (2):
" PDgGli)
where A(j|i) represents the acceptance probability of sample
j condition on the sampled sample j, p(j) and p(i) can be
calculate by utilizing observation distribution p(x), ¢(i|j) and
q(jli) can be calculate by reference distribution q(x). The
pseudo code of MHS algorithm based on QoS dataset is
described in Algorithm 2. We can see that in the iteration
step of Algorithm 2, a candidate state s’ is generated and then
calculate the conditional probability A(s’|s;), where s, is a
sample already be sampled. If A(s'|s;), is larger than u which
is a random number between [0, 1], accepts s, otherwise,
rejects. Similar to RJS, MHS converges slowly because lots
of data are probably be rejected in the iteration step.

A@li) = @)

min{1

E. IMPORTANCE RESAMPLING
The main idea of Importance Sampling is to find the function
expectation of the target distribution, which can be described

VOLUME 7, 2019

0.6

0.5 1 f
04 p(x) a(x

0.3

Y - p(X)

0.2

0.1

0.0 4 /

—0.1

FIGURE 4. An example of IRS.

in equation (3):

E(f) = /f(X)p(X)dx—/f(x)&q(X)d
~ p(x;)
~ —Zw(xof(x,) W) = o5 3)

where, E(f) represents the function expectation of the target
distribution, f(x) is the function and p(x) is the target distribu-
tion. q(x) represents the reference distribution and w(x;) rep-
resents the weight of the sample x; which can be calculated by
qg’) where p(x) is the observation distribution. From equation
(3), we know that importance sampling aim to calculate the
function expectation of the target distribution, the sampling
distribution is still the same as q(x). However, the weights will
greatly improve the information of the samples. For example,

as shown in Figure 4, if % is equal to 1, then w(x;) is equal
to 1 according to equation (3), which means sample x; must
subject to the target distribution. Therefore, the distribution of
samples with higher weight is more approximate to the target
distribution.

Based on the idea described above, when conducting
Importance ReSampling(IRS) based on QoS dataset, we can
resample the samples according to the weights. The pseudo
code of IRS algorithm based on QoS dataset is described in
Algorithm 3. As shown in Algorithm 3, the inputs of Algo-
rithm 3 contain four parameters, Q represents the original
dataset, q(x) represents the reference distribution, interval
represents the sampling interval (a certain interval which can
be specified manually) and density represents the sampling
density, respectively. Statistic represents a statistical function
for estimating the observation distribution p(x). We normal-
ized the weight vector W before the step of resampling in
order to make the weights more accuracy. random() is ran-
dom function for resampling from the samples. Therefore,
the output of Algorithm 3 is the vector S which store all
the resampled samples with better distribution. It is worth
to mention that, IRS coverages much faster that RJS and
MHS, because there is no need to reject data in the iteration
process.
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Algorithm 3 Importance Resampling Method

Algorithm 4 Enhanced Importance Resampling Method

Require: Q, g(x) ,interval density
Ensure: S
for Q; in Q do
P(x) = statistic(Q;, interval)
for j = 0 to interval do

e POy
weight; = pe)
end for
for j = O to interval do
Wi = weight;
i=

thervul wczghl,
end for

for w;in W do
s; = random(Q;, p(x;), wj, density)
Add s; to S;
end for
end for
return S

F. ENHANCED IMPORTANCE RESAMPLING

Due to the dynamic and variability of Service-Oriented envi-
ronment, a lot of services may be unavailable or interrupted,
it leads many invalid QoS values existed in the original data.
Therefore, we propose a novel sampling method (Enhanced
importance resampling, EIRS) based on IRS. The details
of EIRS can be described as follows: We firstly divide the
dataset into n intervals and presume that the distribution of
invalid data is uniform in each interval, then the probability
of invalid values in the interval can be calculated according
to equation (4).

N, zjnvalzd )

J
all

pi‘nvalid =

where p{nmh .4 Tepresents the probability of invalid data on

interval j, NV: d is the total number of the invalid data on

invali
interval j, and N’ - 18 the total number of data on interval

j- Then, we normalized the probabilities according to equa-
tion (5)

~ _ invalid
pi'nvalid - k (5)
ZN Pinyaiid
where ﬁ?nv 1iq Tepresents the normalized probability of invalid

data on interval j. Finally, we obtain the new weights accord-
ing to equation (6)

_ p(x) 1 &
Ef) = [ reo s ~ ~ 2 wea (),
i) = B8 (4 ) ©

where ﬁj:fw 1iq Tepresents the normalized probability of invalid
data on interval j which sample x; belongs to. From equation
(6), we know that larger the [);]nmh-d is, the larger w(x;) is.
Therefore, the samples with larger weight will be sampled
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Require: Q, g(x) ,interval density
Ensure: S
for Q; in Q do
P(x) = statistic(Q;, interval)
Dinvalid (X) = statistic_invalid(Q;, interval)
for j = 0 to interval do

p(x])
weight; = e
end for
for j = 0 to interval do
W, = weight; 1+ m[f;a:alid(xj)

end for
for w;in W do
sj = random(Q;, ﬁ(x]‘), 5invalid (xj)’ Wi, denSity)
Add sj to S;
end for
end for

return S

more likely than the samples with smaller weight, which
means the interval with higher probability of invalid data need
to be sampled more in order to obtain enough valid data.
The pseudo code of EIRS algorithm based on QoS dataset
is described in Algorithm 4. In Algorithm 4, the statistic
function statistic_invalid calculates the pjnyqiia and W; repre-
sents the new weight of the sample which belongs to interval
j. By comparing to IRS, EIRS converges fast and is more
suitable for QoS datasets.

V. EXPERIMENTS

A. DATASET AND SETUP

The dataset used in this paper is the WSDream, which
is a widely used real world dataset in predicting models.
The dataset contains two sub-data sets: response time (RT)
and throughput (TP). Each dataset contains two dimensions
which is user and service respectively. There are 339 users
and 5825 services in each dataset. As a supplement to Fig-
ure 1, the upper parts of Figure 5 show the distributions
of the RT data with 10 randomly selected services and the
lower parts of Figure 6 show the distribution of TP data with
10 randomly selected services. It can be seen that, most of
the QoS values of each service are concentrated within a very
small range.

We apply all the sampling method described above based
on the QoS dataset and analyze the performance of those
methods in varies situation. All the experiments in this paper
are implemented with C++4- combined with python 3.5, con-
ducted on a ThinkPad with an 2.2 GHz Intel Core i7 CPU and
16 GB 1600 MHz DDR3 RAM, running Ubuntu 16.

B. EVALUATION METHODOLOGY

The experiments utilize different sampling methods (RS,
URS, SRS, DRS, RJS, MHS, IRS and EIRS) according to
different density to generate the training data. Two main
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aspects of the sampling methods are evaluated which show
the effectiveness and accuracy.

1) THE EFFECTIVENESS OF SAMPLING METHODS

a: METRICS ON THE PROXIMITY BETWEEN TWO
PROBABILITY DISTRIBUTIONS

Generally, the measurement of the performance of sampling
methods includes three evaluation indicators: unbiasedness,
consistency and validity. However, due to the existence of
invalid data, unbalance data distribution and the distribution
of test data, appropriate evaluation indicators need to be cho-
sen to validate the performance of sampling methods based
on real QoS dataset. Here, we choose the Kullback-Leibler
divergence(KLD) [21] and Wasserstein distance(WD) [22] to
measure the proximity between the sampling distribution and
the target distribution.

1) Kullback-Leibler divergence(KLD) is a similarity mea-
surement method between two probability distribu-
tions. The formal description of KLD can be shown in
equation (7)

Daatple) = [ pain?Sas ™

q(x)
where Dgp (p|q) represents KLD between the proba-
bility distribution p(x) and the probability distribution
q(x). According to the equation (7), we can see that
KLD is affected by the ratio of distribution p(x) to q(x)
which implies the deviation between two probability
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TABLE 1. Evaluation metrics of different sampling methods on RT dataset.

density | metrics RS URS SRS DRS RIS MHS IRS EIRS
spl_tst 0.0556 0.0526 0.0631 0.05 0.0555 0.0584 0.0525
0.05 | kid 254239 25.6861  68.6555 26.8741  28.1309  26.5467  25.1156
wd 2.4207 24376 2978 2.4206 2.5854 25147 2.3942
spl_tst 0.1178 0.111 0.118 0.1087 0.1173 0.1240 0.1108
0.1 | kid 13.7336  14.8685  28.0394  14.3234  18.1188  16.0442  13.6889
wd 2.4004 2.4238 2.6574 24075 2.5596 2.4917 2.3586
spl_tst 0.2671 0.2499 0.2528 0.2473 0.2650 0.2824 0.2497
0.2 | kid 7.9328 83677  10.2333 8.4853  12.6083  10.5467 7.6774
wd 23974 24218 24773 2.4027 2.5582 2.4956 2.381
spl_tst 0.7287 0.6665 0.6606 0.6627 0.7138 0.7801 0.6661
04 | kid 4.3767 4.6711 3.4288 4.7881 7.9984 6.2060 4.2806
wd 2.3974 2.4102 2.3932 2.3992 2.5201 2.4635 2.389

distributions. The bigger the ratio, the larger the devia-
tion.

2) Wasserstein distance (WD) is a distance measurement
method between two probability distributions on a
given metric space. The WD can be described in equa-
tion (8),

WPy, P2) = inf1p, Py Ecyyy X = I (8)

where [[(P1, P>) is a set of all possible joint distribu-
tions combined by distributions P1 and distributions
P2. For every possible joint distribution y, a sam-
ple (x,y) ~ vy(x,y) can be sampled and the dis-
tance between x and y can be calculated by using the
norm ||x — y||. Therefore, the distance Expectation is
E(x,y)~y |1x — y|| which can be calculated according to
y, and the lower bound of the expectation is the WD.
Intuitively, distance Expectation can be understood as
the consumption of moving pile P; to pile P, under
the path planning of y and WD is the minimum con-
sumption under the optimal path. So the WD is also
called the Earth-Mover distance. Comparing to KLD,
the advantage of WD is that it can reflect the distance
of two distributions even if the support sets of two
distributions do not overlap or overlap little.

b: METRIC ON THE VALID RATE OF SAMPLING

The problem of invalid data always exists in the sampling
process. Figure 6 shows the distribution of invalid data of
the dataset, we can see that there are many invalid data in
the dataset, especially in the interval [1000, 2000] and [3000,
4000]. Therefore, the distribution of invalid values must be
taken into account in the sampling process in order to obtain
high quality samples. We use the ratio of valid data in training
data(R;p;) and the ratio of valid data in test data (Ryy ) to define
the validity of sampling data as spl_tst = I;ﬁfﬁ , The purpose
of dividing Ryp; by Ry is to ensure that the valid ratio of
original dataset is unvaried in the process of sampling. spl_tst
can reflect the actual effective information of the sampled
data. The larger spl_tst indicates that the sampling method
has better ability to obtain more valid training data.

c: RESULTS ANALYSIS

Table 1 and Table 2 show the KLD, wd and sp/_tst perfor-
mances of each sampling method on both RT and TP. From
the point of view of KLD and WD, the results show that EIRS
can obtain the minimum KLD and WD values in any cases
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TABLE 2. Evaluation metrics of different sampling methods on TP dataset.

density metrics RS URS SRS DRS RIS MHS IRS EIRS
spl_tst 0.0570 0.0526 0.0586 0.05 0.0568 0.0598 0.0524
0.05 | kld 25.2773 27.0916 54.2201 27.6065 35.6419 26.6015 259775
wd 1452512 144.6066 161.1968 1443496  171.8512 154.8165 141.4795
spl_tst 0.1209 0.111 0.1122 0.1087 0.1202 0.1273 0.1108
0.1 kid 15.3108 15.7397 22.2069 15.3485 24.9972 16.6898 15.0041
wd 144.7640 143.9657 148.3627 143.8272 170.4163 154.2393 142,428
spl_tst 0.2750 0.2499 0.2461 0.2472 0.2716 0.2913 0.2497
0.2 kld 8.5728 9.0413 8.3121 8.8696 17.5513 10.2605 8.6061
wd 1444327 143.5836 143.4461 143.6209 167.5146 152.3375 143.0268
spl_tst 0.7585 0.6665 0.6505 0.6627 0.7332 0.8161 0.6661
04 | kid 44119 4.825 3.0716 4.7205 11.2565 5.7090 4.3987
wd 143.8257 143.5792 142.2855 143.8417 162.0932 149.8996  143.1825
30
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25 1
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FIGURE 7. The variation of kid and wd according to different density.
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FIGURE 8. The running time of different sampling methods.

which verify that EIRS has the best performance among all
of the sampling methods on measuring the proximity between
sample distribution and target distribution. RJS and MHS
perform poorly on both RT and TP due to the invalid data in
the dataset. SRS performs poorly when the sampling density
is low and became better with the increase of sampling den-
sity. From the point of view of spl_tst, EIRS also has better
performance in most cases compared with RS, URS, SRS and
DRS.

Figure 7 further verifies the high performance of EIRS on
KLD and WD. In addition, we can see that the KLD is varied
dramatically with varying the sample density while the WD
maintain relatively stable. This result shows that WD is more
robust than KLD in measuring the proximity between two
distributions.
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Figure 8 shows the running time of different sampling
methods according to different sampling densities. We can
see that the running time of advanced sampling methods such
as RJS and MHS is much longer than other sampling methods
due to high complexity of the models. However, IRS and
EIRS are very efficient in all cases. In conclusion, EIRS can
not only efficiently obtain the sample distribution which is
closer to the target distribution, but also has a higher valid
rate of training data than other sampling methods.

2) THE ACCURACY OF SAMPLING METHODS

a: METRICS ON THE ACCURACY

The Mean Absolute Error (MAE) and the Normalized Mean
Absolute Error (NMAE) are widely used for evaluation the
accuracy of predicting models. MAE reflects the absolute
error of the prediction model and NMAE reflects the relative
error of prediction models. The formula of MAE is shown in
equation (9):

1 R
MAE = = Z] \gij — g1 ©)

where, g;; represents the predicted value, q;j represents the
real value and N represents the total number of predictions.
Based on the MAE, the formula of NMAE can be described
in equation (10).
MAE
NMAE = +—— (10)
v i l4il

b: THE PREDICTION MODELS

« UPCC [10] is a user-based CF prediction model that
calculates the similarity between users based on Pearson
correlation coefficient. The model use RS to sample the
training data.

o IPCC[10]is anitem-based CF prediction model that cal-
culates the similarity between services based on Pearson
correlation coefficient. The model use RS to sample the
training data.

o UIPCC [10] is a hybrid prediction model that linearly
combines the predictions of UPCC and IPCC, and its
accuracy is more precise than either. The model use RS
to sample the training data.

o PMF [23] is a MF based prediction model based on
probability model and matrix decomposition. The model
use RS to sample the training data.

« RWEMF [16] is hybrid prediction model that combines
the advantages of CF and MF. The model use RS to
sample the training data.

¢: RESULTS ANALYSIS

We firstly choose UIPCC to combine the different sampling
method to verify the performance of EIRS. Table 5 and
Table 6 show the MAE and NMAE of UIPCC combining with
different sampling methods according to different sampling
densities.
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TABLE 3. MAE and NMAE with UIPCC (RT datasets). TABLE 5. MAE and NMAE of prediction algorithm (RT datasets).
density | metrics || RS URS SRS DRS RIS MHS RS EIRS methods | metrics UPCC___IPCC UIPCC __PMF RWEMFE
0.05 | MAE 0.6284 0.6084 09927 06095 06747 06395 0.5889
NMAE || 06894 06704 1.0936 06715 07526 07104 06515 RS MAE 0.6583  0.6719  0.6284  0.6196 0.5119
0.1 | MAE 05583 0535 1.0135 05353 05987 05685 0.5237 NAME 0.7252  0.7413  0.6894  0.6827 0.5759
NMAE || 05852 0589 11165 05897 0.6756 0.6365 05785
02 | MAE 0471 04584 10651 0464 04995 0483 04331 URS MAE 0.6195  0.6629 0.609 05734 0.506
NMAE || 05185 05048 11726 05108 05776 05507  0.4998 . NAME 0.6836  0.7316 0.672  0.6327 0.5776
04 | MAE 04143 04171  1.100 04197 0433 04151 0413 SRS MAE 1.0947  0.6801 09927 0.8463 1.0108
NMAE || 04568 04593 12199 04617 0.5236 04876 04556 NAME 12059 0.7492 10936 0.9323 11135
DRS MAE 0.6223  0.6801 0.6095 0.578 0.5251
B NAME 0.6856 0.7492  0.6715  0.6367 0.5784
TABLE 4. MAE and NMAE with UIPCC (TP datasets). RIS MAE 0.602  0.7691 0.6786 05467 0506
NAME 0.7725 0.8585  0.7575 0.6102 0.5627
de"osgg Ei?zcs ;{55 8789 gsR 35493 2??)864 2D(7R45547 ?1]%257 2?;558] I213;59071 e MHS MAE 0.6469 0.7237 0.6351 0.5432 05107
" | NMAE || 05453 05539 10747 05565 0668 05724 05283 NAME || 0.7189 0.8043  0.7058 0.6036 0.5723
2 2!
| NWAE || 0dgs: 0asE7 106 04g36 08716 04sad 04502 IRS MAE |/ 05986 06676 05889 0573 0.4986
02 | MAE 188014 19.0229 559940 188095  21.047 184506 I18.0021 NAME 0.6622  0.7385 0.6515  0.6338 0.5516
NMAE || 03963 03997 11766 0.3953 049 04032 03832
0.4 MAE 15.3488 15.6829  57.1014 15.6574 16.3278 14.9398 15.0906
NMAE || 03228 03297 12007 03292 04288 03402 03192 NAME 0.6476  0.7327 0.6386  0.6166 0.5475
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TABLE 6. MAE and NMAE of prediction algorithm (TP datasets).

methods | metrics UPCC IPCC UIPCC ~ PMF RWEMF
RS MAE 27.3259  28.5857  26.8493  26.8448 19.9955
NMAE 0.5682 0.5947 0.5539 0.556 0.412
URS MAE 27.0259 282857  26.3493  26.4448 19.5955
NMAE 0.5682 0.5947 0.5539 0.556 0.412
SRS MAE 59.2848  29.7132 52256 83.5387 60.0657
NMAE 1.2471 0.625 1.0993 1.7573 1.2635
DRS MAE 27.5949  29.7132  26.7591  27.6782 19.8688
NMAE 0.5805 0.625 0.5629 0.5822 0.418
RIS MAE 32.5687 351533 31.5346  27.7825 19.1482
NMAE 0.7024 0.7581 0.6801 0.5991 0.4129
MHS MAE 28.4658  31.2388  27.6002  26.6521 18.5621
NMAE 0.6044 0.6632 0.586 0.5659 0.3941
IRS MAE 25.6509  29.1792  25.0884  26.2071 19.3165
NMAE 0.544 0.6189 0.5321 0.5558 0.4097
NMAE 0.5184 0.6046 0.5084 0.5568 0.4062

= IRS
MW EIRS

s
20% 40%

is equal to 0.4). In particular, the performance of MHS and
RIS is poor in all cases. This is because of that influenced by
rejection domain, there are more invalid data in training data.
Furthermore, MHS and RJS are sensitive to UIPCC whichis a

density

FIGURE 9. The MAE and NMAE of UIPCC combining with different
sampling method according to different density.

The results show that the performance of EIRS on MAE
and NMAE, we can see that in any case the MAE and NMAE
of EIRS is always the lowest among all of the sampling
methods which verify that EIRS is an excellent and stable
sampling method.

Figure 9 shows the results of Table 3 and Table 4 more intu-
itively. On the RT dataset, it can be observed that all sampling
methods (except SRS) perform better with increasing the
sampling density. This is reasonable because of that the more
data are obtained when the density is high. However, SRS
performs poorly in both sparse and dense data. This is because
of that despite the high density, the number of users is so small
that training data has a lot of duplicate and invalid data. URS
and DRS have significantly better performance than RS when
the data is sparse (density is equal to 0.05 or 0.1). However,
with the density of data increasing, RS performs better and
catch up with or even exceed URS and DRS (when the density
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CF based predicting model. Similar observations can be seen
on the TP dataset, the subtle difference is that URS and DRS
perform worse than RS in most cases. This result shows that
most sampling methods such as URS, SRS. DRS, RJS and
MHS are sensitive to the dataset and perform unstable.

Tables 5 and 6 show the performance of different sampling
methods combined with different predicting models when
using a fixed sampling density (0.05). The results based on
RT dataset show that the combination of EIRS with all the
predicting models can significantly improve the prediction
accuracy which mean the EIRS can help prediction models
to improve the prediction accuracy in general. It is worth
to mention that when EIRS is combined with better pre-
diction model RWEME, the MAE value is 0.4951, breaking
through the bottleneck value of 0.5 which means that when
excellent sampling method and excellent prediction model
are combined, high quality prediction can also be obtained
on sparse data. IRS has the same result as EIRS except the
situation when combining with UPCC. This result shows
that the prediction accuracy will be affected by invalid data.
Similar results can be seen on TP dataset.
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FIGURE 10. The MAEs of different predicting models combining with
different sampling method.
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FIGURE 11. The MAEs of IRS and EIRS combined with UPCC according to
different intervals.

Figure 10 shows the MAE of Tables 5 and 6 more intu-
itively. We can obviously see that, SRS performs poorly in all
of the cases except in combining with IPCC (based on calcu-
lating the similarity between services). This is because of that
the training data obtained by SRS is more suitable for item-
based CF methods. URS and DRS perform better in combin-
ing with CF-based prediction methods especially UPCC and
UIPCC (based on calculating the similarity between users)
than MF-based prediction methods. Furthermore, better pre-
diction accuracy are obtained when the sampling methods
especially RJS and MHS combining with RWEMF which is
more excellent MF-based predicting model. This is because
of that excellent MF-based prediction model can better mine
the latent features of the data and remedy the inaccuracy of the
training data itself. To sum up, most sampling methods can
improve the prediction accuracy only when combined with
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the appropriate prediction model, but our method EIRS can
help the prediction model to improve the accuracy in general.
However, in order to obtain high-quality prediction accuracy,
we not only need good sampling method, but also need good
prediction model.

3) EFFECT OF THE SAMPLING INTERVAL

In the process of sampling, the sampling interval affects the
sampling distribution. Figure 11 shows the performance of
IRS and EIRS combined with UPCC on MAE with different
density according to different intervals. We can see that on the
RT dataset, when the sampling interval is equal to 4, the result
is the best in most cases. However, on the TP dataset the
best result is obtained when the sampling interval is equal to
8. This result shows that an appropriate sampling interval is
needed in different dataset.

VI. CONCLUSION AND FUTURE WORK

In this paper, we discuss how to apply different sampling
methods to QoS datasets and analyze their advantages and
disadvantages. In addition, we propose a novel sampling
method (Enhanced Importance ReSampling method, EIRS)
by considering the influence of invalid data of the training
data. Experiments show that our method can sample Web
service QoS data more stably and effectively, and improves
the accuracy of predicting models higher than others. In the
future, we will consider exploring more excellent sampling
methods and designing more efficient prediction models to
improve the accuracy of QoS prediction.
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