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ABSTRACT The layout-aware data scheduling (LADS) data movement framework optimizes congestion for
end-to-end data transfers. During data transfer, LADS can avoid congested storage elements by exploiting
the underlying storage layout at each endpoint. This improves the I/O bandwidth and hence the data transfer
rate across high-speed networks. However, the absence of fault tolerance (FT) in LADS results in data
retransmission overhead and may lead to possible data integrity issues upon faults. In this paper, we propose
object-logging FTmechanisms to avoid transmitting the objects that are successfully written into the parallel
file system (PFS) at the sink end. Depending on the number of log files created for the whole dataset, we have
classified our FT mechanisms into three different categories: file logger, transaction logger, and universal
logger. Also, to address the space overhead, we have proposed different methods of populating the log files
with the information of the successfully transferred objects. We have evaluated the data transfer performance
and recovery time overhead of the proposed object-logging-based FTmechanisms on the LADS data transfer
framework. Our experimental results show that FT mechanisms exhibit negligible overhead (< 1%) with
respect to the data transfer time. However, the fault recovery time is 10% higher than the total data transfer
time at any fault point.

INDEX TERMS Big data, geo-distributed data centers, fault tolerance, parallel system.

I. INTRODUCTION
Large scale scientific simulations [1]–[3] and data capable
Internet of Things (IoT) devices such as mobile devices, soft-
ware logs, cameras, microphones, and wireless sensor net-
works [4] are the major sources of rapidly growing datasets.
The world’s technological per-capita capacity to store infor-
mation has roughly doubled every 40 months since 1980s [5].
By 2025, International Data Corporation (IDC) predicts there
will be 163 Zettabytes of data.

While the sheer size of the data is a major challenge,
there also exist other challenges including the storage
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I/O bottleneck and the high data movement cost between
advanced computational centers. To support an increase in the
data volume, data centers are equipped with adequate storage
capacity. However, at times, it is necessary to access addi-
tional data located at geographically distributed data centers.
This may involve transferring huge volumes of data between
the data centers. Ideally, these transfers are able to fully
exploit the available network capacity between the centers.

Even though networks are reaching terabit speeds and stor-
age capacities touching exabytes, there is a clear mismatch
between network and storage speeds. This poses a major
challenge in achieving higher end-to-end data transfer rates.
In order to reduce the impedance mismatch between the
network and storage and to improve scalability, data centers
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deploy Parallel File Systems (PFS). Most PFS use dedicated
servers to service metadata and I/O operations. In order to
improve throughput, PFS scale up the number of I/O servers
to achieve higher performance. Typically, large-scale stor-
age systems use tens to hundreds of I/O servers, each with
tens to hundreds of disks. Storage systems share resources
between different clients. Due to this, it is possible for these
clients to compete for the same resource. As contention
for these resources increases, there can be a serious gap
between expected and observed I/O performance [6], [7].
Also, at times, it is possible that some of the servers or
their disks are overloaded while most are not. This kind
of load imbalance is quite a serious problem in PFS [8].
With these observations, researchers have proposed a new
bulk data transfer framework, Layout Aware Data Sched-
uler (LADS), which avoids temporarily congested servers
during data transfers [1], [9].

One of the major challenges in the distributed environment
is fault handling; hardware, network, and software might fail
at any point of time. It is very costly in terms of time and
additional network traffic to retransmit the whole data from
the beginning while transmitting several terabytes of data.
Distributed data transfer tools need to handle faults efficiently
to reduce retransmission overhead upon recovery.

LADS exploits the underlying storage layout at the source
and sink to maximize throughput without negatively impact-
ing the performance of shared storage resources for other
users. LADS focuses on objects, rather than files, which
allows the LADS framework to implement layout-aware
scheduling algorithms. Due to this object layout-aware
scheduling, objects might be transferred out-of-order from
source to sink. If any object is lost due to any of the faults
along the end-to-end path, this will result in data integrity
and performance issues. The current LADS framework, how-
ever, does not offer any solution [10] to the faults occur-
ring in the end-to-end path. This results in retransmitting
the whole file (or objects) upon fault, causing unnecessary
congestion [11], [12].

Due to this out-of-order nature of object transmission,
checkpoint-based logging of file offsets [13] or logging the
index of last transferred object is not enough for resuming
the transfers upon fault. Another approach is to maintain
the log of all objects that were successfully sent and written
at the sink end PFS. This kind of logging mechanism [14]
will have an impact on the overall space occupied by the
log file. Also, the amount of time consumed for logging
successful objects while transferring and for retrieving the
successfully completed objects upon fault will have a direct
impact on the overall performance of the data transfer. Our
main objective is to design an object logging-based FT mech-
anism to minimize the time, space and retrieval overhead
while not negatively impacting the performance of the data
transfers.

In this paper, we propose an object logging-based FT
mechanism, to use in conjunction with LADS. In order
to analyze the performance and space overhead of the FT

mechanisms on LADS, we propose different FTmechanisms.
This paper makes the following contributions.
• In object based logging, each and every file in the dataset
is associated with one log file. Due to this, as the dataset
size increases, the number of log files also increases.
This causes non-negligible overhead on the file system.
When a new file is created, the system-wide open file
table in the kernel as well as per-process file table will
be updated. When threads concurrently try to update
the shared table, it leads to contention. To avoid this,
we implement a light-weight logging mechanism.

• Depending on the number of log files generated per
dataset, we proposed three different object based FT
mechanisms: File Logger, Transaction Logger, andUni-
versal Logger [15]. With the File Logger mechanism,
each file in the target dataset is associated with one log
file, which will be used for recovery upon resuming
from the fault. For both the Transaction and Universal
Logger mechanisms, one log file is associated with one
transaction and whole dataset respectively.

• The space overhead depends on how the completed
object information is populated in the log files. To opti-
mize space, we have proposed different logging meth-
ods: char, int, enc, binary, bit8 and bit64 [15]. We have
evaluated space overhead using these logging methods
with the above mentioned logger mechanisms.

• We have analyzed the overhead of an object based FT
mechanism(s)/method(s) with respect to data transfer
performance and space overhead. For evaluating our
implementation, we have used a Luster filesystemwhich
communicates over an InfiniBand (IB) network. From
our evaluation results, we have observed negligible over-
head (< 1%) with respect to the data transfer time and
space 60 KB (KiloBytes). However, total recovery time
is 10% higher than that of the total data transfer time at
any fault point.

The rest of the paper is organized as the following:
Section II describes LADS background followed by the moti-
vation of our work. Section III reviews the LADS system
architectural details. Section IV presents the proposed object-
based logging mechanisms to support FT with the LADS
framework. Section V describes the design and architectural
changes incorporated in LADS to support FT. The experi-
mental results and related works are presented in Section VI
and Section VII. We conclude the paper in Section VIII.

II. BACKGROUND AND MOTIVATION
A. LAYOUT-AWARE DATA SCHEDULING
High speed networks and relatively slower storage servers
work together, and sometimes against each other, while trans-
ferring data between data centers [1], [9]. A storage server
might experience congestion if the number of I/O requests
exceed the storage server capabilities. Due to this congestion,
the storage server consumes more time to service new I/O
requests. This kind of behavior is common and is expected
within a PFS when multiple applications or a single large
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FIGURE 1. File based and object based logging.

application is trying to access files on the same object storage
target. To some extent, it is possible to avoid this kind of
congestion issues by using OS caching and application level
buffering techniques. But big data transfer tools [16], [17] can
not benefit from these kinds of techniques due to the high
volume of the data. If the source end is congested during
a data transfer due to large read requests, the source end
will not be able to load the data into the network buffers at
the expected rate. This will cause network buffers to drain
and stall the transfer. On the other hand, if the sink end is
congested, due to large write operations, the sink end will not
be able to consume the data at the expected rate. This will
consume the sink buffers and eventually stall the I/O threads
due to unprocessed buffers.

Existing big data transfer tools [16], [18] consider the
workload in terms of logical files and they do not consider
the physical distribution of files in the PFS. Due to this, if one
I/O thread is assigned to transfer a file, it will read or write
the file sequentially until the entire file is transferred. If part
of the file resides on a congested server, the file transfer
stalls. To improve the data transfer performance, it is possible
to assign multiple I/O threads to process the data transfer.
Employing multiple I/O threads without the knowledge of the
physical distribution of the file might still result in disk con-
tention issues as multiple threads compete for the same OSS
(Object Storage Servers) or OST (Object Storage Target).1

Because of this contention, data transfer performance of the
application will degrade.

The LADS [1], [9] data transfer framework addresses
storage contention issues by considering the physical dis-
tribution of the file over different OSTs. LADS considers
the workload as collection of objects rather than files. The
workload is divided into O objects, where O is the objects of
N total files, and each object represents oneMTU (Maximum
Transmission Unit) of data. LADS avoids the OST con-
tention by scheduling accesses of OSTs. Due to this, objects
of different logical files might be transferred in parallel.

1We use Luster terminology for OSS and OST. An OST manages a single
device. A single Luster OSS manages one or more OSTs.

Also, LADS framework is implemented using Common
Communication Interface (CCI) [19], [20], which utilizes
zero-copy and OS bypass hardware features, when available,
to improve the transfer rate.

In a PFS, each file is striped over multiple OSTs to improve
the overall I/O throughput. LADS improves the data transfer
performance by exploiting the PFS layout. As the file is
distributed over NOSTs, LADS employs N threads to request
N objects each from separate OST. If any of the requests is
delayed by a congested OST, the N-1 threads are free to issue
new requests to other OSTs. By the time a request to the
congested server completes, other threads of LADS will be
able to retrieve more than N objects. With this, the overall
data transfer parallelism and the data throughput improves.
Although the LADS framework exhibits higher throughput
than existing tools, the lack of FT support to handle software,
hardware or network faults during the transfer necessitates
that a new instance of LADS will retransmit all the objects of
whole dataset upon recovery from the fault.

B. MOTIVATION
Traditional big data transfer tools, like bbcp, rely on the
logical view of the files, which ignores the underlying stor-
age architecture. Due to this logical nature of the transfer,
objects of the same file are transferred in sequence. As shown
in Figure 1(a), even though there is a possibility of resource
contention between threads, T1 and T2, all the objects of
Filea and Fileb are transferred in sequence. Thread T1 trans-
fers the first object of the Filea and then records file offset
information. After completing the second object, the threads
overwrites the checkpoint record with the updated file offset
information. This process will be continued for all the files
in the dataset. During this process, if the transfer is resumed
from fault, the transfer tool checks if checkpoint record exists
for the target file or not. If it exists, it will start transferring
the objects beginning from the offset found in the checkpoint
record.

In contrast to the traditional big data transfer tools,
LADS exploits underlying storage architecture and views the
files in the physical point of view. This way it is possible to
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FIGURE 2. LADS data transfer sequence diagram.

avoid unwanted OST resource contention. LADS considers
the entire workload as O objects, where O is the total objects
in the N total files, and each object represents one transfer
MTU of data. As shown in Figure 1(b), a thread can be
assigned to an object of any file on anyOSTwithout requiring
all objects of a particular file be transferred before objects
of another file. From the Figure 1(b), we can observe that
the second object of Filea is transferred first before the first
object is transferred. Similarly, we can also observe the out-
of-order object transfer for Fileb. This process repeats for all
the files in the dataset. As objects are transferred out of order,
it is not possible to recover the completed object informa-
tion by a checkpoint logging based file offset as shown in
Figure 1(a). Instead, we need to devise a mechanism in which
we can retrieve all the completed objects that are successfully
transferred prior to the fault. To achieve this, one method is
to maintain the information about all the objects of all the
logical files that are successfully transferred.

The major issue is the amount of space occupied by the log
files in case of big dataset and also the logging overhead on
the data transfer rate. So our work is motivated to answer the
following questions:
• How to minimize the object based FT overhead on the
LADS data transfer rate?

• How to minimize the number of files created while
processing data transfer?

• How to minimize the space occupied by the object based
FT method?

• How to reduce the recovery time while resuming the
transfer?

To address the above challenges, we have proposed object
based FT mechanisms to be used in conjunction with LADS
tool.

III. LADS ARCHITECTURE
In this section, we first describe the LADS framework imple-
mentation details. Next, we discuss the possible perfor-
mance issues with the LADS framework when used in faulty
environments.

A. LADS OVERVIEW
LADS [1], [9] system is implemented by having one master
thread, a configurable number of I/O threads and one com-
munication(comm) thread. The master thread is responsible
for scheduling object transfers and the I/O threads read or
write the object data from or to the PFS. The comm thread
handles the communication between the source and sink
servers. The master and I/O threads block while waiting for
a resource, however, the comm thread always progresses the
communication between source and sink.

When initiating a transfer, the source and sink processes
(hereafter simply Source and Sink) initialize the threads nec-
essary for the communication along with all the required
locks, wait queues, OST work queues and allocate RMA
buffers used for data transfer. The comm thread, which com-
municates using CCI, opens a CCI endpoint and registers a
RMA buffer with CCI. The Sink comm thread opens a CCI
endpoint and waits for the connection from the Source. The
Source comm thread establishes connection with the open
Sink CCI endpoint. During connect request, the Source comm
thread, sends its maximum object size (set to 1MB in our
evaluation), the number of objects in the RMA buffer, and
the memory handle for the RMA buffer. The Sink comm
thread accepts the connection request, which triggers the CCI
connect event on the Source.

The sequence of a data transfer between Source and
Sink endpoints is shown in Figure 2. For each file in the
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target dataset, the Source master thread generates a
NEW_FILE request and enqueues the same with the work
queue of the comm thread. The Source comm thread dequeues
the request and transfers the same to Sink. The Sink comm
thread receives a NEW_FILE request and enqueues the same
to master thread’s work queue and wakes it up. Based on
the target file information in the request, the master thread
opens the file and adds the file descriptor to the FILE_ID
request and then enqueues the same on comm thread’s work
queue. The Sink comm thread dequeues the request and sends
it to Source. On receiving the FILE_ID request, the Source
comm thread enqueues the request on master thread’s wait
queue and wakes it up. The Source master thread splits the
file into object sized blocks and generates NEW_BLOCK
requests and enqueues the requests on I/O thread’s wait queue
and wakes it up. Based on the first NEW_BLOCK request,
I/O thread determines the OST to be used for reading the
object data and issues pread() to read the object data into the
RMA buffer registered with CCI. After completing the read
operation, it enqueues the request on the comm thread’s work
queue. The comm thread dequeues the request and transfers
it to the Sink.

The Sink comm thread receives the NEW_BLOCK request
and then tries to reserve a RMA buffer. If a RMA buffer
is available, it then initiates a RMA read operation. If it
fails to get a RMA buffer, it enqueues the request on master
thread’s work queue. The master thread waits until the RMA
buffer is available. Once the buffer is available,master thread
enqueues the request on comm thread’s queue, which issues
the RMA read operation. Upon successful completion of the
RMA read, the Sink comm thread sends a BLOCK_DONE
request to the Source and wakes up an I/O thread. The I/O
thread dequeues the request and calls pwrite() to write the
data to disk. On completing the write operation, the I/O thread
releases the RMA buffer, so the comm thread can initiate
another RMA Read. This process is repeated until all the
objects of the dataset are successfully transferred to Sink.

B. PROBLEM DEFINITION
Fault Tolerance: Often during large transfers, the connection
between the transferring systems is lost. Connection errors
might be the result of software, hardware or network faults.
The data transfer tool ability to resume the transfer from
where it let off avoids transferring already completed files or
objects. This not only avoids congestion due to redundant file
transfer but also improves the overall transfer performance
in faulty network conditions. The LADS framework ensures
successful transmission of the objects to the Sink. But, if
there is an error while writing to PFS, it will go unnoticed
and the transferred data will not be useful for further analysis
due to data corruption. Also, if there is an error during the
transfer, the LADS object transfer protocol restarts the trans-
fer from the beginning. This not only wastes the resources
but also increases the overall transfer time. We propose solu-
tions to avoid transferring redundant data by implementing

a light-weight object-based logging FT mechanisms with the
LADS framework.

IV. OBJECT BASED LOGGING
As LADS employs layout-aware and OST congestion aware
I/O scheduling algorithms, objects of any file on any OST can
be transferred before objects of another file or of the samefile.
Because of this, it is possible that objects of the same logical
file might be transferred out of order. Due to this out-of-order
nature of the transmission, logging file offset based FTmech-
anisms can not be employed with LADS. To support FT with
LADS, information of all the objects of a logical file that are
successfully written to PFS at the Sink need to be maintained.
This process is not only computationally expensive but also
results in additional space overhead. In order to minimize
the computational and space overhead, we proposed different
logging mechanisms.

In this section, we describe the proposed object-based
logging mechanisms [15] to support FT with LADS.

A. OBJECT BASED LOGGING MECHANISMS
Depending on the number of log files generated per dataset,
we propose three different object based FT mechanisms: File
Logger, Transaction Logger, Universal Logger.

1) FILE LOGGER
Using the File Logger object logging mechanism, one log file
is created corresponding to each file being transferred. For
example, consider FileA needs to be transferred to another
data center for analysis. LADS data transfer tool segments
the file into N objects or blocks. Upon successful completion
of block K (Bk ), the File Logger mechanism will write to the
log file that Bk was successfully written to the PFS at Sink.
Due to any fault, if it needs to restart the transfer, LADS first
searches for the completed blocks from the corresponding
log file and builds the list of the blocks that still need to be
transferred. Once all the blocks, corresponding to one logical
file has been successfully transferred and written to the PFS,
the log file will be deleted.

This mechanism is easy to implement. Also, as the log
is maintained for a single file, the search overhead for
retrieving the completed block information is minimal. How-
ever, as each and every file is associated with one log file,
an increase in the number of files in the dataset will have a
direct impact on the number of log files created. To avoid
this, we implement a light-weight logging mechanism. Using
light-weight logging, log files are created only when the first
object of the new file is transferred successfully and deleted
upon completion of the transfer.

2) TRANSACTION LOGGER
In contrast to the File Logger mechanism, the Transaction
Logger makes use of one log file for one transaction which
may be a set of files. The size of the transaction can be
configurable depending on the total dataset size.
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Using a single log file for maintaining the completed
objects’ information of multiple logical files requires meth-
ods to differentiate the objects of one file from another.
To achieve this, an index file is used. The index file contains
the information of the file being transferred. Each line in the
index file looks like,
[LogFileName, FileName, TotalBlocks, Offset,

Data_Length]
where,

LogFileName → Transaction Logger file name
FileName → Name of the file being transferred
TotalBlocks → Number of Blocks
Offset → Offset in the log file
Data_Length → Length of data in log file

With this logger mechanism, the search overhead for
retrieving the completed block information is similar to File
Logger mechanism. However, computational complexity is
higher than file logger mechanism due to the presence of
multiple files objects rather than single file objects.

3) UNIVERSAL LOGGER
The Universal Logger mechanism is similar to the Transac-
tion Logger in the way the completed block information is
logged. In contrast to the Transaction Logger, the Universal
Logger makes use of a single log file corresponding to all the
files in the dataset. The single log file is used for maintaining
the completed object information of multiple logical files.
This needs a method to differentiate the objects of one file
from another. To achieve this, an index file is used. The index
file contains the information of the file being transferred.
Each line in the index file looks like,
[FileName, TotalBlocks, Offset, Data_Length]

where,
FileName → Name of the file being transferred
TotalBlocks → Number of Blocks
Offset → Offset in the log file
Data_Length → Length of data in log file

With the Universal Logger mechanism, the search over-
head and computational complexity for logging the com-
pleted blocks information is similar to the Transaction
Logger.

B. OBJECT BASED LOGGING METHODS
To optimize the space overhead, the logger mechanisms
described above are analyzed with different object based log-
ging methods. These methods vary on how log information is
stored.
• Char type: The block number to be populated in the log
file will be converted to string first and then written to
the file.

• Encoding type: Successful block information with the
char type will be encoded using a Variable Length
Datatype (VLD) library written by one of the authors.

• Int type: Successful blockwill be written to the file using
integer data.

• Binary type: Before writing to the file, each block num-
ber is first converted to binary format. Assuming any
file under consideration is not segmented more than 232

number of blocks, currently we are using 32-bit binary
representation.

• Bit binary: Each bit is used to represent one block.
For example, transferring block K has been completed
successfully and considering N -bit approach, we can
represent completed block in this method by calculating
the array index (i) and bit position (j) as, Arrayi = K / N
and Bitj = K mod N. Setting the bit in the BitPosition
of the corresponding index, Arrayindex will indicate the
completion of the transfer of that particular block. In this
method, we compare the space and execution time by
using both 8-bit and 64-bit. Pseudo code for the bit-
binary method of logging is as shown in Algorithm 1.

Algorithm 1 Bit Binary Method of Logging (N = 8 or
N = 64)
1: procedure BITBINARY(A, N)
2: buff < − ReadFromFile;
3: ArrayIndex = A/N;
4: BitPos = A%N;
5: buff[ArrayIndex] = buff[ArrayIndex] |
6: (1 << BitPos)
7: WritetoFile < − buff;
8: end procedure

V. FAULT-TOLERANCE DESIGN WITH LADS
Fault Tolerance support for the Layout-Aware Data Schedul-
ing (FT-LADS) framework is motivated to answer a simple
question: how can we improve LADS performance in case of
software, hardware or common communication errors?

In this section, we describe the design and architectural
changes incorporated in LADS to support FT.

A. FT LOG FILES
The LADS data transfer is driven by the Source. Upon ini-
tiating the transfer, the Source master thread generates the
list of objects to be transferred to the Sink. If the Source has
prior knowledge of the completed objects, then it is possible
to exclude those objects from the list. All our proposed object
logging mechanisms generate FT log files at the Source.

B. SEQUENCE FLOW OF FT-LADS
The proposed FT-LADS communication protocol between
the Source and the Sink is as shown in Figure 3. The
BLOCK_DONE message in LADS has been modified to a
BLOCK_SYNC message to handle data transmission errors
as well as PFS write failures as listed in Listing 1. Upon
receiving the BLOCK_SYNC message, based on the syn-
chronous or asynchronous logging method, the Source comm
thread either writes the completed block information to the
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FIGURE 3. Communication protocol between source and sink.

Listing 1. Communication message type.

FT log file directly or enqueues the request on the wait
queue in the logger thread. In case of synchronous logging,
the completed objects information is populated to the FT
log file in the context of the comm thread. In the case of
asynchronous logging, a different logger thread is used for
logging the completed objects information to the log file.
In both cases, we implemented and evaluated the performance
and found no difference between the twomethods. Therefore,
we present only the synchronous logging mechanism.

The data flow in FT-LADS is shown in the Figure 4. For
each file in the target dataset, the Source master thread gen-
erates a NEW_FILE request and enqueues the request on the
work queue in the comm thread. The comm thread dequeues
the request and transfers it to Sink. The Sink comm thread
receives the NEW_FILE request and enqueues the request to

the master thread’s work queue and wakes it up. Based on
the target file information in the request, the master thread
opens the file and adds the file descriptor to the FILE_ID
request and then enqueues the request to the comm thread’s
work queue. The comm thread dequeues the request and sends
it to Source. On receiving the FILE_ID request, the Source
comm thread enqueues the request on themaster thread’s wait
queue and wakes it up. The master thread splits the file into
object sized blocks and generates the NEW_BLOCK requests
and enqueues the requests on the I/O thread’s wait queue and
wakes it up. An I/O thread first reserves a buffer registered
with CCI for RMA. It then determines which OST queue
it should access and then dequeues the first NEW_BLOCK
request. It uses pread() to read the data into the RMA buffer.
When the read completes, it enqueues the request on the
comm thread’s work queue. The comm thread dequeues the
request and transfers it to the Sink. At the Sink, the comm
thread receives the request and attempts to reserve a RMA
buffer. If successful, it initiates an RMA read operation
of the data. If not, it enqueues the request on the master
thread’s work queue and wakes themaster thread. Themaster
thread will sleep on the RMA buffer’s wait queue until a
buffer is released. Once the buffer is available, the request
is placed on the comm thread’s queue, which will issue RMA
read operation. Upon completing the RMA read operation,
the Sink’s comm thread determines the appropriate OST by
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FIGURE 4. Fault tolerant LADS data transfer sequence diagram.

the object’s file offset and queues it on the OST’s work queue.
It then wakes up an I/O thread. The I/O thread looks for
the next OST to service and dequeues a request and then
calls pwrite() to write the data to the disk. When the write
is completed, it releases the RMA buffer so that the comm
thread can initiate another RMA read operation and also
sends the BLOCK_SYNC request to Source. Upon receiving
the BLOCK_SYNCmessage, the Source comm thread, based
on synchronous or asynchronous logging method, logs the
completed block information to the FT file or enqueues the
request to the logger thread wait queue respectively. The log-
ging method will vary based on the logger mechanism. This
process is continued until all the objects of the dataset are
successfully transferred to the Sink or until any interruption
due to fault.

C. RESUMING FAILED TRANSFERS
A fault tolerant design enables LADS to resume with the
current data transfer from the same point as it was interrupted,
upon recovery. When a transfer is initiated, based on the
selected object logger mechanism and method as described
in Section IV, a log file will be created in ftlads subdirectory
under the user’s home directory. If a data transfer is initiated
by enabling the FT option, this subdirectory will be created
automatically. The actual log file name under this subdirec-
tory will vary based on the selected object logger mechanism.

This section describes the steps performed before and after
a fault in order to resume the transfers.

1) BEFORE FAULT
Upon scheduling the data transfer, the Source creates a
NEW_FILE request with the current file’s metadata and
sends the request to Sink. Based on the NEW_FILE request
information, the Sink opens a file, creates a FILE_ID

request with Sink end file descriptor and sends it to Source.
On receiving the FILE_ID request, the Source schedules all
the objects of the file for transfer. Upon successful transfer
and writing to the PFS, a BLOCK_SYNC message will be
sent from Sink to Source. On receiving the BLOCK_SYNC
message, Source writes the completed object information to
the FT log file. If all the objects are successfully transferred,
then the FT log entry corresponding to that file is deleted.

2) AFTER FAULT
On resuming the transfer, the Source creates a NEW_FILE
request with the current file’s metadata and sends the request
to Sink. On receiving the NEW_FILE request, Sink checks if
the file already exists and the file’s metadata is matching with
the Source file’s metadata. If matching, the file is marked as
completed and will be excluded from the files to be trans-
ferred list. If the file does not exist or the metadata does not
match, the Sink creates a FILE_ID request and sends it to
Source. Upon receiving the FILE_ID request, Source checks
if the FT log file corresponding to the file exists in the FT
logger directory. If it exists, the objects that were successfully
transferred are retrieved. Then, Source builds the object list
by excluding already completed objects and then schedules
the transfer.

VI. EVALUATION
For the evaluation of FT-LADS, we have created a simu-
lation environment where we have induced hardware faults
during data transfer. First, we evaluate the FT overhead on
LADS by showing the results of FT-LADS without fault.
Then we explore the effectiveness of FT-LADS by comparing
the recovery time overhead in FT-LADS with bbcp by vary-
ing fault points. All our experiments were conducted under
similar conditions.
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FIGURE 5. Performance comparison of LADS and FT-LADS for big workloads. The 99% confidence intervals are shown in error bar. (a) Data
transfer time. (b) CPU load. (c) Memory usage.

A. EXPERIMENTAL ENVIRONMENT
1) IMPLEMENTATION
FT-LADS, which is based on a server-client model, has been
implemented using 6K lines (including both LADS and FT
implementation) of C code using pthreads.

2) TEST-BED
For our experiments, we used a private testbed with two
nodes (Source and Sink) connected by InfiniBand (IB). The
nodes use the IB network to communicate with each other.
We have used Intel(R) Xeon(R) CPUE5-2650 v4@2.20GHz
servers with 24 cores and 128 GB DRAM. Both Source and
Sink hosts are running with Linux kernel 3.10.0-514.21.1.
Also, the Source and the Sink nodes have separate Luster file
systems 2.9.0 [21] with one OSS and 11 OSTs, mounted over
1 TB drives each. By default, our Luster file system configu-
ration includes stripe count of one with stripe size of 1 MB.
To fairly evaluate our implementation, we have ensured that
the storage server bandwidth is not over-provisioned with
respect to the network bandwidth between those Source and
Sink servers (i.e., the network would not be the bottleneck).

3) WORKLOADS
It is observed that 90.35 percent of the files are less than
4 MB and 86.76 percent are less than 1 MB [1], [9]. Less
than 10 percent of the files are greater than 4 MB whereas
the larger files occupy most of the file system space. For the
purpose of evaluation, we had used two groups of files with
different sizes; one for small workloads with 10,000 1 MB
files, and the other for big workloads with 100 1 GB files.
For evaluation, we have pre-populated Source’s file system
with big and small workloads where each file’s stripe count
is 1 and size is 1MB.

4) CONFIGURATION
Experimental results presented in LADS [1], [9], suggest
that LADS data transfer performance increases linearly with
the number of I/O threads. To have an optimal evaluation
environment, in all our experiments, we have configured
FT-LADS to use 4 I/O threads, 1 master thread, and 1 comm
thread.

With the Transaction Logger, we have considered 4 files
in one transaction. If the transaction size is set to 1, then the
Transaction Logger is same as the File Logger mechanism,
as each and every file will be associated with one log file.
If the transaction size is set to maximum, then the Transaction
Logger is same as the Universal Logger. So for our evalua-
tions, we have used intermediate size as transaction size.

All the experiments were done by utilizing a large, fixed
amount of DRAM used as RMA buffers at both the Source
and the Sink. Our current implementation makes use of max
256 MB of DRAM at both Source and Sink. We have run
multiple iterations of all the experiments and shown average
as bar graph. Also, 99% confidence intervals are shown in
error bar, wherever needed.

5) RECOVERY TIME
As there is no direct method of evaluating the recovery time,
we have estimated the recovery time of failed transfers as
below.

ERt = TBFt + TAFt − TTt
where,

ERt Estimated Recovery Time

TBFt Time consumed before fault

TAFt Time consumed after fault

TTt Time consumed with no fault (1)

B. PERFORMANCE COMPARISON WITH LADS
One of the major objectives while designing the object based
FT mechanisms is to minimize the object based FT overhead
on LADS data transfer time. In this section, we present the
evaluation results of different object based FT mechanisms
and methods described earlier (Section IV). For evaluat-
ing the data transfer rate and computational overhead of
FT-LADS, we have used total time to transfer, CPU load and
memory usage as performance factors.

Figure 5 and 6 shows the performance comparison between
LADS and FT-LADS. In these figures, the proposed object
based mechanisms are represented using bar graphs, in which
a line is used to represent LADS.
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FIGURE 6. Performance comparison of LADS and FT-LADS for small workloads. The 99% confidence intervals are shown in error bar. (a) Data
transfer time. (b) CPU load. (c) Memory usage.

Figure 5(a) and Figure 6(a) depicts the total time consumed
for transferring the big workloads and the small workloads
respectively. From Figure 5(a) and Figure 6(a), we can clearly
observe that all the proposed FT mechanisms have negligible
impact on the overall data transfer time. Therefore, we can
conclude that the proposed FTmechanisms have no impact on
the overall data transfer rate, as data transfer time is inversely
proportional to the data transfer rate.

Total CPU load during data transfer is another impor-
tant design aspect while designing FT support with LADS.
Figure 5(b) and Figure 6(b) depict the CPU load while pro-
cessing the data transfer. From these figures, we can observe
that there is no significant impact on the total CPU load with
FT support, compared with LADS.

Figure 5(c) and Figure 6(c) represent memory load com-
parison of proposed FT mechanisms with LADS. From these
figures, we can clearly observe that, with the File Logger
mechanism, there is no impact on the memory load, whereas,
with other mechanisms, we can see an increase in thememory
load. In the case of the File Logger mechanism, we simply
write the completed object information to the corresponding
FT logger file and there are no additional data structures
which will be used to save the intermediate data. In the
cases of the Transaction and Universal Logger mechanisms,
the completed object information of multiple files are inter-
leaved into a single log file. This increases the recovery time
upon fault. To optimize the recovery time, the completed
object information of all files are maintained internally as a
list before actually logging into the log file. Due to the use
of an intermediate data structure, the total memory used by
Transaction and Universal mechanisms is higher than those
of File Logger and LADS.

From the 99% confidence intervals which are shown as
error bars in Figure 5 and 6, we can observe that there is
a lot of variability for small workloads with respect to data
transfer time, CPU load and memory load. This variability
might be due to the file management overhead of the file
system, as the number of files to be transferred is much higher
in small workloads.

As shown in Figure 5 and 6, the performance is not affected
by the FT methods (Char, Int, Enc, Binary, Bit8 and Bit64)
used for both big and small workloads. With this, we can

FIGURE 7. FT Logger methods space overhead.

conclude that all the proposed object based FT mechanisms
and methods have a negligible performance overhead com-
pared to LADS and the File Logger is the most lightweight
mechanism with minimal overhead among the proposed FT
mechanisms.

C. OBJECT BASED LOGGER METHODS SPACE ANALYSIS
Another important aspect while designing the FT-LADS
framework is the amount of space occupied by the log files
during data transfer. To optimize the log space occupied,
as mentioned in Section IV-B, we have proposed three differ-
ent logging methods. In this section, we compare the space
occupied by the different logger methods.

Figure 7 depicts the space overhead of all the proposed
logging methods for all the object based FT mechanisms.
From the figure, it is evident that bitbinary (Bit8 and Bit64)
method is the most effective among all the logger methods
due to its low space overhead. This is expected as each object
is represented with one bit. Though other logging methods
have relatively higher space overhead than bitbinary method,
the overhead is quite negligible which is in the order of
few KB.

Asmentioned in sectionVI-B, all the proposed FTmethods
have negligible performance overhead among each other.
With this, we can conclude that Bit8 and Bit64 FT methods
are recommended with respect to space overhead with the
proposed object based FT mechanisms.
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FIGURE 8. Recovery time analysis of FileLogger at varying fault timing for big workloads. (a) Big loads 20%
fault time, (b) Big loads 40% fault time, (c) Big loads 60% fault time, (d) Big loads 80% fault time.

From Figure 7, we can also observe that among all the
proposed FT mechanisms, Universal Logger mechanism has
minimal space overhead when compared with other mecha-
nisms. But considering the File Logger mechanism’s minimal
performance overhead, we can conclude that File Logger FT
mechanism with bitbinary (Bit8 and Bit64) FTmethods is the
most suitable object-based FT mechanism.

D. RECOVERY TIME ANALYSIS
Minimizing the recovery time upon resuming from fault is
one of the major objectives in our FT-LADS design. In this
section, we have evaluated the FT-LADS recovery time for
small and big workloads and compared it against the bbcp
data transfer tool. For effective evaluation of recovery time of
proposed FT methods, we created a simulation environment
in which we generate faults after transferring 20%, 40%,
60%, 80% of total data size. As faults can occur at any end
of the transfer, we can simulate the faults at either Source or
Sink. However, for the purpose of our experiments, we have
executed this simulation in the Source. Using the experimen-
tal environment described in Section VI, we measured the
recovery time for both bbcp and FT-LADS. On these hosts,
LADS uses CCI’s Verbs transport, which natively uses the
underlying InfiniBand interconnect and bbcp uses the IPoIB
interface which supports traditional sockets.

In LADS, varying the number of I/O threads maximizes
CPU utilization on the data transfer node. However, bbcp uses
configurable window size and multiple streams to improve
the performance. Based on the experimental results presented

in LADS [1], [9], LADS data transfer performance increases
linearly with the number of I/O threads. Whereas, bbcp has
less impact while increasing the number of tcp streams.
For fair performance comparison between the two, we have
configured FT-LADS to use 4 I/O threads and bbcp to use
2 tcp streams with window size of 8MB. Our experiments are
designed to calculate the transfer time before and after fault.
Based on these times and using Equation 1, we estimated the
recovery time.

Recovery times with all object based FT mechanisms and
methods are compared with that of bbcp data transfer tool.
Where we set LADS recovery time as the baseline for our
experiments. Because the original LADS does not provide
a resume operation, LADS has to transfer all the objects of
the dataset upon resuming from faults. From the experimental
results shown in Figure 8, 9 and 10, the later the fault occurs,
the higher the recovery time is. Our aim is to minimize the
impact of recovery time on the fault point. As per our logging
mechanism, we delete the log file entries of the logical files,
which are successfully transferred to the Sink. Due to this
at any point of time, we are left with only those files which
are currently being progressed. Thus, overhead for parsing FT
log files to retrieve completed objects does not depend on the
fault point.

The recovery time of File Logger mechanism at varying
fault points for both big and small workloads is as shown
in Figure 8 and 9. For the Transaction and Universal FT
mechanisms, similar results were observed. In this paper,
we only depict the results of File Logger FT mechanism.
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FIGURE 9. Recovery time analysis of FileLogger at varying fault timing for small workloads. (a) Small loads 20%
fault time, (b) Small loads 40% fault time, (c) Small loads 60% fault time, (d) Small loads 80% fault time.

FIGURE 10. Recovery time analysis of FT Loggers at 80% fault timing. The 99% confidence intervals are shown in error bar. (a) Big
loads 80% fault time, (b) Small loads 80% fault time.

1) BIG WORKLOADS
In the case of the File Logger mechanism, the recovery times
for all FT methods exhibit similar recovery times irrespective
of the fault points (Refer to Figure 8). Though the recovery
time is much lower than LADS, all the methods of File Log-
ger mechanism consume higher recovery times than bbcp.
As bbcp FT is based on file offset, its recovery time is much
less than that of File Logger. This is expected as with the
File Logger mechanism, each logical file to be transferred
is associated with one log file and while writing the logs to
file, we just append the completed object index at the end of
logger file. Due to this while retrieving the completed object
information, an additional search overhead is involved.

For the Transaction and Universal Loggers, the recovery
time overhead of big workloads is negligible. This is also
expected because we sort the completed objects information
per object index before writing to the log file. As men-
tioned in Section VI-B, we are using intermediate lists, which
maintain the completed objects information of all files being
transferred, by sorting based on the object index.

2) SMALL WORKLOADS
In contrast to the big loads, bbcp has a much higher transfer
time for smaller workloads than LADS.Due to this, the recov-
ery time overhead of FT-LADS is not directly comparable
with bbcp. For quantitative comparison, the percentage of
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recovery time relative to each method is calculated. At all
given fault points, bbcp exhibits 5% to 7% recovery time
overhead, while all the proposed FT methods experience
around 12%-14% overhead.

Our small workload consists of files whose size is of 1MB
which matches our transfer unit size. Due to this, a file trans-
fer state can be either completed or transferred upon recovery
from fault. There is no need to parse any log files upon fault
and the proposed object based logger mechanisms just deter-
mine which files are already completed and start transferring
the remaining files. As a result, we can conclude that with
the proposed object based FT mechanisms, the recovery time
overhead will not come into the picture.

In Figure 10, we have shown the recovery time compari-
son among the proposed FT mechanisms, considering 80%
fault point as a reference, for both big and small workloads.
As shown in Figure 10, we observe that for big workloads,
the File Logger mechanism exhibits higher recovery time
than the other proposed FT mechanisms. For small work-
loads, the recovery overhead for all mechanisms and methods
are similar as shown in Figure 10 (b).

From Figure 10 (a) and 10 (b), we can observe that the Uni-
versal Logger mechanism exhibits lower recovery time upon
fault. Also, among all the FT methods, bitbinary methods
(Bit8 and Bit64) have minimal recovery overhead compared
with the other FT methods.

Based on our evaluation results, the File Logger mecha-
nism shows minimal impact on the performance while log-
ging the completed object information. The Universal Logger
is superior to other mechanisms with respect to recovery
time upon fault. Also, among the proposed FT methods,
the bitbinary methods (Bit8 and Bit64) have minimal space
overhead and prove to have comparably lower recovery times
among all the proposed FT mechanisms. Extending LADS
with the Universal object based FT mechanism and bitbinary
FT methods will improve data transfer performance in faulty
environments.

VII. RELATED WORK
To meet the needs of big data transfers, prior studies have
performed on the design and implementation of bulk data
movement frameworks [16]–[18], [22]–[26]. GridFTP [18],
which is an extended version of the standard File Transfer
Protocol (FTP), provides high speed, reliable, and secure data
transfer. The striping feature in GridFTP enables the support
for multi-host to multi-host transfers. But this tool does not
try to schedule the data transfer based on the underlying
object locations. bbcp [16] is another data transfer tool which
uses multiple streams for transferring large datasets. It uses
a file based approach, which transfers the whole file data
sequentially. XDD [22] optimizes the disk I/O performance
by enabling file access with direct I/Os and using multi-
ple threads for parallelism, and varying file offset ordering
to improve I/O access times. RAMSYS [26], a resource-
aware high-speed data transfer software, utilizes a multi-
stage end-to-end data transfer pipeline, where each stage is

fully resource-driven and implements a flexible number of
components using predefined functions, such as storage I/O,
network communication, and request handling. RAMSYS
relies on the asynchronous paradigm to maximize the concur-
rency of components and thereby offers improved scalability
and resource utilization in modern multi-core systems. All
these tools are useful for moving large data faster and secure
from source host to remote host over the network, but none of
them try to schedule based on the underlying object locations
because they do not consider storage contention.

Another important aspect of these data movement frame-
works is to resume data transfers after a fault. The GridFTP
tool supports FT using restart markers (checkpoints). While
transferring data, a GridFTP server automatically sends
restart markers to the client. If the transfer has a fault,
the client may restart the transfer by providing the markers
received. The server will restart the transfer from the point
where it left off based on the markers. GridFTP’s Reliable
File Transfer (RFT) service provides an interface to write
the restart markers to a database so that it can survive a
local fault. The bbcp tool employs FT mechanism based on
checkpoint record. Upon initiating a new transfer, bbcp tool
checks if checkpoint record of file being transferred exists or
not. If record does not exist, it checks the target file attributes
like name, size, etc. If they are identical with the Source file
attributes, then bbcp assumes that the file is transferred suc-
cessfully and skips the transfer. If file attributes are different,
then it initiates a new transfer by creating a checkpoint record
and transmit all the Source bytes to the target. Upon success-
ful completion, it erases the checkpoint record. If checkpoint
record exists, then it resumes the transfer by appending all
untransmitted bytes to the target.

As all the aforementioned bulk data movement frame-
works transfer the logical file data sequentially, it is possible
to resume transfers using either a checkpoint based restart
marker or offset record. Checkpoint based FT methods are
light-weight and also possible to resume a transfer from
restart marker or offset record without delay.

Our work focuses on entirely different scenario from the
prior FT studies. In this work, we aim to support a resume
functionality upon fault when the workload is transferred as
objects rather than files, by exploiting the underlying storage
architecture. Since a logical file is striped overmultiple OSTs,
it is possible to transfer one logical file’s objects in random
order. While the above mentioned checkpoint based restart
marker or offset record is not sufficient to resume the transfer
upon fault, our work proposes novel methods to handle FT in
object-based big data transfers.

In our proposed object based FT mechanisms, objects
which are successfully written to Sink PFS are marked as
successful and we update the information of the object in the
log file. Upon successful completion of all the objects of one
logical file, the log information corresponding to the file will
be erased. If there is any fault during the transfer, the proposed
mechanisms search for the completed objects and schedule
only those objects which were not transferred previously.

37460 VOLUME 7, 2019



P. Kasu et al.: Object-Logging-Based FT Big Data Transfer System Using LADS

In object-based FT mechanisms, as all the objects of a file
need to be logged, it involves access to the asynchronous
filesystem API, which causes processing overhead. Also,
it results in space overhead as all the object information is
logged to the log file. This process also involves an additional
overhead to retrieve the completed object information from
the log file for resuming the transfer upon recovery from
fault. Our solution proposesmethods to overcome processing,
space and recovery time overheads.

VIII. CONCLUSION
The LADS data transfer framework with its layout-aware
and OST congestion-aware algorithms outperforms existing
data transfer tools. But, the absence of FT support results in
the data retransmission upon fault. As LADS employs object
level scheduling algorithms, objects of one logical file may be
transferred out of order, which makes traditional FT solutions
based on logging file offset not suitable for LADS. In this
work, we have implemented object-based FT mechanisms
which can handle the out-of-order nature of object transmis-
sion. Based on the number of log files generated per dataset,
we have proposed three different object logger mechanisms,
File Logger, Transaction Logger, andUniversal Logger. Also,
we have proposed six different FT encoding methods: Char,
Int, Enc, Binary, Bit8, and Bit64 to optimize the space
overhead of these logging mechanisms. We have evaluated
and compared the performance overhead of FT-LADS with
LADS and concluded that proposed object based logging
mechanisms do not negatively impact the LADS data transfer
performance. Also, to evaluate the recovery time overhead
of FT-LADS, we have created a simulation environment to
generate faults at 20%, 40%, 60%, and 80% points of data
transfer. From our evaluation results, we have observed that
the recovery time in File Logger mechanism was two times
higher than bbcp. However, the recovery time in the Trans-
action and Universal Logger mechanisms were considerably
smaller than bbcp.

To conclude, the File Logger mechanism has minimal
impact on logging the completed objects. The Universal Log-
ger mechanism combined with bitbinary methods (Bit8 and
Bit64) has a minimum overhead with respect to space
and recovery time. With the addition of the proposed FT
mechanisms, the LADS framework can provide both high
performance and fault tolerance.
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