
Received February 17, 2019, accepted February 27, 2019, date of publication March 21, 2019, date of current version April 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2904096

Sliding Window Iterative Identification of
Systems With Asymmetric Preload
Nonlinearity Based on the
Key Term Separation
JUNXIA MA , QIULIN FEI, AND WEILI XIONG
Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University,
Wuxi 214122, China

Corresponding author: Junxia Ma (jxma@jiangnan.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61803183, in part by the Fundamental
Research Funds for the Central Universities under Grant JUSRP11923, and in part by the Natural Science Foundation of Jiangsu Province
under Grant BK20180591 and Grant BK20170198.

ABSTRACT The parameter estimation problem for the Hammerstein systems with asymmetric preload
nonlinearity is considered in this paper. The nonlinearity is described by the piecewise function, which
brings difficulty to the identification. By introducing a switching function, the static nonlinearity is described
by an expression with unknown preload points and slopes. By using the key term separation technique,
the unknown parameters from the nonlinear block and linear block are decoupled and collected in a
parameter vector. Under the gradient iterative (GI) algorithm with finite measured data, the estimates
of unknown parameters are obtained. Furthermore, combining the ideas of the recursive and iterative
algorithms, a dynamic slidingwindow is designed. By updating the training data, the slidingwindow removes
the oldest data and adds the newest sampled data to keep the length of the training data unchanged. The sliding
window gradient-based iterative algorithm is proposed to estimate the unknown parameters. Moreover,
compared with the stochastic gradient algorithm, the sliding window GI algorithm can improve the accuracy
of parameter estimation and the utilization of the system data. The numerical simulation example is employed
to validate the effectiveness of the proposed algorithms.

INDEX TERMS Iterative identification, sliding window, asymmetric preload nonlinearity, parameter
estimation, Hammerstein model.

I. INTRODUCTION
System identification aims to determine the mathematical
model describing the behavior of the system based on the
time function of the input and output [1], [2]. The purpose of
establishing a mathematical model by identification is to esti-
mate the important parameters that characterize the behavior
of the system, to predict the future evolution of the system
output, and to design the controller [3]–[6]. The identifica-
tion methods for linear systems has been greatly developed,
and some classical parameter identification algorithms have
emerged, such as the least squares method [7], [8] and the
maximum likelihoodmethod [9]. However, the phenomena of
nonlinearities widely exist in engineering practice [10]–[13].

The associate editor coordinating the review of this manuscript and
approving it for publication was Ludovico Minati.

Because of the complexity and diversity of nonlinear systems,
there is no uniform method for identifying nonlinear mod-
els currently [14]–[16]. Different model structures are used
to describe the characteristics of the systems for different
nonlinearities. Hammerstein model [17], Wiener model [18]
and Hammerstein-Wiener [19] are usually applied to fit the
input nonlinear, output nonlinear and input-output nonlinear
systems, respectively.

The Hammerstein model which consists of the interac-
tion of a linear time-invariant dynamic subsystem and static
nonlinear element can be used to capture some nonlinear
behaviors presented in system input [20]. The identification
of input nonlinear systems has received a lot of attention. For
example, by using the overparametrization method, an opti-
mal two-stage identification algorithm for a class of nonlinear
systems was derived [21]. Other identification methods for a
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class of nonlinear systems (bilinear systems) can be found
in [22] and [23]. One case is that the nonlinearity of the
Hammerstein model is described by a continuous nonlinear
function, such as a polynomial about the input signal

ht = λ1h1(ut )+ λ2h2(ut )+ · · · + λnhn(ut ),

where λi’s are the unknown coefficients, hi(·)’s are the known
basis function about the input, such as power function. Usu-
ally, when the nonlinearity is static and analytic, a polynomial
which linear in the unknown parameters is a good choose.

However, hard input nonlinearities are common in real
practice, such as saturation of the amplifier, preload system
of the elevator. The non-smooth hard nonlinearity may not be
approximated by a polynomial. The expressions of the non-
linearity can be a piecewise linear function or multi-segment
nonlinearities, which are not linear in the unknown param-
eters. To obtain the parameter estimation, some approaches
were discussed. For example, Bai [24] proposed a deter-
ministic separable least squares identification algorithm for
systems with hard input nonlinearities parameterized by a
one-dimensional parameter, but the method is designed for
the symmetric nonlinearity with a single parameter. Vörös
studied an iterative parameter estimation algorithm for a
Hammerstein system which is consisted of a two-segment
nonlinearity followed by a linear dynamic system [25].

The iterative algorithm processes a batch of sampled data
and makes efficient use of the measurement data at each iter-
ation step. Hence, the iterative algorithm are usually applied
for the optimal design, iterative learning and parameter esti-
mation [26], [27]. However, the iterative algorithm needs
to collect a batch of sampled data first and is implemented
offline. Different from the iterative algorithm mentioned
above, and combining the advantages of the recursive algo-
rithm, the paper aims to design a dynamic sliding window to
update the collected training data to identify a Hammerstein
system with asymmetric preload nonlinearity. The main con-
tributions are as follows.
• By defining a symbolic function, the asymmetric
preload nonlinearity is described by an expression con-
cluding all unknown preload points and slopes. Fur-
thermore, using the key term separation technique, the
unknown parameters from nonlinear block and linear
block are decoupled and included in one parameter vec-
tor. The output equation is rewritten as a linear form in
parameters.

• According to the negative gradient search principle,
the stochastic gradient (SG) and the gradient itera-
tive (GI) algorithm are derived for the Hammerstein
systems by using the interactive identification technique.

• By design a dynamic sliding window to update the
training data, a sliding window gradient based iterative
algorithm is derived. The proposed algorithm can always
use the latest batch of sampled data and maintains a high
data utilization.

The remainder of this paper is organized as follows.
Section II deduces the identification model for Hammerstein

FIGURE 1. The Hammerstein model with asymmetric preload nonlinearity.

systems with asymmetric preload in detail. Section III
presents the SG and GI identification algorithm for compar-
ison. By using a sliding data window, Section IV develops a
sliding window iterative identification algorithm based on the
key term separation technique. Section V provides a numer-
ical example to validate the proposed algorithms. Finally,
some concluding remarks are presented in Section VI.

II. SYSTEM DESCRIPTION AND IDENTIFICATION MODEL
Let us define some notation first. ‘‘R =: X ’’ or ‘‘X := R’’
stands for ‘‘R is defined as X ’’. The superscript T denotes
the matrix transpose. ϑ̂ t stands for the estimate of ϑ at the
sampling time instant t . ϑ̂

s
stands for the estimate of ϑ at

iteration s. z−1 stands for an unit backward shift operator:
z−1yt = yt−1. λmax[X] denotes the maximum eigenvalue of
symmetric square matrix X .

Consider a Hammerstein system which consists of one
input static nonlinear element and a linear controlled autore-
gressive moving average (CARMA) subsystems as shown
in Fig. 1. The model of the system described in Fig. 1 which
disturbed by a moving average noise can be written as

α(z)yt = β(z)h(ut )+ γ (z)vt , (1)

h(ut ) =

{
k1ut + p1, ut > 0,
k2ut + p2, ut < 0,

(2)

where ut is the system input, yt is the measured output, vt is
white noise with zero mean and variance σ 2, h(ut ) is the
output of the nonlinear block, and α(z), β(z), and γ (z) are
polynomials in the unit backward shift operator z−1 (z−1yt =
yt−1)):

α(z) := 1+ α1z−1 + α2z−2 + · · · + αnα z
−nα ,

β(z) := β1z−1 + β2z−2 + · · · + βnβ z
−nβ ,

γ (z) := 1+ γ1z−1 + γ2z−2 + · · · + γnγ z
−nγ .

Then substituting the polynomials α(z), β(z), and γ (z) into
(1) gives

yt = [1− α(z)]yt + β(z)h(ut )+ γ (z)v(t)

= −α1yt−1 − α2yt−2 − · · · − αnαyt−nα
+β1h(ut−1)+ β2h(ut−2)+ · · · + βnβh(ut−nβ )

+ γ1vt−1 + γ2vt−2 + · · · + γnγ vt−nγ + vt . (3)

Here we assume that the order nα , nβ and nγ are known and
consider that yt = 0, ut = 0 and vt = 0 for t 6 0. From (3),
we can see that there exists the product terms of parameter βi
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and the output of nonlinear block h(ut ). However, the non-
linear output h(ut ) has the asymmetric preload nonlinearity,
which is described by the piecewise functions with unknown
slopes and preload points. The unknown parameters that need
to be identified includes {αi, βi, γi, k1, k2, p1, p2}. So it is
difficult to define one parameter vector to contains all the
unknown parameters. In order to overcome this difficulty,
we employ a switching function to re-describe the form of
the nonlinear block.

Define a switching function

g(x) =

{
1, x > 0,
0, x < 0.

Then the output h(ut ) can be expressed in a new form

h(ut ) = (k1ut + p1)g(ut )+ (k2ut + p2)g(−ut ). (4)

Substituting (4) into (3) gives

yt = −α1yt−1 − α2yt−2 − · · · − αnαyt−nα
+β1k1ut−1g(ut−1)+β1p1g(ut−1)+β1k2ut−1g(−ut−1)

+β1p2g(−ut−1)+ β2k1ut−2g(ut−2)+ β2p1g(ut−2)

+β2k2ut−2g(−ut−2)+ β2p2g(−ut−2)+ · · ·

+βnβ k1ut−nβg(ut−nβ )+ βnβp1g(ut−nβ )

+βnβ k2ut−nβg(−ut−nβ )+ βnβp2g(−ut−nβ )

+ γ1vt−1 + γ2vt−2 + · · · + γnγ vt−nγ + vt . (5)

It can be observed that there are several product terms of
parameters in (5) which make it impossible to obtain the
unique parameter estimates. Therefore, at least one parameter
in two blocks should be fixed. For tractability of parameter
estimation, the key term separation technique was employed
to simplify the mathematical form. According to the decom-
position approach studied in [28] and [29], we separate a key
term h(ut−1) and assume β1 = 1. Then, the output function
can be rewritten as

yt = [1− α(z)]yt + h(ut−1)+ [β(z)− z−1]h(ut )+ γ (z)v(t)

= −α1yt−1 − α2yt−2 − · · · − αnαyt−nα + k1ut−1g(ut−1)

+ p1g(ut−1)+ k2ut−1g(−ut−1)+ p2g(−ut−1)

+β2h(ut−2)+ · · · + βnβh(ut−nβ )+ γ1vt−1
+ γ2vt−2 + · · · + γnγ vt−nγ + vt . (6)

Let n := nα + nβ + nγ + 3. Define the parameter vector ϑ
and the information vector ψ t as

ϑ := [α1, α2, . . . , αnα , k1, p1, k2, p2, β2, . . . , βnβ ,

γ1, γ2, . . . , γnγ ]
T
∈ Rn,

ψ t := [−yt−1,−yt−2, . . . ,−yt−nα , ut−1g(ut−1), g(ut−1),

ut−1g(−ut−1), g(−ut−1), h(ut−2), . . . , h(ut−nβ ),

vt−1, vt−2, . . . , vt−nγ ]
T
∈ Rn. (7)

Then (7) can be rewritten as

yt = ψT
t ϑ + vt . (8)

The aim of the paper is to obtain the estimates of the unknown
model parameters in the input nonlinear controlled autore-
gressive moving average (IN-CARMA) systems by using the
measurement data. Based on the linear regression identifica-
tion model in (8), the next sections will solve the problem of
parameter estimation by using the iterative algorithm under
some optimal ways.
Remark 1: By separate a key term, the input nonlinear sys-

tem can be represented by an output equation, in which all the
unknown parameters are separated in one parameter vector
and the output equation is linear in parameters, nonlinear in
intermediate variables.

III. THE STOCHASTIC GRADIENT ALGORITHM
AND GRADIENT ITERATIVE ALGORITHM
WITH FINITE MEASUREMENT
In order to show the advantages of the proposed sliding win-
dow iterative algorithm, this section first gives the stochastic
gradient algorithm then derives the gradient iterative algo-
rithm with finite measurement for comparisons.

A. THE STOCHASTIC GRADIENT ALGORITHM
Consider the input-output data set {yj, uj, 0 6 j 6 t}, and
define a quadratic cost function

J (ϑ) :=
t∑
j=1

[y(j)− ψT(j)ϑ]2.

Minimizing J (ϑ) based on the negative gradient search,
we can obtain the stochastic gradient (SG) algorithm for
estimating ϑ in the IN-CARMA system:

ϑ̂ t = ϑ̂ t−1 +
ψ t

rt
[yt − ψT

t ϑ̂(t − 1)], (9)

rt = rt−1 + ‖ψ t‖
2, r0 = 1, (10)

ψ t = [−yt−1,−yt−2, . . . ,−yt−nα , ut−1g(ut−1), g(ut−1),

ut−1g(−ut−1), g(−ut−1), h(ut−2), . . . , h(ut−nβ ),

vt−1, vt−2, . . . , vt−nγ ]
T. (11)

The difficulty in executing the algorithm (9)–(11) is that
the information vector ψ t contains unknown inner variables
h(ut−i) and noise terms vt−j. Furthermore, to compute the
estimates of h(ut−i) and vt−j, the estimates of system parame-
ters are needed. To overcome this difficulty, the approach here
is to adopt the interactive identification technique. Replace
the unknown h(ut−i) and vt−j with their estimates obtained at
the previous moment.

According to (4), replacing the unknown k1, k2, p1, and p2
with their estimates k̂1t , k̂2t , p̂1t , and p̂2t gives the estimate
of h(ut ):

ĥ(ut ) = (k̂1tut + p̂1t )g(ut )+ (k̂2tut + p̂2t )g(−ut ). (12)

The estimate of vt can be computed by replacing ψ t and ϑ
with ψ̂ t and ϑ̂ t in (8):

v̂t = yt − ψ̂
T
t ϑ̂ t . (13)
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Then redefine the estimated information vector ψ̂ t as

ψ̂ t = [−yt−1,−yt−2, . . . ,−yt−nα , ut−1g(ut−1), g(ut−1),

ut−1g(−ut−1), g(−ut−1), ĥ(ut−2), . . . , ĥ(ut−nβ ),

v̂t−1, v̂t−2, . . . , v̂t−nγ ]
T
∈ Rn. (14)

Replacing the information vector ψ t in (9)–(10) with its
estimate ψ̂ t yields the SG algorithm that can be implemented
recursively online:

ϑ̂ t = ϑ̂ t−1 +
ψ̂ t

rt
[yt − ψ̂

T
t ϑ̂(t − 1)], (15)

rt = rt−1 + ‖ψ̂ t‖
2, r0 = 1, (16)

ψ̂ t = [−yt−1,−yt−2, . . . ,−yt−nα , ut−1g(ut−1), g(ut−1),

ut−1g(−ut−1), g(−ut−1), ĥ(ut−2), . . . , ĥ(ut−nβ ),

v̂t−1, v̂t−2, . . . , v̂t−nγ ]
T,

ĥ(ut ) = (ŝ1tut + p̂1t )g(ut )+ (ŝ2tut + p̂2t )g(−ut ), (17)

v̂t = yt − ψ̂
T
t ϑ̂ t . (18)

The procedures of computing ϑ̂ t with the increasing of t by
the SG algorithm are listed as follows.

1) To initialize: Let t = 1, and set the initial values: ϑ̂0 =

1n/p0, ĥ(ut−i) and v̂t−i are random numbers, r0 = 1.
p0 is taken to be a large number, for example p0 = 106.

2) Collect the input-output data ut and yt , construct ψ̂ t
by (17).

3) Compute rt by (16), update the parameter estimate ϑ̂ t
by (15).

4) Compute ĥ(ut ) by (17).
5) Compute v̂t by (18).
6) Increase t by 1, and go to step 2.
Remark 2: The SG algorithm is a recursive algorithm.

The new estimate of parameter vector is equal to the esti-
mate of the parameter vector at the previous moment plus
a correction term. A group of newest sampled data and the
old date are used to update the correction term. With the
sampling time moving forward, the SG algorithm can be
implemented online to obtain the new parameter estimates.
However, the SG algorithm does not use data efficiently and
the convergence speed is slow.

B. THE GRADIENT ITERATIVE ALGORITHM WITH
FINITE MEASUREMENT
When a batch of sampled-data are collected from the system,
we hope to use this batch of data to update the parameter
estimates at the same time. Set the length of the finite mea-
surement as L. Based on the data set {yt , ut , 1 6 t 6 L},
define a stacked output vector YL and a stacked information
matrix 9L as

YL :=


yL
yL−1
...

y1

 ∈ RL , Ψ L :=


ψT
L

ψT
L−1
...

ψT
1

 ∈ RL×n.

Define a quadratic cost function

J2(ϑ) := ‖YL − Ψ Lϑ‖
2.

Let s = 1, 2, 3, . . . be an iterative variable. Minimizing J2(ϑ)
by using the negative gradient search, we have

ϑ̂
s
= ϑ̂

s−1
−
µs

2
grad[J2(ϑ̂

s−1
)]

= ϑ̂
s−1
+ µsΨ T

L[YL − Ψ L ϑ̂
s−1

], (19)

where µs is the iterative step-size. A conservative choice of
µs is satisfied [26]

0 < µs 6
2

λmax[ΦT
LΦL]

. (20)

The difficulty that exists in the algorithm (19)–(20) is that
the information matrix Ψ L contains unknown inner vari-
ables h(ut−i) and noise terms vt−j. Similarly, replacing the
unknown h(ut−i) and vt−j with their estimates, redefine the
estimated information matrix Ψ̂

s
L as

Ψ̂
s
L :=



(ψ̂
s
L)

T

(ψ̂
s
L−1)

T

...

(ψ̂
s
t )
T

...

(ψ̂
s
1)

T


∈ RL×n,

ψ̂
s
t = [−yt−1,−yt−2, . . . ,−yt−nα , ut−1g(ut−1), g(ut−1),

ut−1g(−ut−1), g(−ut−1), ĥs(ut−2), . . . , ĥs(ut−nβ ),

v̂st−1, v̂
s
t−2, . . . , v̂

s
t−nγ ]

T
∈ Rn.

Then replacing the information matrix Ψ L in (19)–(20) with
its estimate Ψ̂ L gives the gradient iterative (GI) algorithm that
can be implemented by applying a batch of data repeatedly
offline:

ϑ̂
s
= ϑ̂

s−1
+ µs(Ψ̂

s
L)

T[YL − Ψ̂
s
L ϑ̂

s−1
], (21)

0 < µs 6
2

λmax[(8̂s
L)

TΦ̂
s
L]
, (22)

Ψ̂
s
L =



(ψ̂
s
L)

T

(ψ̂
s
L−1)

T

...

(ψ̂
s
t )
T

...

(ψ̂
s
1)

T


, 1 6 t 6 L (23)

ψ̂
s
t = [−yt−1,−yt−2, . . . ,−yt−nα , ut−1g(ut−1), g(ut−1),

ut−1g(−ut−1), g(−ut−1), ĥs(ut−2), . . . ,

ĥs(ut−nβ ), v̂
s
t−1, v̂

s
t−2, . . . , v̂

s
t−nγ ]

T, (24)

ĥs(ut ) = (k̂s1ut + p̂
s
1)g(ut )+ (k̂s2ut + p̂

s
2)g(−ut ), (25)

v̂st = yt − ψ̂
T
t ϑ̂

s
. (26)

36636 VOLUME 7, 2019



J. Ma et al.: Sliding Window Iterative Identification of Systems With Asymmetric Preload Nonlinearity

FIGURE 2. The flowchart of the GI algorithm with finite measurement
data for computing ϑ̂

s
.

The flowchart of computing the parameter estimate ϑ̂
s
in

the GI algorithm in (21)–(26) with finite measurement data is
shown in Fig. 2.
Remark 3: In the iterative calculation process of each step,

the GI algorithm uses all the measured data at the same time,
and makes efficient use of the measurement data at each
iteration. However, the GI algorithm needs to collect a batch
of data first and is implemented offline.

IV. THE SLIDING WINDOW GRADIENT
ITERATIVE ALGORITHM
Based on the derived SG algorithm and GI algorithm pre-
sented in Section III, a nature question is how canwe combine
the advantages of the two algorithms to study an approach
which can be used for online identification and make suffi-
cient use of the measured data. The idea of sliding window
arises. Design a dynamic sliding window to contain a batch of
new collected data and use this batch of data to implement the
iterative algorithm. Let the length of the dynamic data win-
dow as L. When a newest group of system data are collected,
the oldest group of data will be discarded. The dynamic data
window moves forward with a constant length.

Define a stacked output vector Yt,L and a stacked informa-
tion matrix 9t,L as

Y t,L :=


yt
yt−1
...

yt−L+1

 ∈ RL , Ψ t,L :=


ψT
t

ψT
t−1
...

ψT
t−L+1

 ∈ RL×n.

Define a quadratic cost function

J3(ϑ) := ‖Y t,L − Ψ t,Lϑ‖
2.

Let ϑ̂
s
t be the estimate of θ at iteration s and time instant t .

Minimizing J3(ϑ) by using the negative gradient search,
we have

ϑ̂
s
t = ϑ̂

s−1
t −

µst

2
grad[J3(ϑ̂

s−1
t )]

= ϑ̂
s−1
t + µstΨ

T
t,L[Y t,L − Ψ t,L ϑ̂

s−1
t ], (27)

where µst is the iterative step-size and satisfies

0 < µst 6
2

λmax[ΦT
t,LΦ t,L]

. (28)

However, similar problems arise. The information matrix
Ψ t,L contains the unknown terms h(ut−i) and the unmeasured
noise terms vt−j. Equation (27) cannot compute the estimate
θ̂
s
t directly. Using the similar approach as in GI algorithm,

replace the unknown h(ut−i) and vt−j with their estimates.
Redefine the estimated information matrix Ψ̂

s
t,L as

Ψ̂
s
t,L :=


(ψ̂

s
t )
T

(ψ̂
s
t−1)

T

...

(ψ̂
s
t−L+1)

T

 ∈ RL×n,

ψ̂
s
t = [−yt−1,−yt−2, . . . ,−yt−nα , ut−1g(ut−1), g(ut−1),

ut−1g(−ut−1), g(−ut−1), ĥs(ut−2), . . . , ĥs(ut−nβ ),

v̂st−1, v̂
s
t−2, . . . , v̂

s
t−nγ ]

T
∈ Rn.

Based on (4), replacing the unknown k1, k2, p1, and p2 with
their estimates k̂s1t , k̂

s
2t
, p̂s1t , and p̂

s
2t
gives the estimate of h(ut ):

ĥs(ut ) = (k̂s1tut + p̂
s
1t )g(ut )+ (k̂s2tut + p̂

s
2t )g(−ut ). (29)

The estimate of vst can be computed by

v̂st = yt − (ψ̂
s
t )
Tϑ̂

s
t . (30)

According to the above derivations, we can summarize
the sliding window gradient iterative (SW-GI) identification
algorithm for the IN-CARMA systems using a new batch of
collect data:

ϑ̂
s
t = ϑ̂

s−1
t + µst (Ψ̂

s
t,L)

T[Y t,L − Ψ̂
s
t,L ϑ̂

s−1
t ], (31)

0 < µst 6
2

λmax[(Φ̂
s
t,L)TΦ̂

s
t,L]

, (32)

Ψ̂
s
t,L =


(ψ̂

s
t )
T

(ψ̂
s
t−1)

T

...

(ψ̂
s
t−L+1)

T

 , t > L (33)

ψ̂
s
t = [−yt−1,−yt−2, . . . ,−yt−nα , ut−1g(ut−1), g(ut−1),

ut−1g(−ut−1), g(−ut−1), ĥs(ut−2), . . . ,

ĥs(ut−nβ ), v̂
s
t−1, v̂

s
t−2, . . . , v̂

s
t−nγ ]

T, (34)
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FIGURE 3. The flowchart of the SW-GI algorithm for computing ϑ̂
s
t .

ĥs(ut ) = (k̂s1,tut + p̂
s
1,t )g(ut )+ (k̂s2,tut + p̂

s
2,t )g(−ut ), (35)

v̂st = yt − ψ̂
T
t ϑ̂

s
t . (36)

The flowchart of computing the parameter estimate ϑ̂
s
t in

the SW-GI algorithm in (31)–(36) with a batch of moving-
window data is shown in Fig. 3, where N denotes the length
of the total database.
Remark 4: In the SW-GI algorithm, a batch of measured

data are used to update the parameter estimation at the same
time. With the sampling time t increasing, the algorithm can
collects new sampled data and can be implemented online.

V. SIMULATION EXAMPLES
Consider a Hammerstein CARMA system with asymmetric
preload nonlinearity:
α(z)yt = β(z)h(ut )+ γ (z)vt ,

h(ut ) =

{
k1ut + p1, ut > 0,
k2ut + p2, ut < 0,

α(z) = 1+ α1z−1 + α2z−2 = 1+ 0.26z−1 − 0.45z−2,

β(z) = z−1 + β2z−2 = z−1 + 0.22z−2,

γ (z) = 1+ γ1z−1 = 1+ 0.15z−1,

k1 = 1, p1 = 1.5, k2 = 3, p2 = −1.

The parameter vector to be estimated is

ϑ = [α1, α2, k1, p1, k2, p2, β2, γ1]T.

The simulation is done by the software ofMATLAB. In the
example, the input {ut } is taken as a persistent excitation
sequence with zero mean and unit variance, {vt } is taken as a
Gaussian white noise sequences with zero mean and variance
σ 2
= 0.102, σ 2

= 0.502 and σ 2
= 1.002. The output {yt } is

generated through simulation of the above specified model.
Applying the SG algorithm, GI algorithm and the SW-GI

algorithm to estimate the parameters of this system, respec-
tively. Under the same noise variance σ 2

= 0.502, the param-
eters and the estimation errors (δ := ‖ϑ̂ t − ϑ‖/‖ϑ‖) are
shown in Table 1, where the data length of GI and the window
length of SW-GI are both set as L = 1000. In the SW-GI
algorithm, the symbol s represents an iterative variable and
k represents a recursive variable, the length of the sliding
window is 900.

FIGURE 4. The SG estimation errors versus t with different noise
variances.

FIGURE 5. The GI estimation errors versus s with different data lengths
(σ2 = 0.502).

Fig. 4 shows the estimation errors δ versus t with different
noise variances under the SG algorithm. The GI estimation
errors δ versus s with different data lengths are presented
in Fig. 5. In SW-GI algorithm, taking the length of the data
window as 500 and letting the data window slides forward
50 times, the estimation errors δ versus s and k are shown
in Fig. 6. Furthermore, increasing the length of the data
window to 1000 and iteration to 100, the estimation errors are
presented in Fig. 7. Obviously, Fig. 7 shows a faster converge
speed. Under the same noise variance, changing the length of
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TABLE 1. The SW-GI parameter estimates and errors with different data lengths and iterations.

FIGURE 6. The SW-GI estimation errors against k and s (L = 500).

FIGURE 7. The SW-GI estimation errors against k and s (L = 1000).

the data window and the number of the iteration, the different
parameter estimates are displayed in Table 2.

For model validation, we adopt a different batch of data
(Lt = 1000 samples from t = 2001 to 3000) to compute
the root of the mean square errors for the predicted outputs.

FIGURE 8. The true nonlinearity and estimated proload functions under
different algorithms.

The estimated models are constructed by using the parameter
estimates shown in Table 1. The true preload function and the
estimated preload function ĥ(ut ) are plotted in Figure 8. The
true outputs and the predicted outputs are presented in Fig. 9.
The root-mean-square errors (RMSE) are computed by

δ1 =

√√√√√ 1
Lt

3000∑
j=2001

[yj − ŷsgj ]
2 = 2.60780,

δ2 =

√√√√√ 1
Lt

3000∑
j=2001

[yj − ŷgij ]
2 = 0.50553,

δ3 =

√√√√√ 1
Lt

3000∑
j=2001

[yj − ŷswgij ]
2 = 0.50005,

where yj is the true output; ŷsgj , ŷgij and ŷswgij are the predicted
outputs by using the SG algorithm, GI algorithm, and SW-GI
algorithm, respectively.
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TABLE 2. The SW-GI parameter estimates and errors with different data lengths and iterations.

.

FIGURE 9. The true output and predicted output under different
algorithms.

From Tables 1–2 and Figs. 4–9, the following conclusions
can be drawn.
• The parameter estimation errors of the SG algorithm
are becoming smaller as t increasing and with the noise
variance decreasing, the accuracy of the parameter esti-
mation is improved – see the estimation error curves
in Fig. 4.

• As the iteration s increasing, the parameter estimation
errors of the GI algorithm are decreasing. Compared
with the SG algorithm, under the same data length,
the GI algorithm can generates more accurate parameter
estimates – see the estimation errors in Table 1.

• In the GI algorithm, under the same number of iterations,
the longer the data length, the smaller the parameter esti-
mation error obtained – see the estimation error curves
in Fig. 5.

• The parameter estimation errors of the SW-GI algorithm
are becoming smaller as s and k increasing. The SW-GI
algorithm can generates more accurate parameter esti-
mates than the SG and GI algorithm with smaller data
length and fewer iterations – see the estimation errors
in Table 1.

• In the SW-GI algorithm, increasing the number of itera-
tionswhile keeping thewindow size constant, or increas-
ing the length of the data window by a fixed number
of iterations can improve the accuracy of the parameter
estimation – see the estimation errors in Table 2 and the
estimation error curves in Figs. 6–7.

• The curves of the estimated nonlinear functions are very
close to the true ones – see Fig. 8. The SW-GI predicted
outputs show good fitness with the true outputs, which
indicates the effectiveness of the proposed SW-GI algo-
rithm – see Fig. 9.

VI. CONCLUSIONS
This paper mainly presents a sliding window based gradient
iterative algorithm for the Hammerstein systems with asym-
metric preload nonlinearity based on the key term separation
technique. The linear dynamic subsystem is described by a
CARMAprocess. Comparedwith the SG algorithm, although
the SW-GI algorithm has a heavier computational load, it can
significantly improve the accuracy of the parameter estima-
tion. Within each set of data window in SW-GI algorithm,
the GI algorithm is first used to obtain a reliable parameter
estimate, and then as the data window moving, the new
measured data is applied to further update the parameter
estimates. So the SW-GI algorithm has a faster convergence
speed than the SG and GI algorithm. The results of the
simulation example demonstrates that the proposed SW-GI
algorithm can generates effective parameter estimates and
reliable model predictions.

REFERENCES

[1] F. Ding, F. Wang, L. Xu, T. Hayat, and A. Alsaedi, ‘‘Parameter estimation
for pseudo-linear systems using the auxiliary model and the decomposi-
tion technique,’’ IET Control Theory Appl., vol. 11, no. 3, pp. 390–400,
Feb. 2017.

36640 VOLUME 7, 2019



J. Ma et al.: Sliding Window Iterative Identification of Systems With Asymmetric Preload Nonlinearity

[2] F. Ding, L. Xu, and Q. Zhu, ‘‘Performance analysis of the generalised
projection identification for time-varying systems,’’ IET Control Theory
Appl., vol. 10, no. 18, pp. 2506–2514, Dec. 2016.

[3] M. Li andX. Liu, ‘‘Auxiliarymodel based least squares iterative algorithms
for parameter estimation of bilinear systems using interval-varying mea-
surements,’’ IEEE Access, vol. 6, pp. 21518–21529, 2018.

[4] J. Chen, Q. M. Zhu, J. Li, and Y. J. Liu, ‘‘Biased compensation recursive
least squares-based threshold algorithm for time-delay rational models via
redundant rule,’’ Nonlinear Dyn., vol. 91, no. 2, pp. 797–807, Jan. 2018.

[5] J. Pan, H. Ma, X. Jiang, W. Ding, and F. Ding, ‘‘Adaptive gradient-based
iterative algorithm for multivariable controlled autoregressive moving
average systems using the data filtering technique,’’Complexity, vol. 2018,
Jul. 2018, Art. no. 9598307. doi: 10.1155/2018/9598307.

[6] J. Pan, W. Li, and H. Zhang, ‘‘Control algorithms of magnetic suspension
systems based on the improved double exponential reaching law of sliding
mode control,’’ Int. J. Control Autom. Syst., vol. 16, no. 6, pp. 2878–2887,
Dec. 2018.

[7] S. Han, J. Kim, and K. Sung, ‘‘Extended generalized total least squares
method for the identification of bilinear systems,’’ IEEE Trans. Signal
Process., vol. 44, no. 4, pp. 1015–1018, Apr. 1996.

[8] G. Vandersteen, ‘‘On the use of compensated total least squares in
system identification,’’ IEEE Trans. Autom. Control, vol. 43, no. 10,
pp. 1436–1441, Oct. 1998.

[9] F. Chen, F. Ding, A. Alsaedi, and T. Hayat, ‘‘Data filtering based multi-
innovation extended gradient method for controlled autoregressive autore-
gressive moving average systems using the maximum likelihood princi-
ple,’’ Math. Comput. Simul., vol. 132, pp. 53–67, Feb. 2017.

[10] L. Xu and F. Ding, ‘‘Parameter estimation for control systems based
on impulse responses,’’ Int. J. Control, Autom., Syst., vol. 15, no. 6,
pp. 2471–2479, Dec. 2017.

[11] L. Xu, ‘‘The parameter estimation algorithms based on the dynamical
response measurement data,’’ Adv. Mech. Eng., vol. 9, no. 11, pp. 1–12,
Nov. 2017.

[12] L. Xu and F. Ding, ‘‘Iterative parameter estimation for signal models
based on measured data,’’ Circuits Syst. Signal Process., vol. 37, no. 7,
pp. 3046–3069, Jul. 2018.

[13] L. Xu, W. Xiong, A. Alsaedi, and T. Hayat, ‘‘Hierarchical parameter esti-
mation for the frequency response based on the dynamical window data,’’
Int. J. Control Autom. Syst., vol. 16, no. 4, pp. 1756–1764, Aug. 2018.

[14] Y. Wang and F. Ding, ‘‘A filtering based multi-innovation gradient esti-
mation algorithm and performance analysis for nonlinear dynamical sys-
tems,’’ IMA J. Appl. Math., vol. 82, no. 6, pp. 1171–1191, Dec. 2017.

[15] Y. Mao and F. Ding, ‘‘A novel parameter separation based identifica-
tion algorithm for Hammerstein systems,’’ Appl. Math. Lett., vol. 60,
pp. 21–27, Oct. 2016.

[16] Y. Wang and F. Ding, ‘‘Iterative estimation for a non-linear IIR filter with
moving average noise by means of the data filtering technique,’’ IMA
J. Math. Control Inf., vol. 34, no. 3, pp. 745–764, Sep. 2017.

[17] Y. Bao, L. Y. Wang, C. Wang, and Y. Wang, ‘‘Hammerstein models and
real-time system identification of load dynamics for voltagemanagement,’’
IEEE Access, vol. 6, pp. 34598–34607, Jun. 2018.

[18] F. Ding, Y. Wang, J. Dai, Q. Li, and Q. Chen, ‘‘A recursive least squares
parameter estimation algorithm for output nonlinear autoregressive sys-
tems using the input–output data filtering,’’ J. Franklin Inst., vol. 354,
no. 15, pp. 6938–6955, Oct. 2017.

[19] B. Ding and B. Huang, ‘‘Output feedbackmodel predictive control for non-
linear systems represented by Hammerstein–Wiener model,’’ IET Control
Theory Appl., vol. 1, no. 5, pp. 1302–1310, Sep. 2007.

[20] H. B. Chen, Y. Xiao, and F. Ding, ‘‘Hierarchical gradient parameter
estimation algorithm for Hammerstein nonlinear systems using the key
term separation principle,’’ Appl. Math. Comput., vol. 247, pp. 1202–1210,
Nov. 2014.

[21] E.-W. Bai, ‘‘An optimal two-stage identification algorithm for
Hammerstein–Wiener nonlinear systems,’’ Automatica, vol. 34,
pp. 333–338, Mar. 1998.

[22] X. Zhang, F. Ding, A. Alsaadi, and T. Hayat, ‘‘Recursive parameter
identification of the dynamical models for bilinear state space systems,’’
Nonlinear Dyn., vol. 89, no. 4, pp. 2415–2429, 2017.

[23] X. Zhang, F. Ding, L. Xu, and E. Yang, ‘‘State filtering-based least squares
parameter estimation for bilinear systems using the hierarchical identifica-
tion principle,’’ IET Control Theory Appl., vol. 12, no. 12, pp. 1704–1713,
Aug. 2018.

[24] E.-W. Bai, ‘‘Identification of linear systems with hard input nonlinearities
of known structure,’’ Automatica, vol. 38, no. 5, pp. 853–860, May 2002.

[25] J. Vörös, ‘‘Iterative algorithm for parameter identification of Hammerstein
systems with two-segment nonlinearities,’’ IEEE Trans. Autom. Control,
vol. 44, no. 11, pp. 2145–2149, Nov. 1999.

[26] F. Ding, L. Xu, F. E. Alsaadi, and T. Hayat, ‘‘Iterative parameter identifica-
tion for pseudo-linear systems with ARMA noise using the filtering tech-
nique,’’ IET Control Theory Appl., vol. 12, no. 7, pp. 892–899, May 2018.

[27] S. Zhao, Y. S. Shmaliy, and F. Liu, ‘‘On the iterative computation of error
matrix in unbiased FIR filtering,’’ IEEE Signal Process. Lett., vol. 24, no. 5,
pp. 555–558, May 2017.

[28] J. Vörös, ‘‘Recursive identification of Hammerstein systems with dis-
continuous nonlinearities containing dead-zones,’’ IEEE Trans. Autom.
Control, vol. 48, no. 12, pp. 2203–2206, Dec. 2003.

[29] J. Vörös, ‘‘Modeling and parameter identification of systems with mul-
tisegment piecewise-linear characteristics,’’ IEEE Trans. Autom. Control,
vol. 47, no. 1, pp. 184–188, Jan. 2002.

JUNXIA MA received theM.Sc. and Ph.D. degrees
from the School of Internet of Things Engineering,
Jiangnan University, Wuxi, China, in 2014 and
2017, respectively, where she is currently a Lec-
turer. Her current research interests include system
identification, parameter estimation, and process-
ing control.

QIULIN FEI received the B.Sc. degree from
the School of Internet of Things Engineering,
Jiangnan University, in 2018, Wuxi, China, where
she is currently pursuing the M.Sc. degree. Her
research interests include system identification
and state estimation.

WEILI XIONG received the Ph.D. degree from the
School of Communication and Control Engineer-
ing, Jiangnan University, in 2007, Wuxi, China.
She was a Visiting Scholar with the Department of
Chemical and Materials Engineering, University
of Alberta, Edmonton, Canada, from 2013 to 2014.
She is currently a Professor with the School of
Internet of Things Engineering, Jiangnan Univer-
sity. Her research interests include system iden-
tification, soft sensor of industry processes, and
optimization.

VOLUME 7, 2019 36641

http://dx.doi.org/10.1155/2018/9598307

	INTRODUCTION
	SYSTEM DESCRIPTION AND IDENTIFICATION MODEL
	THE STOCHASTIC GRADIENT ALGORITHM AND GRADIENT ITERATIVE ALGORITHM WITH FINITE MEASUREMENT
	THE STOCHASTIC GRADIENT ALGORITHM
	THE GRADIENT ITERATIVE ALGORITHM WITH FINITE MEASUREMENT

	THE SLIDING WINDOW GRADIENT[-2pt] ITERATIVE ALGORITHM
	SIMULATION EXAMPLES
	CONCLUSIONS
	REFERENCES
	Biographies
	JUNXIA MA
	QIULIN FEI
	WEILI XIONG


