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ABSTRACT Finite mixture models based on the symmetric Gaussian distribution have been applied
broadly in data analysis. However, not all the data in real-world applications can be safely supposed to
have a symmetric Gaussian form. This paper presents a new mixture model that includes the inverted
Beta mixture model (IBMM) as a special case to analyze the positive non-Gaussian data. The advantage
of the proposed model is that the number of the model parameters is variable and infinite. Consequently,
the proposed model is adaptable to the size of the data. On the basis of the recently proposed extended
variational inference (EVI) framework, we develop a closed-form solution to approximate the posterior
distributions. The performance and the effectiveness of the proposed model are demonstrated with the real
data generated from two challenging applications, namely, image classification and object detection.

INDEX TERMS Bayesian estimation, extended variational inference, inverted Beta distribution, image
classification, object detection.

I. INTRODUCTION
Finite mixture models [1]–[9] provide a powerful and flex-
ible statistical tool for analyzing heterogeneous data aris-
ing from multiple populations. These models have been
widely applied to study a large number of important prob-
lems in various domains, such as machine learning, data
mining and computer vision. The finite Gaussian mixture
model (GMM) [1], [2], [10], [11] has been the most widely
applied approach in real-world applications. Modeling the
statistics of observations via the GMM has two important
advantages. First, the GMM can model an arbitrary contin-
uous distribution with an appropriate number of components.
Second, the parameters in a GMM can be efficiently esti-
mated via maximum likelihood (ML) estimation with the
expectation-maximization (EM) algorithm. The Gaussian
distribution is symmetric and unbounded (with support
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range (−∞,+∞)); however, the observed data in many prac-
tical applications are not symmetric or unbounded.

Recently, non-Gaussian statistical models, such as the Beta
mixture model (BMM) [5], the Dirichlet mixture model
(DMM) [3], [6], [7], the Beta-Liouville mixture model
(BLMM) [12], and the Watson mixture model (WMM) [8],
have gained considerable attention since they can provide
better modeling capabilities than the GMM in the case of non-
Gaussian data [3], [7], [12], [14]–[16], such as bounded or
semibounded support data. For example, in the area of signal
processing, the power spectrum, which is the most frequently
used feature, is semibounded in the range (0,+∞) and asym-
metric. In the area of computer vision, image normalized
histograms and bag-of-words representations of images are
bounded with support range [0, 1]. Also, in the area of speech
transmission, the line spectral frequency (LSF) representation
of the linear predictive coding parameters is bounded in the
limited range [0, π].

To overcome this problem, the IBMM has been proposed
in [13]. Compared to the Gaussian distribution, the inverted
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Beta distribution has a flexible shape and can be symmetric
or highly skewed. However, there are two major disadvan-
tages of the IBMM. First, the EM algorithm can result in
overfitting when it is excessively complex. Second, the iter-
ative numerical estimation is prohibitively expensive and
timeconsuming for practical applications. To address these
problems, a Bayesian estimation method for the IBMMbased
on the multiple lower bound (MLB) approximation has been
proposed in [13]. Because the MLB approximation cannot
guarantee convergence, the Bayesian estimation method for
IBMM using the single lower bound (SLB) approximation
has been proposed in [6] and [17] to handle this problem.
For more details with respect to (w.r.t.) the SLB and MLB
approximation, interested readers are referred to [6], [17],
and [18]. Compared to the EM algorithm for the IBMM,
the Bayesian estimationmethod has several advantages. First,
the overfitting problem can be prevented. Furthermore, it can
simultaneously select the optimal mixture of components
to estimate the model parameters. Finally, an analytically
tractable solution for the true posterior distribution can be
obtained in this inference process; therefore, it may scale well
to large applications. One drawback of all the aforementioned
mixture models is that their distributions are unbounded with
support range.

Another way to fit different shapes of the non-Gaussian
data, which models each mixture component with mul-
tiple distributions, has attracted considerable attention.
Examples of such models previously studied in the
literature include the mixture of mixtures of Gaussian
distributions [19], [20], mixture of mixtures of Student’s
t-distributions [21], and mixtures of Gaussian and uniform
distributions [22]. One drawback of these mixture mod-
els is that their distributions are unbounded with support
range (−∞,+∞). However, not all the data we would like to
model can be safely supposed to be unbounded [3], [5]–[8],
[12], [13]. To overcome this problem, the mixture of mixtures
of Beta distributions has been proposed in [21] to model
bounded data. However, this method is used only for single-
dimensional data. Moreover, the Bayesian estimation method
with MLB approximation has been used to learn the model
parameters, which cannot guarantee the convergence of the
proposed algorithm [6], [17], [18].

Motivated by the aforementioned observations, in this
paper, we propose a novel finite mixture model to model the
probability density function (PDF) of positive data. Notably,
our approach differs from those discussed above. First, a mix-
ture of mixtures of Beta distributions is used to model only
the univariate bounded data; we overcome this problem by
proposing a new mixture model that has multivariate inverted
Beta components for D-dimensional positive data. Second,
the SLB approximation-based method is adopted to optimize
the parameters. The proposed method is used in two impor-
tant applications, namely, image classification and object
detection, and the good performance is verified via real data
evaluations.

The rest of this paper is organized as follows. In Section 2,
we present the proposed method in detail. In Section 3,
a Bayesian learning algorithmwith EVI is derived. The exper-
imental results on real data are reported in Section 4. Finally,
some conclusions are drawn in Section 5.

II. PROPOSED METHOD
A D-dimensional random vector x = [x1, · · · , xD]T is said
to have a parametric finite mixture distribution if its PDF is
written in the form

p(x|π , θ ) =
M∑
m=1

πmp(x|ϑm), (1)

where π = [π1, · · · , πM ]T denotes the mixture weights,
which satisfy the following constraints:

0 ≤ πm ≤ 1, and
M∑
m=1

πm = 1, (2)

θ = {ϑ1, · · · ,ϑM } is the parameter vector, and p(x|ϑm) is
called the ‘‘component density’’. For more comprehensive
reviews w.r.t. probabilistic mixing modeling, interested read-
ers are referred to [24]. How to choose the component density
p(x|ϑm) is at the heart ofmixturemodeling. Note that p(x|ϑm)
can be any type of distribution. The majority of mixture mod-
els select the Gaussian distribution, Student’s t-distribution,
or generalized Gaussian distribution as the component den-
sity. These three distributions are symmetric and unbounded.
However, the observed data from many real-world appli-
cations are not symmetric or unbounded. To address this
problem, a new parametric finite mixture distribution is pre-
sented, where each component density ismodeled bymultiple
multivariate inverted Beta distributions [13]

p(x|αm,βm, ηm) =
Km∑
k=1

ηmk iBeta(x|αmk ,βmk )

=

Km∑
k=1

ηmk

D∏
d=1

iBeta(xd |αmkd , βmkd ), (3)

where ηm = [ηm1, · · · , ηmKm ]
T is called the mixing weight-

ing factors, which satisfy the following conditions:

0 ≤ ηmk ≤ 1, and
Km∑
k=1

ηmk = 1, (4)

αm = {αmdk} and βm = {βmdk} are the parameter sets of
the mth mixture component and Km is the number of the
multivariate inverted Beta distributions used to model themth
mixture component in (3). In addition, iBeta(x|α, β) denotes
the inverted Beta distribution

iBeta(x α, β) =
0(α + β)
0(α)0(β)

xα−1(1+ x)−(α+β), α, β > 0,

(5)

where x > 0 and 0(·) is the Gamma function. The shape of
the inverted Beta distribution relies on two shape parameters,
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FIGURE 1. Inverted Beta distributions for different pairs of parameters.

α and β, which could be symmetric or highly skewed. Some
typical cases are shown in Fig. 1.

Assume thatX = [x1, · · · , xN ] is a set of observations that
are drawn independently from the mixture distribution given
by (1). The likelihood is then written as
p(X|α,β,π , η)

=

N∏
n=1

{
M∑
m=1

πm

[ Km∑
k=1

ηmk

D∏
d=1

iBeta(xnd |αmkd , βmkd )

]}
.

(6)

The ML framework with EM can be utilized to estimate
the model parameters by maximizing the usual quantity in
(6) over the parameters. However, this objective function
cannot be utilized to perform our model size selection. Thus,
the Bayesian estimation method based on variational infer-
ence (VI) [4] is adopted to address this problem.

For convenience, the proposed model is formulated as a
latent variable model. For each observation xn, a latent indi-
cator vector zn = {zn1, · · · , znM } is introduced to represent
component membership, with znm ∈ {0, 1} and such that
znm = 1 if xn is generated from component m and znm = 0
otherwise. The weighting factor ηnm is expressed by the latent
variables snmk , with snmk ∈ {0, 1}, such that snmk = 1 if xn is
drawn from themth component in (1) and iBeta(xn|αmk ,βmk )
is associated with the kth component in (3) and snmk = 0
otherwise. The latent variable model of the proposed model
is then specified as

p(Z|π ) =
N∏
n=1

M∏
m=1

πznm
m , (7)

p(S|η) =
N∏
n=1

M∏
m=1

Km∏
k=1

η
snmk
mk , (8)

p(X,Z,S|α,β)

=

N∏
n=1

M∏
m=1


Km∏
k=1

[
D∏
d=1

iBeta(xnd |αmdk , βmdk )

]snmk
znm

.

(9)

To obtain the Bayesian formulation of the proposed model,
suitable prior distributions need to be placed over the model

parameters. Since the inverted Beta distribution is a member
of the exponential family, it has a formal conjugate prior.
However, the prior is not analytically tractable and cannot be
directly applied for VI [6]. Herein, the conjugate priors for
umkd and vmkd are selected to be Gamma priors

p(α|u, v) =
M∏
m=1

Km∏
k=1

D∏
d=1

G(αmkd |umkd , vmkd ), (10)

p(β|g,h) =
M∏
m=1

Km∏
k=1

D∏
d=1

G(βmkd |gmkd , hmkd ). (11)

where G(·) stands for a Gamma distribution. Note that π and
η are viewed as parameters rather than stochastic variables,
so no priors are placed over them.
For notational simplicity, we denote 2 = {α,β,Z,S} as

the set of random variables and 3 = {π , η} as the set of
parameters. The joint probability of themodel is then given by

p(X,2|3) = p(X,Z,S|α,β)p(Z|π )p(S|η)p(α)p(β)

=

N∏
n=1

M∏
m=1

{ Km∏
k=1

[
D∏
d=1

0 (αmkd + βmkd )

0 (αmkd ) 0 (βmkd )
xαmkd−1nd

×(1+ xnd )−(αmkd+βmkd )
]snmk}znm

×

[
N∏
n=1

M∏
m=1

πznm
m

][
N∏
n=1

M∏
m=1

Km∏
k=1

η
snmk
mk

]

×

M∏
m=1

Km∏
k=1

D∏
d=1

vumkdmkd

0 (umkd )
α
umkd−1
mkd e−vmkdαmkd

×

M∏
m=1

Km∏
k=1

D∏
d=1

hgmkdmkd

0 (gmkd )
β
gmkd−1
mkd e−hmkdβmkd .

(12)

A graphical illustration of the proposed model is presented
in Fig. 2. In the following section, we estimate the model
parameters 2 and select the optimal number of compo-
nents {M ,Km}.
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FIGURE 2. Graphical representation of the Bayesian model. Symbols in
circles denote stochastic variables; all others are hyperparameters.
Arrows show the relationships between variables. Rounded boxes denote
the repetitions (with the number of repetitions in the corners).

III. PARAMETER LEARNING
In this section, an EVI-based Bayesian estimation approach is
presented to simultaneously solve the problems of parameter
estimation and model size selection for our proposed model.
The proposed variational framework is able to overcome the
overfitting problem.

A. VARIATIONAL BAYESIAN INFERENCE
Following the approach proposed in [25], the aforementioned
two issues can be simultaneously solved by maximizing the
ML p(X|3) w.r.t.2

p(X|3) =
∫
p(X,2|3)d2. (13)

Notably, the integral in (13) denotes joint integration over
{α,β,Z} and summation over {S,5}. Due to the coupling
among these variables, this marginalization is intractable.
Thus, a variational method is used to find a tractable lower
bound over p(X|3) by introducing an arbitrary variational
distribution q(2) to approximate the true posterior distri-
bution p(2|X,3) and using a popular decomposition for
ln p(X|3)

ln p(X|3) = KL(q||p)+L(q), (14)

where KL(q||p) =
∫
q(2) ln{q(2)/p(2|X,3)}d2 is the

Kullback-Leibler (KL) divergence between q(2) and
p(2|X,3) and L(q) =

∫
q(2) ln{p(2,X|3)/q(2)}d2.

Since KL(q||p) is nonnegative and would become exact if
q(2) = p(2|X,3),L(q) is a lower bound of ln p(X|3).Max-
imizing the lower bound L(q) is the same as minimizing the
KL divergence KL(q||p). However, minimizing KL(q||p) to
solve q(2) is infeasible since p(2|X,3) is unknown. Hence,
optimization of L(q) has been extensively employed in the
VI framework to achieve a good variational approximation.
The lower bound L(q) is known as the variational objective
function and can be rewritten as

L(q) = Eq[ln p(X,2|3)]− Eq[q(2)]. (15)

Nevertheless, L(q) is not available in closed form since the
expectation Eq[ln p(X,2|3)] is not tractable. The recently

proposed EVI framework is adopted to address this problem.
The main idea behind this framework is that if we can further
bound L(q) as

L(q) ≥ L̃(q) = Eq[ln p̃(X,2|3)]− Eq[q(2)], (16)

where p̃(X,2|3) is a ‘‘help function’’ that is subject to
the constraint Eq[ln p(X,2|3)] ≥ Eq[ln p̃(X,2|3)], then
we can asymptotically approach the optimal solution by
maximizing L̃(q). Moreover, to yield a tractable expression
for L̃(q), we have to restrict the form of q(2). It is convenient
to assume a variational distribution q(2) with a factorized
form as

q(2) =

[
N∏
n=1

M∏
m=1

q(znm)

][
N∏
n=1

M∏
m=1

Km∏
k=1

q(snmk )

]

×

[
M∏
m=1

Km∏
k=1

D∏
d=1

q(αmkd )q(βmkd )

]
. (17)

Through simple calculation, it is straightforward to obtain the
approximate optimal solution as

ln qs(2s) = 〈ln p̃(X,2|3)〉j6=s+Const, (18)

where 〈·〉j 6=s denotes the expectation w.r.t. all factors qj(2j)
except for j = s and ‘‘Const’’ denotes a constant that
is applied to normalize the corresponding distribution [4].
Because the expression of factor qs(2s) has some functional
dependence on the expectations computed w.r.t. the other
factors qj(2j) for j 6= s, these factors do not represent an
explicit solution. This limitation requires cycling of each
factor to find the maximum value of L̃(q). To conduct this
optimization, every factor qs(2s) must be suitably initiated in
advance and then updated in turn by a revised estimate given
by (21). Since L̃(q) is convex w.r.t. each factor, convergence
is theoretically guaranteed for qs(2s) [4], [17], [18].

B. VARIATIONAL POSTERIOR DISTRIBUTIONS
This section details how we can apply (18) to compute the
variational posterior distributions in (17). First, we need to
compute the expectation of ln p(X,2|3) as

〈ln p(X,2|3)〉

=

N∑
n=1

M∑
m=1

〈znm〉

{ Km∑
k=1

〈snmk 〉
D∑
d=1

[Rmkd

+(〈αmkd 〉 − 1) ln xnd − (〈αmkd 〉+〈βmkd 〉) ln(1+xnd )]

}

+

N∑
n=1

M∑
m=1

〈znm〉 lnπm +
N∑
n=1

M∑
m=1

Km∑
k=1

〈snmk 〉 ln ηnmk

+

M∑
m=1

Km∑
k=1

D∑
d=1

[(umkd − 1)〈lnαmkd 〉 − vmkd 〈αmkd 〉]

+

M∑
m=1

Km∑
k=1

D∑
d=1

[(gmkd − 1)〈lnβmkd 〉 − hmkd 〈βmkd 〉]

+Const, (19)
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where we define

Rmkd =

〈
ln
0(αmkd + βmkd )
0(αmkd )0(βmkd )

〉
. (20)

Since evaluation of 〈ln p(X,2|3)〉 requires calculation
of Rmkd , which is not available in closed form, optimization
of each variational factor in (17) is infeasible via the for-
mal VI framework. The abovementioned EVI framework is
adopted to address this problem. According to [6, eq. (25)],
Rmkd can be bounded as

Rmkd ≥ R̃mkd

= ln
0(ᾱmkd + β̄mkd )

0(ᾱmkd )0(β̄mkd )
+ [9(ᾱmkd + β̄mkd )

−9(ᾱmkd )](〈lnαmkd 〉 − ln ᾱmkd )ᾱmkd
+[9(ᾱmkd + β̄mkd )−9(β̄mkd )]

× (〈lnβmkd 〉 − ln β̄mkd )β̄mkd , (21)

where 9(·) represents the digamma function. Substituting
(21) back into (19), 〈ln p(X,2|3)〉 is bounded as

〈ln p̃(X,2|3)〉

=

N∑
n=1

M∑
m=1

〈znm〉

{ Km∑
k=1

〈snmk 〉
D∑
d=1

[
R̃mkd+(〈αmkd 〉−1) ln xnd

−(〈αmkd 〉 + 〈βmkd 〉) ln(1+ xnd )]

}

+

N∑
n=1

M∑
m=1

〈znm〉 lnπm +
N∑
n=1

M∑
m=1

Km∑
k=1

〈snmk 〉 ln ηnmk

+

M∑
m=1

Km∑
k=1

D∑
d=1

[(umkd − 1)〈lnαmkd 〉 − vmkd 〈αmkd 〉]

+

M∑
m=1

Km∑
k=1

D∑
d=1

[(gmkd − 1)〈lnβmkd 〉 − hmkd 〈βmkd 〉]

+Const. (22)

By combining (18) and (22), it is straightforward to derive the
optimal variational solutions for q(Z), q(S), q(α) and q(β),
as follows.

1) OPTIMAL SOLUTION TO q(Z)
Absorbing all terms that are independent of znm into a
constant yields

ln q∗(znm)

= znm

{
lnπm +

Km∑
k=1

〈snmk 〉
D∑
d=1

[R̃mkd + (〈αmkd 〉 − 1)

× ln xnd−(〈αmkd 〉+〈βmkd 〉) ln(1+xnd )]

}
+Const. (23)

Taking the exponential of both sides of (23), we have

ln q∗(Z) =
N∑
n=1

M∑
m=1

znm ln ρnm + Const, (24)

Algorithm 1 Bayesian Estimation of the Proposed Model
1: Set the number of components M and Km.
2: Initialize the parameters: umkd , vmkd , gmkd , hmkd .
3: Initialize rnm and λnmk by K-means algorithm.
4: repeat
5: E step: Update responsibilities rnm, λnmk by (26) and

(29).
6: M step: Update variational parameters u∗mkd , v

∗
mkd ,

g∗mkd , h
∗
mkd by (33), (34), (36), (37).

7: until Stop criterion is reached.
8: Determine M and Km by discarding the components that

have small mixture weights (≤ 10−5).

where ρnm is given by

ln ρnm = lnπm +
Km∑
k=1

〈snmk 〉
D∑
d=1

[R̃mkd + (〈αmkd 〉 − 1)

× ln xnd − (〈αmkd 〉 + 〈βmkd 〉) ln(1+ xnd )] . (25)

Hence, we obtain

q∗(Z) =
N∏
n=1

M∏
m=1

rznmnm , rnm =
ρnm∑M
m=1 ρnm

, (26)

where q∗(Z) is a categorical distribution. For q∗(Z), we have
〈znm〉 = rnm.

2) OPTIMAL SOLUTION TO q(S)
Considering terms involving only snmk , we obtain

ln q∗(snmk )

= snmk

{
ln ηmk +

D∑
d=1

[R̃mkd + (〈αmkd 〉 − 1) ln xnd

− (〈αmkd 〉 + 〈βmkd 〉) ln(1+ xnd )

]}
+ Const. (27)

Taking the exponential of both sides of (27), we have

q∗(S) =
N∏
n=1

M∏
m=1

Km∏
k=1

λ
snmk
nmk , (28)

where λnmk is given by

λnmk =
δnmk∑Km
k=1 δnmk

, (29)

where we define

ln δnmk = ln ηmk + 〈znm〉
D∑
d=1

[R̃mkd + (〈αmkd 〉 − 1)

× ln xnd − (〈αmkd 〉 + 〈βmkd 〉) ln(1+ xnd )] . (30)

For q∗(S), we have 〈snmk 〉 = λnmk .
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FIGURE 3. Example images from the Caltech-05 dataset. (a) Face. (b) Motorbike. (c) Airplane. (d) Car side. (e) Background.

FIGURE 4. Sample images from the Scene-13 dataset. (a) Office. (b) Living room. (c) Bedroom. (d) Kitchen. (e) Suburb. (f) Tall building. (g) Street.
(h) Inside of city.

3) OPTIMAL SOLUTION TO q(α)
Absorbing the terms that do not have some functional depen-
dence on αmkd into a constant, we have

ln q∗(αmkd ) = lnαmkd

{
N∑
n=1

〈znm〉〈snmk 〉 ᾱmkd

× [9(ᾱmkd+β̄mkd )−9(ᾱmkd )]+ umkd−1

}

+αmkd

[
vmkd−

N∑
n=1

〈znm〉〈snmk 〉 ln xnd

]
+Const.

(31)

Taking the exponential of both sides of (31), q∗(α) is
recognized to be a Gamma density

q∗(α) =
M∏
m=1

Km∏
k=1

D∏
d=1

G(αmkd |u∗mkd , v
∗
mkd ). (32)

The hyperparameters u∗mkd and v∗mkd in (32) are given by

u∗mkd =
N∑
n=1

〈znm〉〈snmk 〉[9(ᾱmkd+β̄mkd )−(ᾱmkd )]ᾱmkd , (33)

v∗mkd = vmkd −
N∑
n=1

〈znm〉〈snmk 〉[ln xnd − ln (1+xnd )]. (34)

4) OPTIMAL SOLUTION TO q(β)
The posterior distribution q∗(β) is recognized to be a Gamma
density

q∗(β) =
M∏
m=1

Km∏
k=1

D∏
d=1

G(βmkd |g∗mkd , h
∗
mkd ), (35)

where g∗mkd and h∗mkd are the hyperparameters

g∗mkd =
N∑
n=1

〈znm〉〈snmk 〉[9(ᾱmkd + β̄mkd )−9(β̄mkd )]β̄mkd ,

(36)
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TABLE 1. Comparison of the image classification accuracies (measured
in %) obtained by different methods. The p-values of the Student’s t-test
under the null hypothesis, i.e., that our method and the compared
method have equal means but unknown variances, are listed.

h∗mkd = hmkd +
N∑
n=1

〈znm〉〈snmk 〉 ln(1+ xnd ). (37)

The other expectations involved in (21) are given by

ᾱmkd = u∗mkd/v
∗
mkd , 〈lnαmkd 〉 = 9(u∗mkd )− ln v∗mkd ,

β̄mkd = g∗mkd/h
∗
mkd , 〈lnβmkd 〉 = 9(g∗mkd )− ln h∗mkd .

(38)

By setting the derivatives of L̃(q) w.r.t. πm and ηmk to zero,
we have

πm =
1
N

N∑
n=1

rnm, ηmk =
1
N

N∑
n=1

λnmk . (39)

Alg. 1 presents a summary of the algorithm. Since the lower
bound is convex w.r.t. each factor, the optimization proce-
dure is guaranteed to converge [4]. The effectiveness of the
proposed approach is demonstrated in the next section.

IV. EXPERIMENTAL RESULTS
A. DESIGN OF EXPERIMENTS
The main purpose of our experiments is to compare the
performance of the proposed mixture model to that of the
IBMM [17], IDMM [26], and SMM [27] in terms of positive
datamodeling. To ensure a fair comparison, themodel param-
eters are estimated by a VI-based approach. For details w.r.t.
IDMM and IBMM, the reader is referred to [13] and [27],
respectively. In this section, we focus on applications
involving positive data, namely, image classification and
object detection. Note that comparison of our results with
those of the latest approaches proposed for these two tasks is
out of the scope of this paper. The actual purpose is to evaluate
mixture-based methods. In these applications, the number of
components M and Km are initialized to 15 and 5, respec-
tively. To offer non-informative priors, we set the prior distri-
bution parameters as umdk =gmdk =1 and vmdk =hmdk =0.1.
The posterior means are taken as the point estimates of the
parameters.

B. IMAGE CLASSIFICATION
Image classification is a very important research topic in
computer vision that has attracted substantial attention. The
aim of image classification is to classify an image into a pre-
defined category [29]–[32]. Image classification has a variety
of applications, such as traffic scene recognition [33]–[35],
medical image mining [36]–[38], and intelligent video anal-
ysis [39]–[42]. Although it is easy for humans to perform

FIGURE 5. Boxplots for comparison of the distributions of the
classification accuracies. The central mark is the median, the edges of the
box are the 25th and 75th percentiles. (a) Caltech-05. (b) Indoor/outdoor.

this task, it remains challenging for computers owing to
pose, illustration and scale variations, occlusions and intra-
class variability. In recent years, a large number of research
efforts have been devoted to overcoming such difficulties.
These efforts have focused mainly on the study of excel-
lent image descriptors and robust and efficient classifiers.
In this section, the rectangular histogram of oriented gradi-
ent (R-HOG) descriptor [43] is used to represent each image,
and our proposed model is used as a classifier.

The evaluations were conducted on two datasets. The
first dataset is the Caltech-05 dataset, which contains the
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FIGURE 6. Boxplots for comparisons of the distributions of the detection accuracies. The central mark is the median, the edges of the
box are the 25th and 75th percentiles. (a) Face. (b) Motorbike. (c) Airplane. (d) Car side.

five most popular categories from the Caltech-101 dataset1:
faces (435 images), motorbikes (798 images), airplanes
(800 images), car sides (123 images), and backgrounds
(467 images). Fig. 3 shows example images from these five
categories. The second dataset is the indoor/outdoor dataset,
which contains two categories: indoor scenes and outdoor
scenes. The indoor scenes are composed of four subcat-
egories from the Scene-13 dataset2: office (216 images),
living room (289 images), bedroom (174 images), and
kitchen (151 images). The outdoor scenes consist of
four subcategories from the Scene-13 dataset: suburb
residence (241 images), tall buildings (356 images),

1http://www.vision.caltech.edu/archive.html
2http://vision.stanford.edu/Datasets/AnimTransDistr.rar

streets (292 images), and inside of cities (308 images). Exam-
ple images from each category are shown in Fig. 4. During
the evaluations, each category was randomly divided 15 times
into two equal parts, one for training and the other for testing.

The proposed method for image classification can be
summarized as follows. First, experiments were conducted
by setting the number of windows and histogram bins to
7 and 9, respectively, such that each image was repre-
sented by a 441-dimensional positive feature vector. Sec-
ond, the feature vectors of each category in the training
sets were modeled by the proposed model. Finally, Bayes’
rule was employed to allocate the testing image to a given
category according to the posterior probabilities. Tab. 1 shows
the average classification accuracies along with the stan-
dard deviations. Fig. 5 illustrates the distributions of the

VOLUME 7, 2019 38153



Y. Lai et al.: Positive Data Modeling Using a Mixture of Mixtures of Inverted Beta Distributions

TABLE 2. Comparison of the image classification accuracies (measured
in %) obtained by different methods. The p-values of the Student’s t-test
under the null hypothesis, i.e., that our method and the compared
method have equal means but unknown variances, are listed.

classification accuracies. These results indicate that the
proposed method outperforms the other three methods.

C. OBJECT DETECTION
Object detection is an extremely challenging problem with a
massive amount of important applications, such as intelligent
monitoring [44], [45], intelligent traffic systems [46], [47],
and face image research [48]–[50]. The main purpose of
this task is to distinguish a specific object from all possi-
ble objects. Over the past few years, object detection has
received considerable research focus in the area of com-
puter vision [51], [52]. Like most computer vision tasks,
a critical step for accurate object detection is to extract good
descriptors to represent object images. Here, the R-HOG
descriptor with seven windows and nine histogram bins was
employed. Thus, each image in the dataset was represented
by a 441-dimensional positive feature vector.

The proposed object detection approach was evaluated on
four subdatasets of the aforementioned Caltech-05 dataset:
faces, motorbikes, airplanes and car sides. For the non-object
images, the background subdataset was adopted for the four
object categories. Each subdatasets was randomly split into
two halves 15 times, one for training and the other for testing.
As in the previously mentioned image classification task,
the proposed model was used as a classifier for detecting
objects via allocating the test image to the group (object or
non-object) with the highest posterior probability according
to the Bayesian decision rule.

Tab. 2 shows the detection accuracies along with the stan-
dard deviations for different approaches. Fig. 6 shows the
distributions of the detection accuracies. These results indi-
cate that the proposed approach performs better than the
three other approaches and has the best detection accuracy,
which confirms that the proposedmethod has better modeling
capability than IBMM and IDMM, SMM in the case of
non-Gaussian positive data.

V. CONCLUSIONS
We introduce a non-Gaussian mixture model with inverted
Beta mixture components for modeling positive data. Com-
pared to the conventional finite inverted Beta mixture
model (IBMM), the proposed model has flexible model
complexity, as the number of model parameters is vari-
able and infinite. The recently proposed extended variational

inference (EVI) framework is employed to perform parameter
learning in the proposed model. Through two challenging
applications, namely, image classification and object detec-
tion, we have demonstrated that the proposed model can
provide good modeling and classification capabilities. Future
work could be devoted to Bayesian estimation of the proposed
model with the recently proposed stochastic variational infer-
ence, which would allow us to apply complicated Bayesian
models to large-scale datasets.
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