IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON SECURITY, PRIVACY, AND TRUST MANAGEMENT IN SMART CITIES

Received February 25, 2019, accepted March 15, 2019, date of publication March 21, 2019, date of current version April 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2905925

Dynamic Software Updates to Enhance Security
and Privacy in High Availability Energy
Management Applications in Smart Cities

IMANOL MUGARZA !, ANDONI AMURRIO ", EKAIN AZKETA'!, AND EDUARDO JACOB "2
! Dependable Embedded Systems Area, IK4-IKERLAN Technology Research Centre, 20500 Arrasate-Mondragén, Spain
2Faculty of Engineering, University of the Basque Country UPV/EHU, 48013 Bilbao, Spain

Corresponding author: Imanol Mugarza (imugarza@ikerlan.es)

This work was supported in part by the Basque Government under the Elkartek 2017 Program (SEKUTEK project) under Grant
KK-2017-00044.

ABSTRACT The Internet of Things (IoT) and Industrial Internet of Things (IIoT) trends, where high
connectivity is envisioned, are giving rise to new applications, services, and paradigms, such as smart cities.
Due to this connectivity and information sharing features, security, and privacy protection mechanisms
need to be implemented, which may become obsolete at some future time. Software updates are, then,
crucial. However, software updates requiring system shutdown and restarts might not be acceptable from
the business and service point of view when high availability is demanded. In this paper, a mixed-criticality
software architecture and design for a building energy management system, built upon the Cetratus runtime
framework, is presented, where partitioning techniques are employed to ensure temporal and spatial isolation.
Through this framework, software updates are dynamically accomplished, without the need for system
shutdown and restarts. A live patching example is also presented, where customers privacy is enhanced
by means of homomorphic encryption.

INDEX TERMS Smart city, smart energy, Cetratus, live updates, live patches, dynamic software updates,

security, privacy, availability, partitioning.

I. INTRODUCTION

These days, information and communication technologies
are being employed and integrated towards the accomplish-
ment of interconnected and intelligent smart cities, with the
overall aim of improving the quality of life of citizens. This
might include the reduction of waste, resource consump-
tion and/or the improvement of overall living costs. To this
end, smart and advanced services are offered, e.g. in energy
and transportation services. High interconnectivity among all
sensing, storing, processing and analyzing devices is fun-
damental, a tendency enabled and promoted by the Internet
of Things (IoT) and the Industrial Internet of Things (IloT)
technologies.

In the case of the energy sector, Smart Energy and Smart
Energy Systems refer to the design and implementation of sus-
tainable and cost-effective energy management strategies [1].
This topic is actually being analyzed and investigated in

The associate editor coordinating the review of this manuscript and
approving it for publication was Mehedi Masud.

several research projects, such as in/by CITyFiED [2]. The
goal of this project is “‘to develop a replicable, systemic and
integrated strategy to adapt European cities and urban ecosys-
tems into the smart city of the future, focusing on reducing the
energy demand and greenhouse gas emissions and increas-
ing the use of renewable energy sources by developing and
implementing innovative technologies and methodologies for
building renovation, smart grid and district heating networks
and their interfaces with ICTs and Mobility™ [2].

A smart grid platform which makes use of information
and communication technologies is employed in CITyFiED
for grid management solutions. Fig. 1 illustrates the adopted
approach. The system is divided into different levels. First,
a Building Energy Management System (BEMS) is defined,
which gathers the energy flows of information from each of
the buildings in the district. Secondly, the District Energy
Management System (DEMS) monitors energy generation
and distribution at district level. Electric car charging points
are also installed in some car parking spaces. Data col-
lected by the DEMS and BEMS system is transmitted to

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

42269

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6311-0632
https://orcid.org/0000-0003-1103-0363
https://orcid.org/0000-0001-7093-0586

IEEE Access

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

DB] T Omen Paga

Open Data
Applications Forecast
server ! Historical data .

web sites

DEMS

1

BEMS m n

Charging points

Buildings
(1...31)

FIGURE 1. Smart grid and ICT system in CITyFiED [2].

the application server. For this purpose, third party informa-
tion, e.g. weather forecasts or electricity tariffs published by
the Energy Service Company (ESCO) are used. Moreover,
a remote human-machine interface (HMI) provides some
actual status, historical data and trending, as well as third-
party information. The graphical user interface will provide a
dashboard to display such data, as well as alerts and notifica-
tions in case of unnecessary waste of energy.

In this work, a smart building electrical energy manage-
ment application is considered, consisting of the BEMS, and
a Building Energy Optimization Service cloud application
(BEOS). On the one hand, the BEMS is responsible for
monitoring and controlling diverse energy-related facilities
in a residential building. Firstly, various energy sources are
managed and scheduled: a wind turbine, solar cells and
the electrical grid. It is assumed that a wind turbine and
solar cells have been installed on the roof of the building.
Secondly, the supplied electrical power is used by various
home appliances, the elevator and an electric car charger.
The BEMS continuously measures the energy consumption
of these devices. Finally, an energy storage unit is also used.
The BEMS directly controls the wind turbine and solar cells,
as well as the energy storage unit and the electric car charger,
which have safety requirements. We assume that the electric
car charging points are installed in an underground parking
garage, within the building.

On the other hand, all energy consumption and savings
measurements are transmitted to a BEOS. This cloud applica-
tion estimates and optimizes the overall building energy con-
sumption for higher energy efficiency and cost reduction. For
this purpose, in addition to the data sent by the BEMS, other

42270

Building Energy
Optimization Service

(BEOS)

))
Wind Home
Turbine Appliances
—_— \ J
))
Building Energy
M System Elevator

Grid (BEMS)

—

)

Electrical
—
()
Electric Car

Solar Cells Charger

\) \)
Energy Storage Unit

FIGURE 2. Building energy management system (BEMS).

information sources are analyzed: the actual and expected
electricity fees, and weather forecasts for renewable energy
sources estimations. Fig. 2 shows the described smart energy
application.

In the past, when applications had components with dif-
ferent criticality levels, such as security or safety, these
components used to be implemented in separate comput-
ing platforms. This provided complete independence among
application components, as faults at any part of the system
would not be spread through the rest. However, it also led
to a large number of devices and wiring with high cost in
terms of equipment and maintenance. Nowadays, the trend
in the design of many complex systems e.g. automotive,
avionic, railway or industrial control systems, is to integrate
application components with different criticality levels in
the same execution platform. These are known as mixed-
criticality systems [3] [4] and they have been deeply studied
in many points of interest, from purely theoretical aspects
e.g. scheduling and design issues, to basic implementation
mechanisms [5].

Criticality is the term used to determine the degree of
assurance that a certain component requires, and it includes
many forms of dependability (availability and/or reliability),
security (protection against attacks and/or intrusion confine-
ment) and safety (fault containment) issues. It is typically
used in the context of functional safety, and depending on
the domain-specific standards the number of levels as well
as their names may vary [6]. Functional safety refers to the
identification of possible failures that may have serious con-
sequences and to determine an acceptable rate of occurrence
of these failures [7]. In IEC 61508 [8], which is a functional
safety standard applicable to many kinds of industry, four
discrete bands are defined to set the relative levels of risk-
reduction of a certain component. They are called Safety
Integrity Level (SIL): from SIL1, which is the lowest integrity
level, to SIL4, which is the highest [7].

In this article, a mixed-criticality software architecture
based on the Cetratus [9] runtime framework is proposed
for the BEMS. This work provides a smart energy case

VOLUME 7, 2019

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

IEEE Access

study of the previously presented dynamic software updat-
ing approach. The presented scheme allows the dynamic
update of application components. A live update case study is
also provided, where the customer data privacy is improved
through the use of homomorphic cryptography techniques.
Certainly, the cloud service should be able or be adapted to
process this kind of encrypted data.

This manuscript is organized as follows. After this intro-
duction, the motivation for this work is given and the related
work then exposed. The Cetratus runtime framework is pre-
sented first of all as the proposed solution. Next, the mixed-
criticality software architecture and design of the BEMS are
described. After that, a live update case study is illustrated
as an example to validate the proposed solution. Finally,
conclusions and future work are drawn up.

Il. MOTIVATION

Due to the communication capabilities between the smart
energy system and the cloud, security and privacy con-
cerns arise. It has to be ensured that citizens information is
securely sent and stored. The authenticity of such data shall
be checked, since a malevolent attacker might actively eaves-
drop such communications and examine, or even manipulate,
private citizen data. Third-party services, e.g. the BEOS,
would also be able to additionally access to this information,
exposing customer living behaviors and habits. This infor-
mation might be used maliciously [10]. Besides, consumers
themselves could be interested in tampering with such metrics
to decrease the electricity consumption bill, for example.
If these concerns are not addressed, the smart city applica-
tion or service may be vulnerable or susceptible to privacy
data leakages [11].

At some point, in order to maintain the required security
level, software updates will be necessary in order to fix
security weaknesses and bugs. Software systems are inher-
ently defective and software patches are unavoidable. Con-
ventional software upgrade methods require to shut down
the running systems and restart them from scratch. How-
ever, mission-critical and/or safety-related software systems
require zero downtime executions. Any service interruption
would lead to prohibitively expensive losses. Ordinary soft-
ware updates might not be then feasible from the service point
of view when high availability is requested. As stated by
Khurana et al. [12], availability is usually a big security
concern in the energy sector, since a continuous power flow
is demanded and/or required. Energy control devices and
systems shall then offer near 24/7 operations. In this case,
any shutdown due to updating is unacceptable. However,
if the security-related patches are not applied, the system
will be exposed to attack. The reliability and trustworthiness
of such a system will decrease as time goes by, as security
protection measures could sooner or later become obsolete
and be bypassed.

Fig. 3 illustrates the trust level on safety and security tech-
nologies during the operational period of a mixed-criticality
system. As shown, in contrast to security, solid, stable and

VOLUME 7, 2019

Trust Level
Security
FaN ~ S aN ~_ with_updates
AN ANV />
Security flaws
o
Updates Security
no_updates
t

Operational period of a safety-critical system

FIGURE 3. Safety & security trust levels through operational period.

DSU Update Update
request point completed
Wait time .
to update DSU process
T Time
Code State
transformation transformation

FIGURE 4. Dynamic software updating process time-line [9].

well-known technologies and methods are used in safety
engineering. These technologies are further tested, verified
and validated through time. This is the reason why the trust
level in these technologies increases over time.

Ill. RELATED WORK

Hardware redundancy has been often employed to perform
live system updates. To this end, a secondary hardware plat-
form is utilized, where the new software version is loaded.
The program state is then transmitted to it from the pri-
mary platform. After that, a role change is performed. The
secondary platform is determined by primary one, and vice
versa. At that moment, the hardware platform running the old
software version can be switched off [13].

Dynamic Software Updating (DSU) techniques aim at
upgrading or modifying computer programs while they are
running without the need for a shutdown and restart. Hard-
ware redundancy is not needed either. The execution of a
computer program is defined as a tuple (P, §), composed by
the program code P and the current program state §. On the
one hand, the program code P contains a set of executable
native instructions. On the other hand, the current program
state & includes all information related to the data structure
of the computer program. It can include, in addition to the
heap and the internal application data structures, the stack
frames, program counters or the state stored by the operating
system, such as file descriptors or already opened network
connections. The dynamic software updating mechanism
transforms the actual running program (P, §) to a new ver-
sion (P, 8'). To this end, code and state transformations are
performed [13]-[15]. Fig. 4 illustrates the timeline process of
a dynamic software update.

42271

IEEE Access

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

TABLE 1. Analyzed dynamic software updating systems.

Name Target Year | Reference

DLpop 2001 [13]
OPUS 2005 [16]
DynSec 2013 [17]
POLUS Application 2007 [18]

UpStare PP 2000 | [15] [19]
Ginseng 2008 [20]
EKiden 2011 [21]
Kitsune 2012 [22]
DURTS 2004 [23]
EmbedDSU 2011 [24]
Gracioli 2014 [25]
EcoDSU Real-time 2008 [26]
Seif-Real 2009 [27]
Wahler 2009 [28]

FASA 2014 [29] [30]

Table 1 shows a list of evaluated application-oriented and
real-time systems oriented DSU systems. The analysis of
these DSU mechanisms was performed by the same authors
in [14]. In such work, DSU techniques targeting operating
systems kernels are also investigated.

For the code transformation, trampolines are usually used
through the insertion of dummy instructions. This technique
was employed by OPUS, POLUS, UpStare, DURTS and
Gracioli. In contrast, call indirections are handled in DLpop,
Ginseng, EmbedDSU, Wahler and FASA. For this purpose,
an indirection handling table is created, where direct func-
tion calls and returns are specified. In some cases, such
as in DynSec and EcoDSU, the specific memory region
is accessed and modified to replace the corresponding set
of executable instructions. This technique is called binary
rewriting. In DynSec, the code cache is flushed.

Concerning state transformations, three different methods
can be used to perform such data updates: in-place, indirec-
tion and checkpointing. The first technique refers to over-
writing the old program state information in place, directly
on to the specific memory location where it is stored. Nev-
ertheless, larger amounts of memory than the old program
state might be needed by the new one. This technique is
used by UpStare, Ginseng, Kitsune, EmbedDSU, EcoDSU.
On the contrary, through indirections, the new program state
is allocated in a new memory region and represented as a
pointer of the underlying type to the new program. This
method deals with the problem of requiring extra memory,
in case the program data size grows. A memory manage-
ment mechanism is then required. Indirection methods are
employed by DLpop, OPUS and POLUS. Finally, check-
pointing, also known as state migration or transferring, con-
sists of packing and unpacking the program state from the
old program to the new one. After the transmission, the state
transformation functions are invoked. This technique is used
by Ekiden, Kitsune, Wahler and FASA (Future Automation
System Architecture).

All the DSU systems targeting compiled applications per-
form dynamic updates on top of an UNIX-like operating
system, usually GNU/Linux running on a x86 computer.

42272

Moreover, UpStare has been tested on Linux 2.4-2.6 running
on a i386 architecture computer, Solaris 5.10 running on a
SPARC computer and MAC OSX running on a PowerPC
computer. However, none of these DSU systems provide
real time features, which may be needed for an industrial
control application. On the contrary, in the case of DSU
systems designed for real-time, or embedded or indus-
trial control systems, DURTS is the only DSU targeting a
UNIX-like operating system, specifically, the RT-Mach oper-
ating system. Other operating systems were used on Embed-
DSU and Gracioli. Wahler and FASA are operating system
agnostics, although they shall be POSIX-compliant. They
take advantage of the operating system utilities, so the DSU
is transparent to the underlying operating system. Conversely,
EcoDSU works purely on bare metal, without the support of
an operating system. Real-time timing and tasking properties
were analyzed in DURTS and Seif-Real [14].

None of the evaluated DSU system provide an industry
compliant solution, although Wahler and FASA are the clos-
est ones [14]. According to Wahler ef al. [30], the biggest
challenge of updating real-time systems is that they often
need to be certified according to industry standards, e.g. the
IEC 61508 [8]. If the software of a such system is updated,
the whole system might be re-certified before it can be
deployed in the field.

IV. PROPOSED SOLUTION

In this section, the mixed-criticality software architecture
based on the Cetratus runtime framework is presented for
the BEMS. Firstly, an overview of Cetratus is provided. The
software architecture and defined application components are
then described. In addition, a partitioning approach for the
proposed software architecture is given, where temporal and
spatial isolation are achieved.

A. CETRATUS

Cetratus is a framework enabling DSUs for safe and secure
industrial control systems [9]. Its goal is to enable safe live
updates of application components, allowing the adaptation
to new requirements. This process is performed while run-
ning, without the need of powering off the system, hence,
without degrading or losing availability. Cetratus is aligned
with the industrial IEC 61508 [8] and IEC 62443 [31] stan-
dards and satisfies the internal test activity recommended by
the IEC 62443-2-3: Patch management in the IACS environ-
ment technical document [31], [32].

An indirection handling table is created to manage which
application component (and version) is actually executed.
As far as state transformations are concerned, an application
component state is defined by the programmer at the devel-
opment phase. These accessible variables are then check-
pointed and transformed (if required) for the new application
component version [9]. Contrary to FASA [29] [30], whole
system dynamic reconfiguration features are not present in
Cetratus, since the use of such mechanisms is not advised for
the development of safety-critical systems.

VOLUME 7, 2019

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

IEEE Access

X X

Updater Auditor
- quarantine(patch) —
- confirmQuarantine(patch)
[_____confirmation_________]
< setup(patch)

M getQuaranExecInfo(patch)

[tested] B patch_exec_info

< verifyPatchExec(patch)

validate(patch)

oo confirmation _______ |

] approved

alt removePatch(patch)

[false] D(777777777777777 patchremoved 7 > D

substitute(patch)

- confirmSubstitute(patch)
E ,,,,,,,,, confirmation________

substitution sucessfull

FIGURE 5. Cetratus dynamic software update use case sequence
diagram [9].

Fig. 5 shows the Cetratus dynamic software update use
case sequence diagram. Two different actors that interact with
the system are defined: the Updater and the Auditor. The
Updater is the system maintainer wishing to perform the
upgrade. In contrast, the Auditor refers to the actor responsi-
ble for continuously gathering information of the patch exe-
cution and verifying its correctness, represented as a loop box
in Fig. 3. The Auditor can reject the patch if it does not fulfil
the expected behavior and/or performance. A corroboration
from the Auditor is needed by the Updater to apply a given
software update.

As illustrated in Fig. 5, a software update is firstly
requested by the Updater. Whenever the Auditor endorses
such an upgrade, the software patching process starts.
At this moment, the new application is executed within
the quarantine-mode until the decision is taken to replace
the former application component. Through this isolation,
protection against patch installation errors and/or new pos-
sible vulnerabilities or bugs is provided. The disturbance
of unexpected error caused by dynamic updating will not
damage the safety of the system. Meanwhile, the Auditor
collects and verifies new application component execution
evidences. If enough trustworthiness of the new software
version is determined, the replacement is accomplished. For
this purpose, Auditor’s confirmation is needed. Alternatively,
the updater could also directly revoke the dynamic update.

Fig. 6 illustrates the quarantine-mode execution and mon-
itoring scheme for a single application component. In the
quarantine-mode, both the primary and secondary compo-
nents can receive input and compute output. Nevertheless,
only the outputs of the primary component are visible to
the outside. System input and outputs are managed by the

VOLUME 7, 2019

X

Time [Provider | [Primary] [Dispatcher| [Monitor] [Secondary
loop] readSysInputs(
[tested]
sharelnputs
daveInput(input
saveInput (input) D
infolnput (inputs) D
execComponent ()
D execComponent() D
shareOutputs() -
setOutput()
__output __
getOutput()
o output
nfoOutput(outpu
D dispatchSysOutputs() i

FIGURE 6. Quarantine-mode execution & monitoring for an application
component [9].

Provider and Dispatcher modules. A copy of application
component input and output is also collected by the Monitor.
This patch execution information is supplied to the Auditor.

As far as security is concerned, a digital signature is
produced to ensure the integrity of the dynamic patch
during its transmission to the target system, as required
by the SUM-4: Security Update Delivery requirement
in IEC 62443-4-1 [31]. Before proceeding with an update,
the integrity and authenticity of the dynamic patch is ver-
ified by the runtime framework. A secure communication
channel is also used to prevent any attacker obtaining the
plain dynamic patch and reverse-engineering it. Any user
interacting with the system shall also be previously identified
and authenticated.

B. SOFTWARE ARCHITECTURE

The proposed software architecture for the BEMS is shown
in Fig. 7. The software design is divided in two parts: the
smart energy application and the Cetratus framework. At the
bottom, Cetratus framework components are defined (shown
in yellow). These elements are generic and reusable for any
kind of application. At the top, application specific compo-
nents are provided.

1) APPLICATION COMPONENTS

The application software running in the BEMS is divided
among several application components, identified in Table 2.
Wind and solar energy productions are measured by the
C-WEM and C-HEM components. The C-HEM application
components measures the electrical energy consumption of
home appliances, including non-shift habits, such as lighting,
installed in each flat. The C-EEM monitors the energy con-
sumption of the elevator. The C-ESC controller manages the
energy storage unit, where previously produced and captured
energy is accumulated for use at a later time. For this purpose,
rechargeable batteries are employed. The C-ECC manages

42273

IEEE Access

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

Building Energy Management System (BEMS)

IApp IApp

C-WEM-A H

C-BEM-A Y

O

gp ICdmm Iég ICgmm
krf(j?)mn \P(ﬁm

Application

o-ESC ©

cEcc 8

Iég] ICdmm Iggp ICdmm

Tj(a?n " T/I(j?n "

Message Router

Cetratus
framework

Input l

(%[%

3l

Provider

Updater

Update
o

Audit

Output

i
—
pu

Dispatcher

Monitor

Oi

FIGURE 7. Software architecture of the building energy management system.

TABLE 2. Application components in BEMS.

ID Name

C-BEM | Building Energy Manager
C-SDC Secure Data Collector
C-WEM Wind Energy Meter
C-SEM Solar Energy Meter
C-HEM Home Energy Meter
C-EEM Elevator Energy Meter
C-ECC | Electric Charger Controller
C-ESC Energy Storage Controller

and controls the electric vehicle charging station. Due to
the involved risks, such as electrical surges and leakages,
both the C-ECC and C-ESC components need to fulfil safety
standards.

The C-BEM is the overall building energy manager, and
is able to decide when the electrical energy is purchased and
obtained from the grid. These electrical energy purchasing
and saving profiles might manually be determined or, prefer-
ably, requested from the BEOS. All energy production and
consumption data are gathered by the C-SDC. This compo-
nent shall integrate the required security countermeasures to

42274

ensure the confidentiality and integrity of the records sent to
the cloud application.

Two containers (shown in blue and green), which pro-
vide isolated execution environments both in the spatial
and temporal domain, are defined for each of the applica-
tion components (except for the C-ECC and C-ESC). These
containers are defined in the software design phase, and
are statically allocated, as advised by safety guidelines [8].
Safety-related application components C-ECC and C-ESC
(depicted in red) are determined as not upgradable, since
in case that safety hazards and risks have been properly
addressed or the operational conditions of the system do
not change, software updates are not recommended in safety
engineering [8]. Therefore, a secondary container is not
required.

2) CETRATUS FRAMEWORK COMPONENTS

As far as Cetratus framework components are concerned,
the dynamic software update functionality is enabled by the
Updater and Monitor runtime modules. On the one hand,
the dynamic software updating process is managed by the
Updater, which performs the required code and state trans-
formations. All application components shall be compliant
with the IApp interface and be developed under the proposed

VOLUME 7, 2019

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

IEEE Access

framework. On the other hand, patch execution monitoring
data is gathered by the Auditor. The execution footprint, such
as memory usage, CPU or timing behavior, is also gathered.

Input and output abstraction are offered by the Provider
and Dispatcher framework modules, which act as wrappers
to the underlying specific input and output drivers, such as
fieldbus communications, digital or analogous 1/O, etc. This
information is forwarded to the corresponding application
components through the Message Router. Message passing
procedure is transparently handled by the Message Router,
without modifying the data contained in the message.

Finally, the Message Router enables the inter-component
and other system module communications, by means of a
message-passing mechanism. The /Comm interface is offered
to the application components for such inter-component com-
munications. This interface defines the methods to create,
open and close a communication channel from which mes-
sages are sent and received.

C. PARTITIONING

Typically there are many agents involved in the design of such
complex systems, and their integration is a growing concern.
In order to assure that specification, design, implementation
and certification (if needed) stages are independent among
components, partitioning is used. A partition is a strictly
independent execution environment that is protected from
other partitions. For this purpose, independence of execution
both in the temporal and spatial domains shall be achieved.

On the one hand, temporal partitioning ensures that appli-
cation executions of a partition do not compromise the
timing properties of other partitions by monopolizing the
CPU or shutting down the system, for instance. To achieve
this, applications are executed only during the time slices
they are assigned to. During this time, services received from
shared resources must not be affected by applications in other
partitions. In the case of control applications as BEMS, it is
essential to guarantee that each temporal partition is assigned
enough processing time to complete its execution.

On the other hand, spatial partitioning ensures that the
software within a partition can not access memory resources
of another partition. To this end, the access to memory regions
where data and code reside is controlled, which avoids unau-
thorized read/write operations and commanding resources
hosted in different partitions.

Two main partitioning approaches exist: hypervisors and
partitioning enabled operating systems. In the case of hyper-
visors, e.g. Xtratum [33] [34], different operating systems
can be run in a processing element, creating completely iso-
lated virtual execution environments. Regarding partitioning
enabled operating systems, isolation is obtained by enhancing
the host operating system’s features so that partitioning tech-
niques can be implemented. As an example of this approach,
the INTEGRITY real-time operating system developed by
Green Hills Software has been certified for security, safety
and reliability domains, including IEC-61508 SIL3 [7]. Spa-
tial partitioning is obtained by Virtual Address Spaces (VAS),

VOLUME 7, 2019

which are protected memory regions of code and data that can
only be reached by authorized processes. A Partition Sched-
uler is used to set a cyclic schedule of temporal partitions
where different VAS-es are allocated, so that they can be
bounded in time by designers. The combination of these two
elements provides a great flexibility for virtualization, since
code and data stored at a certain VAS can be executed sev-
eral times in different temporal partitions if desired, without
violating any partitioning principle.

Each component of the BEMS application is allocated
in an independent spatial partition to have isolation. Each
one of these spatial partitions are executed at least in one
temporal partition, but may be executed in more than one
depending on the containing component, such as Message
Router or Monitor components that are executed several
times. Fig. 8 shows a proposal for scheduling the execu-
tion of the partitions. The Major Frame is the execution
that is repeated periodically and it is defined at the design
phase using adequate timing analysis techniques. Timing
analysis techniques are mathematical methods to formally
calculate the response time of a system, easing its design
towards obtaining the certainty that the system is schedu-
lable even in the worst-case scenario [35]. If a component
is going to be updated, a temporal partition for the execu-
tion of its secondary version must be scheduled, as shown
in the picture. Moreover, extra time within the provider-
dispatcher frame can be allocated in case another component
is going to be executed in the future, considering its sec-
ondary version for dynamic updating as well (components
C-X-A and C-X-B). This provides the system of a higher
degree of expandability without compromising its temporal
restrictions.

The Major Frame is divided into three stages: First one
acquires system inputs and delivers them among their cor-
responding components. Then, each component performs its
processing tasks during their assigned periods of time, and
finally the last stage corresponds to system output delivery.
The Provider component is executed first, since it is the only
one that has an input interface. As shown in the software
architecture, it is connected to the Message Router so that
inputs can be delivered to the rest of the components. The
Message Router component allows communication between
all components, which is why it is executed after each com-
ponent has been run. Monitor and Updater components are in
charge of controlling the software update process, and finally
the Dispatcher, using the information transmitted through
the Message Router, selects the outputs from the different
applications components. Thanks to partitioning, it is guaran-
teed that when running components in Cetratus, if any mal-
function occurs during the dynamic software update process,
it shall be contained and it will not jeopardize the correct
functioning of the rest of the system.

In Listing 1 an extract from the INTEGRITY Integration
File is shown. Here the scheduling of the temporal partitions
within the periodic the Major Frame is defined. Temporal
partitions must be, at least, long enough to allow components

42275

IEEE Access

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

< Major Frame >

5 . =3
} g Processing 8
. . < . . a a a . . .
& & § 5 5 5 5 5 3 § §
s | 8 . 5| < E Sl e | |58l <] |5 < | |5 < |« |8 <|=|[5 <|=]|3 5] 8
SU2] & I3 E18|S| 858 5058 558 a5 8|3 5\ 8 |85/8 /8 [35[3|3/2|2|¢%
0 1 15 5 6.25 7.03 8.31 9.59 10.37 11.65 1243 13.71 14.49 15.77 16.55 17.85 18.63 19.91 20.69 2197 2275 24 25 (ms)
FIGURE 8. Temporal partition scheduling.
PartitionSchedule BEMS the execution of that partition will be stopped and the
next one scheduled will start.
MajorFramePeriod 25
Major Frame period is 25 millisecond long Therefore, the Major Frame will be the sum of all temporal

Partition Provider
AddressSpace Provider #Provider VAS
Offset O
Exectime 1
At 0 miliseconds
miliseconds
EndPartition

into the major frame run 1

Partition Updater
AddressSpace Updater
Offset 1.5
Exectime 3.5

EndPartition

#Updater VAS

Partition SDC_A
AddressSpace CSDC_A #Secure Data Collector_A
VAS
Offset 17.07
Exectime 0.78
EndPartition

Partition SDC_B
AddressSpace CSDC_B #Secure Data Collector_B
VAS
Offset 17.85
Exectime 0.78
EndPartition

Partition Dispatcher
AddressSpace Dispatcher #Dispatcher VAS
Offset 24
Exectime 1

EndPartition

EndPartitionSchedule

Listing 1. Partition Scheduler integration file.

allocated to them to execute in their worst-case execution
times.

The temporal partitions are defined by the following
parameters:

o AddressSpace: allows allocating spatial partitions within
temporal partitions.

o Offset: sets the relative time in the Major Frame when
the partition starts its execution.

o Exectime: sets the length of time it is executed. It is
guaranteed that after this time, no matter what happens,

42276

partitions in the schedule. In this case, it has been set to 25 ms,
which has been proved to meet all temporal constraints of the
system.

V. VALIDATION

In order to validate the proposed mixed-criticality architec-
ture, a live update example is presented, where a new secu-
rity layer is incorporated to enhance customer data security
and privacy. Concretely, the C-SDC application component
is upgraded. In this new application component, a homo-
morphic encryption algorithm is integrated [36]. Through
homomorphic encryption, all data exchanged by the BEMS
with third-party cloud services is then protected against infor-
mation leakages. Other security weaknesses, bugs or miscon-
figurations could also be fixed using this update.

Although a secure communication channel is used for the
transmission of energy production, savings and consumption
data, e.g. by means of Transport Layer Security (TLS) or any
other encrypted and authenticated communication protocol,
third-party services store and process smart energy data in
clear text, so confidential information is completely acces-
sible. This may compromise citizens’ privacy if these third-
party actors maliciously use such data; a well known example
of this non-legitimate use is personal information selling.
As stated previously, software updates are usually necessary
to address any security and privacy issues that might be
encountered during the operational period of the system.
Assuming that the system has already been deployed and is
being executed, a live update would be necessary to address
this problem.

As a solution to the presented privacy issue, homomorphic
cryptography algorithms might be employed [11]. Homomor-
phic cryptography is a cryptographic system in which com-
putations can be performed on the ciphertext space. These
operations are accomplished on encrypted data, from which
the result of such calculations also remains encrypted. When
decrypted, the solution matches the result of the computa-
tions as if they had been executed on plaintext data [36].
This approach protects private information contained in the
transmitted data [37].

VOLUME 7, 2019

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

IEEE Access

—— Grid
8 —e— Solar Cells
— ‘Wind Turbine
@) Battery
=
a3 —e— Electric Car
()
>
R Grid
—— Solar Cells
o o Wind Turbine
Q4 g IR Battery
97 S \/-“ —— Electric Car y
% {MA ™
O if A v
MY
R Grid
<
T & 8 —— Solar Cells
< 38 Wind Turbine
T 61 Battery
£ § —— Flectric Car
58 4
w
= \ [
gxo0 N\ AN [T\ A
[
. VATV NN VTV NN

15 33 39

t
48

Hour

FIGURE 9. Energy production, savings and consumption data (in kWh) computed by both C-SDC application component versions and transmitted

information to the cloud service.

A prototype of the presented BEMS has been developed,
which is executed on a x86 industrial computer. The imple-
mented Cetratus runtime framework is POSIX compatible
and has been integrated over INTEGRITY real-time operating
system. This implementation was originally linked and vali-
dated with Real-Time Linux [9]. Regarding dynamic software
updates, features from the underlying INTEGRITY real-time
operating system are employed.

Fig. 9 illustrates the outputs produced processed by both
C-SDC application components, as well as the data trans-
mitted to the BEOS cloud service by the Dispatcher, during
the quarantine-mode based live patching procedure. The new
C-SDC also encrypts such data in that processing phase.
As shown, at the beginning, plain data gathered by the first
component version is transmitted to the cloud application.
The BEOS receives, stores and processes plain customer
energy production, savings and consumption data, where
customer living behavior patterns and private information
might be obtained. At 26™ hour, the second version of the
C-SDC application component is initialized. This component
is then internally executed and monitored on quarantine-
mode. During this stage, both versions are executed and
the behavior of the new component verified. After this val-
idation, a substitution of the former application component
is performed. This step is accomplished at hour 63" hour.
The former C-SDC component is then stopped. As shown,
after performing the live update, customer information is
hidden. The encrypted data computed by the second com-
ponent version is sent to the BEOS. Citizen privacy is then
ensured.

VOLUME 7, 2019

Fig. 10 shows the system performance in terms of CPU
and response times. At the top, the CPU time of both
C-SDC-A and C-SDC-B application component versions
during the live update process is shown in us. As said before,
C-SDC-A component is executed for the first 26 hours, and
after that when its secondary version starts its execution a
notable increase in CPU time is observable. This period of
time, which is in fact the quarantine-mode period, the use of
CPU will reach its peak, since both components are being
executed at the same time. Almost the whole available CPU
time is required at this stage for this application component.
After that, when the quarantine-mode and live update process
are already accomplished, the usage decreases again to a
slightly higher value than the one at the beginning. The new
C-SDC application component version demands higher CPU
usage than the old one due to the higher computational cost
required for the data encryption operations. Consequently,
the new application component makes use of all the available
CPU time assigned to it.

Temporal requirements of the system might be in danger
when the total CPU usage demanded by the application com-
ponents and/or other system modules increases significantly.
The plot at the bottom of Fig. 10 shows the system response
time, i.e. the time required by the application to produce and
send the output. As noted, the system response time values
do not go beyond the time limits defined through temporal
partitions. As stated before, these temporal partitions have
been designed so that all temporal requirements can be met in
any case. The system shall be able to deliver outputs before
the end of the major frame period (25 ms). The system is

42277

IEEE Access

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

1,400

[C-SDC-A
1,200 | [—1C-SDC-B

© 1,000
=]

B

=

E = 600 |

© 400

200

0
25.2

25
o

= 248

i 246
2

S =244
jo%
w0

é 24.2

D e e TR R R ¥
< SDC-A ~ Quarantine-mode (SDC-A & SDC-B) ” SDC-B

Cycles

FIGURE 10. CPU and system response times during live update (Integrity RTOS, executed on a x86 industrial computer).

then capable of ensuring all the temporal requirements and
constraints while both application component versions are
being executed.

VI. CONCLUSIONS

In the current IoT and IloT era, high inter-connectivity
and information sharing is expected. These paradigms are
enabling new applications and services. In the smart city
domain, advanced and intelligent services might be offered
to citizens, such as energy optimization services for cost-
effective electrical energy usage practices. Therefore, secu-
rity and privacy issues arise. During the system development
stages, security protection measures shall be adopted. Never-
theless, these countermeasures might become obsolete after
some time. Software updates are then necessary to mitigate
those risks emerged during the operational period of the
system. However, system shutdown and restarts are usually
needed to perform such system upgrades. Software updates
might not be then feasible from the service point of view in
high availability smart city applications.

In this article, a mixed-criticality software architecture
for high-availability smart energy applications is proposed.
The software design of an Integrated Building Energy
Controller is introduced, in which eight mixed-critical appli-
cation components are defined. In order to guarantee a com-
plete isolation among components necessary in such systems,
a partitioning scheme based on Integrity RTOS has been
proposed. The presented design is based on the Cetratus
runtime framework, which enables the dynamic update of
such application components. These upgrades are accom-
plished during runtime, without the need of shutdown and
restart. A case scenario is provided, in which an additional
security layer is introduced to the data collector agent. More
specifically, the C-SDC application component is updated,

42278

where an homomorphic encryption algorithm is integrated to
encrypt energy production, savings and consumption data.

As for future work, an access control scheme shall be
used to authenticate, authorize and audit any user interacting
with the system. In absence of such measures, an attacker
could update the security-related components with dummy
ones that disable previously adopted security countermea-
sures. As said before, there are two main approaches for
partitioning: partitioning-enabled operating systems like the
one presented in this work, and hypervisors. The presented
solution in this article could be implemented following a
hypervisor-based approach.

REFERENCES

[1] H. Lund, P. A. @stergaard, D. Connolly, and B. V. Mathiesen, “Smart
energy and smart energy systems,” Energy, vol. 137, pp.556-565,
Oct. 2017.

[2] D. Car, “Replicable and innovative future efficient districts and cities,” in
Proc. ENERGY, 2013, pp. 1-8.

[3] European Commission. Information Society and Media Directorate-
General Unit G3/Computing Systems Research Objective, “Mixed criti-
cality systems,” Report from the Workshop on Mixed Criticality Systems,
Brussels, Belgium, Feb. 2012.

[4] S.Baruah, H. Li, and L. Stougie, ‘“Towards the design of certifiable mixed-
criticality systems,” in Proc. 16th IEEE Real-Time Embedded Technol.
Appl. Symp., Apr. 2010, pp. 13-22.

[5] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surv., vol. 50, no. 6, p. 82, Jan. 2018.

[6] R. Emst and M. Di Natale, “Mixed criticality systems—A his-
tory of misconceptions?” IEEE Des. Test, vol. 33, no. 5, pp. 65-74,
Oct. 2016.

[7]1 D. J. Smith and K. G. Simpson, Functional Safety: A Straightforward

Guide to Applying IEC 61508 and Related Standards. Evanston, IL, USA:

Routledge, 2004.

Functional Safety of Electrical/Electronic/Programmable Electronic

Safety Related Systems. Geneva, Switzerland: IEC, 2000.

[9] 1. Mugarza, J. Parra, and E. Jacob, “Cetratus: Towards a live patching
supported runtime for mixed-criticality safe and secure systems,” in Proc.
IEEE 13th Int. Symp. Ind. Embedded Syst. (SIES), Jul. 2018, pp. 1-8.

[10] P. McDaniel and S. McLaughlin, ““Security and privacy challenges

in the smart grid,” IEEE Secur. Privacy, vol. 7, no. 3, pp.75-77,
May,/Jun. 2009.

[8

—

VOLUME 7, 2019

I. Mugarza et al.: Dynamic Software Updates to Enhance Security and Privacy

IEEE Access

[11] K. Zhang, J. Ni, K. Yang, X. Liang, J. Ren, and X. S. Shen, ‘““Security
and privacy in smart city applications: Challenges and solutions,” IEEE
Commun. Mag., vol. 55, no. 1, pp. 122-129, Jan. 2017.

[12] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, “Smart-grid security
issues,” IEEE Secur. Privacy, vol. 8, no. 1, pp. 81-85, Feb. 2010.

[13] M. Hicks, J. T. Moore, and S. Nettles, Dynamic Software Updating, vol. 36.
New York, NY, USA: ACM, 2001.

[14] 1. Mugarza, J. Parra, and E. Jacob, ““Analysis of existing dynamic software
updating techniques for safe and secure industrial control systems,” Int. J.
Saf. Secur. Eng., vol. 8, no. 1, pp. 121-131, Jan. 2018.

[15] K. Makris, “Whole-program dynamic software updating,” Ph.D. disserta-
tion, Arizona State Univ., New York, NY, USA, 2009.

[16] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “Opus: Online
patches and updates for security,” in Usenix Secur., vol. 5, p. 18,
Jun. 2005.

[17] M. Payer, B. Bluntschli, and T. R. Gross, “Dynsec: On-the-fly code
rewriting and repair,” in HotSWUp, USENIX, 2013. [Online]. Avail-
able: https://www.usenix.org/conference/hotswup 13/workshop-program/
presentation/payer

[18] H. Chen, J. Yu, R. Chen, B. Zang, and P--C. Yew, “Polus: A powerful
live updating system,” in Proc. 29th Int. Conf. Softw. Eng., Jun. 2007,
pp. 271-281.

[19] K. Makris, “Upstare manual,” Tech. Rep., 2012. [Online]. Available:
http:/files.mkgnu.net/files/upstare/UPSTARE_RELEASE_0-12-
3/manual/

[20] 1. G. Neamtiu, Practical Dynamic Software Updating. Ann Arbor, MI,
USA: ProQuest, 2008.

[21] C. M. Hayden, E. K. Smith, M. Hicks, and J. S. Foster, ““State transfer for
clear and efficient runtime updates,” in Proc. IEEE 27th Int. Conf. Data
Eng. Workshops, Apr. 2011, pp. 179-184.

[22] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S. Foster,
“Kitsune: Efficient, general-purpose dynamic software updating for c,”
ACM SIGPLAN, vol. 47, no. 10, pp. 249-264, Oct. 2012.

[23] J. Montgomery, ‘A model for updating real-time applications,” Real-Time
Syst., vol. 27, no. 2, pp. 169-189, 2004.

[24] A. C. Noubissi, J. Iguchi-Cartigny, and J.-L. Lanet, “Hot updates for java
based smart cards,” in Proc. IEEE 27th Int. Conf. Data Eng. Workshops,
Apr. 2011, pp. 168-173.

[25] G. Gracioli and A. A. Frohlich, “An operating system infrastructure for
remote code update in deeply embedded systems,” in Proc. 1st Int. Work-
shop Hot Topics Softw. Upgrades, Oct. 2008, p. 3.

[26] S. Kang, I. Chun, and W. Kim, “Dynamic software updating for cyber-
physical systems,” in Proc. 18th IEEE Int. Symp. Consum. Electron.
Jun. 2014, pp. 1-3.

[27] H. Seifzadeh, A. A. P. Kazem, M. Kargahi, and A. Movaghar, “A method
for dynamic software updating in real-time systems,” in Proc. 8th
IEEE/ACIS Int. Conf. Comput. Inf. Sci., Jun. 2009, pp. 34-38.

[28] M. Wahler, S. Richter, and M. Oriol, “Dynamic software updates for real-
time systems,” in Proc. 2nd Int. Workshop Hot Topics Softw. Upgrades,
Sep. 2009, p. 2.

[29] M. Wahler and M. Oriol, “Disruption-free software updates in automa-
tion systems,” in Proc. IEEE Emerg. Technol. Factory Autom. (ETFA),
Sep. 2014, pp. 1-8.

[30] M. Wahler, S. Richter, S. Kumar, and M. Oriol, “Non-disruptive large-scale
component updates for real-time controllers,” in Proc. IEEE 27th Int. Conf.
Data Eng. Workshops, Aug. 2011, pp. 174-178.

[31] Industrial Communication Networks - Network and System Security. doc-
ument IEC 62443, 2010.

[32] I. Mugarza, J. Parra, and E. Jacob, Software Updates Safety
Security Co-engineering, Cham, Switzerland: Springer, 2017,
pp. 199-210.

[33] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, ‘Xtratum: A hypervisor
for safety critical embedded systems,” in Proc. 11th Real-Time Linux
Workshop, 2009, pp. 263-272.

[34] A.Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded architecture
based on hypervisor: The xtratum approach,” in Proc. Eur. Dependable
Comput. Conf., Apr. 2010, pp. 67-72.

[35] J. C. Palencia, M. G. Harbour, and J. J. Gutiérrez, and J. M. Rivas,
“Response-time analysis in hierarchically-scheduled time-partitioned dis-
tributed systems,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 7,
pp. 2017-2030, Jul. 2017.

[36] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library-
seal v2. 1, in Proc. Int. Conf. Financial Cryptogr. Data Secur., 2017,

. 3-18.

[37] gp Zhangy et al. (2018). “Genie: A secure, transparent sharing and
services platform for genetic and health data.” [Online]. Available:
https://arxiv.org/abs/1811.01431

VOLUME 7, 2019

IMANOL MUGARZA received the B.S. degree
in industrial electronic engineering from
Mondragon University, Mondragon, Spain,
in 2013, the B.S. degree in automation engineering
from the University of Skovde, Skovde, Swe-
den, in 2013, and the M.S. degree in embedded
and intelligent systems from Halmstad University,
Halmstad, Sweden, in 2015. He is currently pur-
suing the Ph.D. degree with the IK4-IKERLAN
Research Centre, Spain, in collaboration with the
University of Basque Country, Bilbao, Spain.

In 2015, he joined IK4-IKERLAN, working as a Researcher within the
dependable embedded systems area. He was a Visiting Researcher at LAAS-
CNRS, Toulouse, France, within the Dependable Computing and Fault
Tolerance (TSF) Group, in 2018. His research interest includes the design,
development, and maintenance of mixed-criticality safe and secure systems.

ANDONI AMURRIO received the B.S. degree in
telecommunications systems engineering from the
University of the Basque Country, Bilbao, Spain,
in 2014, and the M.S. degree in telecommunica-
tions engineering from the Autonomous Univer-
sity of Barcelona, Catalonia, Spain, in 2016. He is
currently pursuing the Ph.D. degree in science and
technology with IK4-IKERLAN Research Cen-
tre, Spain, in collaboration with the University of
Cantabria, Cantabria, Spain.

In 2014, he was a Networks Technician for Telefénica Movistar, and from
2016 to 2018, he was a Test-Engineer Consultant at SEAT S.A. His research
interest includes the development of scheduling and mapping algorithms,
as well as timing analysis techniques, for mixed-criticality distributed real-
time systems.

EKAIN AZKETA received the B.S. and M.S.
degrees in telecommunications engineering
from Mondragon University, Mondragon, Spain,
in 2004 and 2007, respectively, and the Ph.D.
degree in telecommunications engineering from
University of the Basque Country, Bilbao, Spain,
in 2013.

From 2007 to 2013, he was a Research Assis-
tant with the Software Technologies Department,
IK4-IKERLAN Technology Research Center,
Mondragon. Since 2013, he has been a Researcher with IK4-IKERLAN
Technology Research Center, where he is currently with the Dependable
Software Team. His research interests include the optimization techniques
for deployment and scheduling of distributed real-time systems, and archi-
tectures for mixed-criticality systems.

EDUARDO JACOB received the Ph.D. degree
from ICT, University of the Basque Country,
in 2001.

He spent a few years in the industry as a Net-
work Manager first and an R&D Project Leader
later. He has been the Head of the Department of
Communications Engineering, University of the
Basque Country. He also leads a research group,
where he has directed several R&D projects at
European level. He is also a Coordinator of the
Smart Networks for Industry (SN4I) Industry 4.0 Experimental Network
Facility. His research interests include the application of advanced networks
(SDN/OpenFlow, NFV, and Slicing) to industrial applications, connectivity
for ITS and security in distributed systems with recent results in authenti-
cation, and authorization in virtualized access networks and authorization in
sensor networks.

42279

	INTRODUCTION
	MOTIVATION
	RELATED WORK
	PROPOSED SOLUTION
	CETRATUS
	SOFTWARE ARCHITECTURE
	APPLICATION COMPONENTS
	CETRATUS FRAMEWORK COMPONENTS

	PARTITIONING

	VALIDATION
	CONCLUSIONS
	REFERENCES
	Biographies
	IMANOL MUGARZA
	ANDONI AMURRIO
	EKAIN AZKETA
	EDUARDO JACOB

