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ABSTRACT Network intrusion detection plays a very important role in protecting computer network
security. The abnormal traffic detection and analysis by extracting the statistical features of flow is the main
analysis method in the field of network intrusion detection. However, these features need to be designed
and extracted manually, which often loses the original information of the flow and leads to poor detection
efficiency. In this paper, we do not manually design the features of the flow but directly extract the raw data
information of the flow for analysis. In addition, we first proposed a new network intrusion detection model
named the deep hierarchical network, which integrates the improved LeNet-5 and LSTM neural network
structures, while learning the spatial and temporal features of flow. By designing a reasonable network
cascading method, we can train our proposed hierarchical network at the same time instead of training two
networks separately. In this paper, we use the CICIDS2017 dataset and the CTU dataset. The number and
types of flow in these two datasets are large, and the attack types are relatively new. The experimental results
show that the performance of the proposed hierarchical network model is significantly better than other
network intrusion detection models, which can achieve the best detection accuracy. Finally, we also present
an analysis method for traffic features which has an important contribution to abnormal traffic detection and
gives the actual meanings of these important features.

INDEX TERMS Network intrusion detection, deep hierarchical network, raw feature, feature importance.

I. INTRODUCTION

With the continuous expansion and rapid development of
the Internet, it has brought great convenience to network
users. But along with the development of the Internet, there
have also been a series of attacks. A targeted attacker takes
appropriate attacks against a specific network to cause the
network to crash, thereby failing to provide users with safe
and reliable services, resulting in huge economic losses. The
task of network intrusion detection is to discover suspicious
attacks [1] and take corresponding measures to protect the
network from sustaining attacks and reduce economic losses.
Traffic classification is an important task of network intru-
sion detection [2]. It requires researchers to accurately judge
the collected traffic datasets and detect traffic with attack
behaviors. Traffic classification mainly analyzes some key
fields in the traffic packets to determine whether the network
is attacked or has abnormal behaviors that violate network
security. According to the classification test results of the
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traffic, a feedback message is sent to the network to determine
whether the network needs to disconnect or give an alarm
message.

In order to detect abnormal traffic efficiently, the traf-
fic packets are usually divided into flow [3] according
to the source ip, destination ip, source port, destina-
tion port, protocol, and timestamp. At present, there are
mature traffic detection technologies, including port-based
method, payload-based method and statistical feature-based
method.

The port-based traffic detection method [4] is commonly
used and effective in the early days. In the early days of the
Internet, network protocols used for network traffic were rel-
atively simple, and specific applications basically used fixed
port numbers. Therefore, when an application is attacked by
other applications, abnormal traffic packets can be effectively
detected based on the port number. However, with the advent
of dynamic port allocation technology, ports can be easily
redirected. Therefore, the port-based traffic detection method
cannot adequately express the traffic attributes of the net-
work, and the traffic detection effect is often poor.
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The payload-based traffic detection method [5], [6] uses
the information of the application layer protocol to express
the features of the traffic, the most representative of which
is the deep packet inspection (DPI) technology [7]. Deep
packet inspection technology needs to decrypt and encrypt
the transmitted traffic data. By modeling and analyzing the
transmitted data information, malicious traffic packets can be
detected very effectively. Although the deep packet inspec-
tion technology is a widely used abnormal traffic detection
technology in practical applications, with the rise of encryp-
tion protocols (such as https) and the increasing emphasis
on privacy, deep packet inspection technology is no longer
recommended. In addition, the use of deep packet inspection
in the decryption processing of traffic is very expensive.
With the rapid growth of Internet traffic, deep packet inspec-
tion technology needs to consume huge computing resources
when decrypting traffic packets.

The statistical feature based traffic detection method [8]
generally uses the packet arrival time, the packet size and
the statistical features of the traffic packet fields (eg, average,
maximum, minimum) to express the attributes of the traffic.
Using these artificially designed features and machine learn-
ing algorithms to analyze and detect abnormal traffic [9] have
become relatively reliable methods, but the traffic data needs
to be accurately labeled when training a supervised algorithm
model.

In the previous work, researchers mainly operated from
the data level to improve the classification accuracy and
other metrics. Whether it is traditional machine learning algo-
rithms or various neural network algorithms in deep learn-
ing, researchers try to extract information from traffic data
through complex feature engineering. Their feature engineer-
ing can extract the temporal feature and spatial feature of the
flow data, but feature engineering will lose some information
or change the original temporal and spatial features of the
traffic packets. Yeo er al. [10] extracted temporal features
such as fiat, biat and duration, while Yu et al. [11] extracted
temporal features such as activation time of flow, time inter-
val, packet arrival time and spatial features such as packet
number, [P address and transmission direction. Through the
traffic features they extracted, algorithms can only use the
missing traffic data information to perform classification, so
the classification accuracy and other metrics have reached the
bottleneck and can hardly continue to improve.

This paper uses the deep learning method in the field
of machine learning to classify flow. The neural network
model in deep learning can automatically extract features
from the input data for training. It has good self-adaptation,
self-organization and promotion ability to make the sys-
tem have higher detection efficiency. The proposed method
only uses the original information of traffic data as the fea-
tures of flow, and uses the hierarchical network structure
to automatically learn the spatial and temporal features of
flow without complex feature engineering. By analyzing the
experimental results, we find that the spatial and temporal
features extracted by the separate CNN and LSTM models
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have similar shortcomings compared with the feature engi-
neering. The data does contain rich features with classifi-
cation recognition capabilities, but since the separate CNN
and LSTM only utilize the spatial feature or temporal fea-
ture of flow respectively, this is equivalent to discarding
some information. So if we want to further improve the
classification accuracy and other metrics, we need to extract
the spatial and temporal features of the flow simultane-
ously using a hierarchical network. Code has been released
at hitps://github.com/chenxu93/abnormal-traffic. The main
contributions of this paper are as follows:

(1) We propose a new method for extracting flow features,
which preserves all the information of the flow as much as
possible. The flow features we extracted do not require any
prior knowledge, so we don’t need to manually extract the
flow features with specific meanings.

(2) For the first time, we propose a new deep hierarchical
network model structure to learn their temporal features and
spatial features simultaneously from the original flow data.
Our model achieves the best performance on all metrics.

(3) We propose a method to analyze the flow features,
which can find the features that contribute significantly to
abnormal flow detection and we give the true meanings of
these important features.

The structure of this paper is as follows. Section II
describes some of the related work of network intrusion
detection. Section III details the abnormal flow classifica-
tion detection model we used in this paper. In section IV,
we describe the two datasets used in this paper and show
the experimental results we performed on the two datasets.
In section V, we analyze the flow features that have important
contributions to abnormal flow detection. Finally, Section VI
gives a conclusion of this article.

Il. RELATED WORKS

The concept of intrusion detection technology was first pro-
posed by Anderson [12] in 1980, with the goal of identifying
anomalous behaviors in the network. Reduce the losses of
the network by taking appropriate measures against abnormal
behaviors. Currently, many researchers perform normal or
abnormal classification by extracting characters or numeric
features from traffic packets.

Fahad er al. [13] proposed a Global Optimization
Approach (GOA) and used feature selection methods to clas-
sify spatial and temporal domain traffic data to 97% accuracy.
Bang et al. extracted the temporal and spatial features of
traffic data from LTE signaling and used the semi-Markov
model to detect attacks in wireless sensor networks. Their
method can effectively separate attack nodes and the false
positive rate is very low [14]. Yang [15] proposed a new type
of abnormal network traffic detection algorithm in the cloud
computing environment. They proposed an Ent-SVM abnor-
mal traffic detection system framework mainly considering
the source IP address number, source port number, desti-
nation IP address number, destination port number, packet
type number and network packet number. By calculating

37005



IEEE Access

Y. Zhang et al.: Network Intrusion Detection: Based on Deep Hierarchical Network and Original Flow Data

the mixed information entropy and the eigenvalues of the
canonical network, the SVM algorithm is used for intrusion
detection. The proposed model can detect network abnormal
traffic with high precision on large-scale datasets. Ertam and
Avci [16] proposed a GA-WK-EML network traffic classi-
fication model. They use genetic algorithms to select the
best parameters based on the Wavelet function algorithm
Extreme Learning Machine (WK-ELM). Through the adjust-
ment of parameters, the accuracy of traffic classification
exceeds 95%. Nezhad et al. [17] extracted the number of
packets and the number of source IP addresses from the
network traffic as the traffic detection indicator per minute
to detect DoS and DDoS attacks. They built a time series
of packet numbers and normalized them using the Box-Cox
transformation. The ARIMA model is proposed to predict the
number of packets every other minute, and then the chaotic
behaviors of the prediction error time series are detected
by calculating the maximum Lyapunov exponent. Through
simulation, it is found that the number of data packets and
the number of source IP addresses increase sharply during the
attack time, and the classification accuracy rate for normal
and attack traffic reaches 99.5%. Li et al. [18] proposed a
multi-layer anomaly traffic detection model, which extracts
the features of different network layers and uses PCA and
random forest algorithms to remove redundant features. The
detection accuracy and false positive rate of the model are
improved by obtaining high-quality features. Roy et al. [19]
designed a response feature from the KDD Cup99 dataset
and classified the traffic using a deep neural network. The
experimental results show that the deep neural network has
better classification accuracy than SVM. Zhou et al. [20]
extracted 256 features from the flow and mapped them into
16*16 grayscale images, and then used the improved convo-
lutional neural network to classify flow. Their model has a
good classification result for data types with large data vol-
ume, but the classification of data types with small data vol-
ume is very poor. Yuan et al. [21] proposed a recurrent neural
network model for deep learning. They extracted 20 fields
from continuous flow packets sequence and generated a
three-dimensional feature map using a sliding time window
of length T. The experiment found that the proposed model
reduced the error rate by about 5 percentage points compared
to the traditional machine learning algorithm. Kim et al. [22]
used the LSTM network to perform five classifications in the
KDD dataset. Although the classification results are ideal,
the KDD dataset is too old and there are only four types of
attacks. These types of attacks are no longer sufficient for
today’s network intrusion detection research. However, we
found that the previously mentioned methods use different
flow features, and the datasets used have been released for a
long time without including some recent new attack types.
In addition, most researchers use a shallow classification
model, which can achieve better classification results when
the feature dimension is small, but when the amount of data
used is large and the feature dimension is large, the classifi-
cation effect will be poor.
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In this paper, we do not artificially design and extract
the characters or statistical features in the flow, but extract
the original hexadecimal codes in the flow, by mapping the
original codes into equal-length decimal numbers as the fea-
tures of the flow. We designed an improved deep hierarchical
network model to classify flow, the CICIDS2017 dataset
and CTU dataset were used in the experiments. These two
new datasets contain a large number of traffic packets and
attack types. The experimental results show that the proposed
model can still achieve 99.9% classification accuracy under
the condition of more types and numbers of traffic. In the
experimental section, we compared the existing methods of
Wang et al. [23] in detail, and found that our model had fewer
parameters and a very a low miss detection rate, and proved
that our model can rapidly converge through experiments.
The differences between our proposed solution and existing
methods such as BWManager [24] and LTE signaling attack
detection scheme [14] include: 1) We use deep learning meth-
ods rather than traditional machine learning algorithms or
statistical learning methods. 2) Our method requires the use
of original traffic data generated by network users for analysis
and detection, rather than analyzing the resources of the
communication system for attack detection. 3) Our approach
can not only detect network attacks in specific networks such
as SDN, but also detect most common attacks on the Internet
and only require traffic data generated by these networks.
Therefore, our method can detect a large number of attack
types, but more importantly, it can satisfy the attack detection
in the big data environment by using deep learning.

ill. METHODOLOGY

In this section, we designed an anomaly traffic detection
model named deep hierarchical network. The deep hierar-
chical network consists of two layers of the neural network
algorithms model. The first layer is based on the improved
LetNet-5 convolutional neural network to extract the spatial
features of the flow, and the second layer uses the LSTM
network to extract the temporal features of the flow. The
two networks are simultaneously trained by cascading into a
hybrid network to enable the network to automatically extract
the spatial and temporal features of the flow. Before introduc-
ing the deep hierarchical network, we will first introduce the
composition of the traffic data used by the training model.

A. DATA PREPROCESSING
In this paper, the original traffic packets are used as the net-
work intrusion detection analysis. Compared with the com-
monly used artificial traffic packets data extraction method,
the method we proposed can retain all the feature information
of each traffic packet. We do not need to filter or design the
traffic features that need to be extracted. In the Wireshark we
can see that the original traffic packets are some hexadecimal
codes, as shown in FIGURE 1.

The process of extracting traffic features is as follows:

(1) data: Each traffic packet has an Ethernet layer, a net-
work layer, a transport layer, and an application layer. In this
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Algorithm 1 Original Flow Data Extraction
Input: network traffic pcap files.
Output: original flow data and its labels.
Step 1: transform pcap files to txt files.
for each pcap do
Get flows based on the five-tuple information of traffic packages.
for each flow do
Transform flow pcap file into txt file with tshark to get flow’s original hexadecimal data
end

end
Step 2: extract the original flow features from the txt files
create a null list as all of the flows feature vectors,flows=[].
for each txt file do
create a null list as all of the packages feature vector in the flow,flow_feature=[].
for each package do
create a null list as each package feature vector in the flow,pkt_feature=[].
get the 16th to 175th hexadecimal bytes of the package to generate the package feature vector.
if the number of bytes in the package less than 176 do
fill with O to the 175th byte
if the number of package less than 10 in the flow do
fill with O to the 10th package
updatae each package feature vector, pkt_feature.
add pkt_feature vector into the flow_feature vector

end

label the flow base on the five-tuple information in the last dimension of the flow_feature vector

add flow_feature vector into the flow vector
end

CLUUM [1c 6T 65 c@ 43 92 08 @0 27 9d @5 4d 03 ool FERY

6@ 92 Se 4c 40 00 80 @6 cc 4d 0 a8 @1 7e Qé_gg
@7 eb c@ Qe @d @5 @f b3 @9 74 39 33 5a c1 50 18
@@ fc 5 5c 86 00 7b 22 69 64 22 33 31 34 31 33
36 2¢ 22 6a 73 6f 68 72 78 63 22 3a 22 32 2e 38
22 2¢ 22 6d 65 74 68 6T 64 22 3a 22 6b 65 65 78
61 6C 69 76 65 64 22 2¢ 22 7@ 61 72 61 6d 73 22
3a 7b 22 69 64 22 33 22 34 33 33 65 37 32 65 32
2d 38 34 62 30 2d 34 37 31 37 2d 39 61 36 61 2d
65 34 37 39 37 66 38 35 33 34 30 33 22 7d 7d @a

FIGURE 1. Raw traffic packet data.

paper, we do not use the data of the Ethernet layer and the
network layer’s Version and Differentiated Services fields.
Because in the Ethernet layer, the three fields are the MAC
source address, the MAC destination address, and the proto-
col version. According to Anderson et al.’s [12] analysis of
the features of the flow, these fields are usually not used as
the features of the traffic packets. The first line in FIGURE 1
is the raw data of a traffic packet we discarded.

(2) split: We use the SplitCap tool to split traffic packets
with the same five-tupple information into a flow [25]. In the
obtained flows, we found that the number of traffic packets
contained in different flows is not the same within a certain
timestamp. So we don’t use all the traffic packets in a flow.
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(3) vectorization: Statistics show that the number of traffic
packets in most flows is less than 10, but the number of traffic
packets in some flows is greater than 10 or even exceed 100.
Since the payload length of each traffic packet is not equal,
in order to use our raw data to train our classification model,
we only extract 160 bytes in each traffic packet as the traffic
packet features. Therefore, if the packet length of a packet
is less than 160 bytes, then we need to use O padding for
this packet. If a packet is longer than 160 bytes, we only
take the first 160 bytes. In order to make the data sent to
the model has the same dimensions, we only use the first
10 traffic packets of each flow. So, for each flow we extracted
1600-dimensional raw data. Original flow data extraction
method is shown in Algorithm 1.

B. CNN MODEL
CNN'’s convolution operation has good spatial sensing abil-
ity, and it is widely used in image processing such as face
recognition [26] and has achieved good results. In the net-
work, the traffic packets generated by users are fragmented
during the transmission process [27], and the IP field of each
traffic packet indicates the spatial features of the flows. Con-
sidering the spatial features of traffic data, the first layer of
our deep hierarchical network uses the CNN model to extract
spatial features of traffic packets.

This paper uses the improved LeNet-5 network struc-
ture [28], which is a classic handwritten digit recognition
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FIGURE 2. CNN network structure model.

CNN network. In this paper, the 1600-dimensional features
are first converted into a 40*40 grayscale image as the input to
the CNN network input layer. The hidden layer of CNN uses
two convolution layers and two maximum pooling layers to
perform spatial feature extraction on the original flow data.
Among them, the first convolution layer uses 32 5*5 con-
volution kernels, and then performs the maximum pooling
operation. The second convolution layer uses 64 3*3 convolu-
tion kernels and then performs maximum pooling operations.
After convolution operations, the CNN hidden layer first uses
the ReLU activation function to transform and then uses the
maximum pooling operation. The original 40*%40 grayscale
image becomes 8%*8 with 64 channels of an image.
After performing a flatten operation on an 8*8*64 image,
a 4096-dimensional vector is obtained and then sent to the
output layer of the CNN. CNN’s output layer uses a fully con-
nected layer, and the fully connected layer uses 1600 neurons.
The purpose is to maintain the same dimensional data feature
as the original traffic data after spatial feature extraction. In
addition, in order to prevent over-fitting, a dropout operation
is performed after the fully connected layer to randomly
inactivate some of the neurons of the fully connected layer.
The CNN network structure used in this paper is shown in
FIGURE 2.

The convolution operation uses an f*f-sized convolution
kernel w to perform a sliding convolution on a size n*n
picture, and each sliding convolution produces a new feature.
Suppose X is the input of the convolution, b is the bias term,
¢; is the new feature produced by the convolution at the i-th
layer, and o, is the activation function ReLU. Then the new
features obtained by the convolution operation are:

ci =0, (0*X; +by) ()

After the convolution operation, the feature map of n x nwill
generate a feature map of ¢ = (n—f + 1) x (n—f + 1) size
through a convolution kernel sliding window of size f *f.
Maximum pooling is carried out for feature map c after
convolution, and the maximum value in the selected window
is taken as the final feature. The final feature map size is:

[((n=f + 1) * (n=f + D] /2.
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C. LSTM MODEL

The Recurrent Neural Network (RNN) in deep learning is
widely used in speech processing, and has achieved good
results in speech recognition and time series processing. In
the traffic data, the transmission of the traffic packets has
a chronological order, and the arrival of the traffic packets
also has a sequence in the receiving end due to the delay
problem. At the same time, the number of traffic packets sent
within a certain timestamp varies, and these traffic packets
characteristics indicate that they have temporal features. This
paper uses the LSTM [29] network structure, and the LSTM
network structure is a variant of RNN. The cell processor
structure in the LSTM algorithm determines whether or not to
add a useful message. Since the cell contains data operations
for the input gate, the forget gate, and the output gate control
network, this has a good effect in dealing with the dependency
problem of a long sequence. The cell structure is shown in
FIGURE 3.

Output
Signal Output Gate
switch I
Signal
R switch
Cell
Ss\l\irt]:f:— Input Gate Ce //

Previous Outout

FIGURE 3. LSTM cell.

The calculation operation of each neuron node in LSTM is
as follows:

(1)forget gate: The first step in the LSTM network is to
determine the information to be discarded from the cell,
which is done through the forget gate layer. The forget gate
first reads the data information of the previous hidden layer
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h;—1 and the input layer x;, and then outputs a value between
0 and 1 to the cell state C;_; through the activation function.
1 indicates complete reservation of information, and 0 indi-
cates complete discard of information.

Jo = o(Wr.[hi—1, x:] + by) @

(2)input gate: The input gate determines how much new
information is stored in the cell state. The update of the cell
state consists of two steps: first, the input gate layer (sigmoid
layer) determines the value to be updated by the cell, and then
the tanh layer creates a candidate value vector C to added it
the cell state.

i = U(Wi-[ht—l»xt] + bi) (3)
C; = tanh(We.[hi—1, x/ 1+ bc) “
Cr=fixC—1+i_1 %G )

(3)output gate: In order to determine the final output value,
it is necessary to determine the state of the cell. First, use
the sigmoid layer to determine which parts of the cell state to
output. Then, the cell output is multiplied by the output of the
previous sigmoid layer by a tanh layer operation as the final
output value. The purpose of the tanh layer is to map cell state
values between -1 and 1.

or = o(Wo.[hi—1, X1 + bo) (6)
ht = O * tanh(C,) (7)

Since the arrival time of the traffic packets in each flow is
different and the values of the fields such as TTL are also
different. Different from the methods of dealing with tempo-
ral feature like Feghhi and Leith [30] and Shen et al. [31], this
paper uses the LSTM network to perform automatic temporal
feature extraction on the original flow data. In this paper,
the LSTM network uses two layers of cells for temporal
feature extraction. Each cell of LSTM uses 256 hidden layer
units. The cell activation function of each layer uses the
sigmoid function for nonlinear operation. The last layer of the
LSTM network uses a fully connected layer, and the number
of neurons in the fully connected layer is equal to the number
of classes of flow.

D. DEEP HIERARCHICAL NETWORK
Ahuja [27] showed that network flows contain a large number
of features that can be analyzed. However, these features are
based on statistics. These features, which are designed by
hand, cannot express the temporal and spatial characteristics
of flows by using traditional algorithms. These artificially
designed features transform the intrinsic features of flows
from the very beginning, and also lose some of the features
of flows, so the high-level semantics of flows cannot be
fully represented. The CNN and LSTM networks, along with
deeper depths and using the original flows data can learn
a high degree of semantic features and improve the perfor-
mance of all metrics.

Since CNN and LSTM network can only extract the spatial
feature and temporal feature of flows separately and can not
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fully express all the feature information of traffic, this paper
can extract the spatial feature and temporal feature of flow
simultaneously by forming a hybrid network structure model
by combining CNN and LSTM networks. The hybrid network
structure model is divided into two parts. Since the inputs to
the CNN and LSTM network structures have different forms,
we reshape the spatial features of the CNN network output at
the junction of the CNN and the LSTM network. Since each
flow extracts the first 10 traffic packets, each traffic packet
extracts only the first 160 bytes. To correspond to each traffic
packet, we make the input size of the LSTM network 160 and
the input time step to 10. The output of the deep hierarchical
network model is the probability of belonging to a certain
kind of flow, and its structure is shown in FIGURE 4.

In this paper, the deep hierarchical network model struc-
ture classifier uses the softmax classifier, and the softmax
classifier outputs the class probability of each type of flow.
The index with the highest probability is the classification
result of the hierarchical network on a flow. The loss func-
tion used in the model is the mean square loss function,
and the training optimizer uses AdamOptimizer [32],which
uses adaptive moment estimation for gradient descent. The
training and testing process of the deep hierarchical network
structure model is shown in Algorithm 2.

IV. EXPERIMENTS
In this section, we performed three different experiments on
the CICIDS2017 dataset and the CTU dataset respectively.
In the first experiment, we used the CNN model to extract
the spatial features of the flow to classify it. In the second
experiment, we used the LSTM model to extract the temporal
features of the flow to classify it. In the third experiment,
we extracted the spatial and temporal features of flow using
the proposed deep hierarchical network model to classify it.
Our experimental environment is as follows:

CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

GPU: GTX1080ti 11GB

RAM: 32GB

OS: Ubuntu 16.04

A. DATASET
As described by Weller-Fahy er al. [1], A key issue with
most intrusion detection datasets is the lack of a sufficient
number and types of traffic packets. This article uses two
different datasets to conduct experiments, both of which were
recently released and these two dataset contain more traffic
and types. Reliable validation and test dataset compared to
other datasets.

(1)CICIDS2017 Dataset

The CICIDS2017 dataset is an intrusion detection and
intrusion prevention dataset that was open sourced by Cana-
dian Institute for Cybersecurity in 2017.
Sharafaldin er al. [33] designed a real attack scenario to
collect traffic data by designing an attack network and a
victim network. This dataset collects benign traffic and the
most common attack traffic from Monday to Friday and
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FIGURE 4. Deep hierarchical network structure model.

Algorithm 2 Training and Testing Process of the Deep Hierarchical Network
Input: Network flow images, each flow image include 10 packages(pl,p2...p10).
Output: flow category probabilities list [c1,c2...cn].
Step 1: CNN model learn spatial features
1. Reshape the 1600-dimensional flow feature into a 40*40 grayscale image.
2. Add the first layer of convolution operation(filter size:5*5%*32)followed by the first max pooling layer of
size 2%2.
3. Add the second layer of convolution operation (filter sizeAAA§3%3%64) followed by the second max pooling layer
of size 2*2.
4. Add a full connection layer with 1600 neurons and then perform a dropout operation to obtain 1600-dimension
temporal features.
Step 2: LSTM model learn temporal features
1. Reshape the temporal features into a 10*160 feature map.
2. Add the first Istm cell with 256 neurons.
3. Add the second Istm cell with 256 neurons.
4. Add a dense layer whose output are spatial&temporal features.
5. Add a softmax layer to output the probability of each class of flow.
Step 3: Train hybrid model
1. Add a mean square error loss function.
2. While train iteration do not complete,do
a. Get a mini-batch train dataset as the model input.
b. Compute the mean square erroe loss function j=1,n is the number of flow classes.
c. Update the weights and biases using the Aamoptimizer gradient descent optimization algorithm.

end

Step 4: Test model
1. Test the trained model using the test dataset
2. Return the class of each test flow.

gives real-world pcap files data. On Monday, no attack traffic by the network for a fixed period of time every Tuesday
collected only benign traffic and the attack network launched through Friday. Finally, the author accurately labeled the flow
an attack on the victim network to collected traffic generated according to the timestamp of the flow, the source IP, the
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destination IP, the source port, the destination port, and the
protocol.

This paper extracts the benign flow and 10 types of attack
flow from the CICIDS2017 dataset as the training and test
data of the deep hierarchical network model, and extracts
the flow features by extracting the original flow data in
section 3. We labeled our generated flow according to the
CICIDS2017 data labeling method to get a real and reliable
label. Finally, we extract the number and type distribution of
flows as shown in TABLE 1.

TABLE 1. CICIDS2017 dataset.

Flow type Number | Percentage
Benign 339621 | 61.32%
DoS GoldenEye 7458 1.35%
DoS Hulk 14108 2.55%
DoS Slowhttp 4216 0.76%
DoS Slowloris 3869 0.70%
SSH Patator 2511 0.45%
FTP Patator 3907 0.71%
Brute Force 1353 0.24%
Web Attack | SQL Injection 12 0.00%
XSS 631 0.114
BotNet 1441 0.26%
Port Scan 158673 | 28.65%
DDoS 16050 2.90%

According to the number of flows we extracted in
TABLE 1, it can be found that the percentage of benign flow
and port scan attack flow are far greater than other types of
the attack flow. In the multi-classification training, in order to
deal with the deviation caused by data imbalance, we perform
random downsampling on benign flows and port scan flows.
In the binary classification, we use all the benign flows and
attack flows.

(2)CTU Dataset

The CTU dataset is the BotNet traffic data collected by
CTU University. This dataset contains a large amount of
BotNet traffic and is mixed with normal traffic and back-
ground traffic. This dataset takes into account different types
of BotNet traffic in different scenarios. The traffic in the
PCAP files format is captured in each scenario and the traffics
are labeled. This paper selects 11 types of traffic generated
between April 2017 and April 2018. It includes 1 type of
benign traffic and 10 types of BotNet traffic. The specific
quantities of various types of traffic are shown in TABLE 2.

Since the percentage of benign flow and attack flow in the
CTU dataset is not very different, we do not need to adopt data
balance processing when performing multi-classification and
binary classification. Although the Percentage of the total
number of BotNet traffic between Viaxmr and Trojan is
relatively small, considering that these two type flows are
the more common attack flow, we still use them for intrusion
detection analysis to find suspicious attack behaviors.

B. IMPLEMENTATION DETAILS
We train the hierarchical network in a joint end-to-end
training method. The input to the CNN network is a
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TABLE 2. CTU dataset.

Flow type Number | Percentage
Benign 64393 29.08%
Sathurbot 15659 7.07%
Trickster 14454 6.53%
TrickBot 61865 27.94%
Dridex 6805 3.07%
WebCompanion | 11552 5.22%
Viaxmr 1028 0.46%
Trojan 1021 0.46%
CoinMiner 18684 8.44%
HTBot 15385 6.95%
Ursnif 10581 4.78%

40*40 grayscale image, the first layer convolution operation
is 32 5*5 kernels, and the second layer convolution opera-
tion is 64 3*3 kernels. The final 40*40 grayscale image is
downsampled as 8¥8*64, and a 1600-dimensional feature is
output through a fully connected layer. Because the LSTM
network inputs a time signal once within a timestep, we divide
the 1600-dimensional feature of the CNN network output
into a matrix size of 10%160. The reason for dividing into
10 inputs is because the 1600-dimensional feature represents
10 consecutive traffic packets in a flow, thus preserving the
temporal features of the flow. The LSTM network consists of
two layers, each layer with 256 neurons. We trained 1 epoch
on the training set, and the mini-batchsize was 128. In the test
phase we used mini-batchsize 2000.

The training method uses joint end-to-end training to train
both CNN and LSTM networks. The forward process trains
the CNN network and then trains the LSTM network. The
backward process first calculates the loss of the LSTM and
then calculates the loss of the CNN network. The joint end-to-
end training method can ensure that the hierarchical network
can simultaneously learn the temporal features and spatial
features of flows and improve the classification accuracy and
other metrics in the test phase.

C. EVALUATION METRICS
Our evaluation of model performance is based on the follow-
ing metrics:

TP 4+ TN
Accuracy = 3
TP+ FP+TN + FN
o TP
Precision = ——— 9
TP + FP
TP
Recall = —— (10)
TP + FN
2 % Precision * Recall
F1 — Measure = (11D

Precision + Recall

Here, TP is the number of positive samples in the test dataset
and the model classification is also classified as positive
samples. FP is the number of samples that are actually nega-
tive samples in the test dataset but are classified as positive
samples. TN is the number of negative samples actually
measured in the test dataset and the model is also classified
as negative samples. FN is the number of test samples that
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are actually positive samples but the model is classified as
negative samples.

D. RESULTS

According to the original features we extracted from the flow,
we perform binary classification and multi-classification on
the CNN model, the LSTM model and the deep hierarchi-
cal network model respectively. The binary classification
experiment performs normal and abnormal classification on
flows, and the multi-classifications experiment performs a
class of normal and ten kinds of abnormal classification on
flows. The experimental results on the CICIDS2017 dataset
are shown in TABLE 3, and the experimental results on the
CTU dataset are shown in TABLE 4. CNN2 indicates that
the binary classification is performed on the CNN algorithm,
CNNI11, which indicates that the CNN algorithm performs
multi-classifications (1 benign plus 10 abnormal flows), and
CNN+LSTM2 indicates that the binary classification is per-
formed on our proposed deep hierarchical network. LSTM2,
LSTM11 and CNN+LSTM are the same.

From the experimental results on the CICIDS2017 dataset
in TABLE 3, we can find that the deep hierarchical network
model proposed by us has better performance than the tra-
ditional machine learning algorithm model by Sharafaldin
et al. [33]. They manually extracted 80-dimensional features
from each flow for learning. Our model has better experimen-
tal (improved the classification accuracy by about 3%) results
on the three metrics of precision, recall and Fl-measure.
At the same time, the accuracy metric we have given shows
that our proposed deep hierarchical network model has a
good detection efficiency for abnormal traffic. Although the
proposed hierarchical network model has only a slight per-
formance improvement compared with the CNN or LSTM
model alone, in the actual network environment, because the
amount of traffic data is very large, it is better to detect the
traffic packets with attack behaviors as many as possible.

On the CTU dataset, the experimental results of the deep
network model we proposed are shown in Table 4, com-
pared with the experimental results of Huang et al. [34].

TABLE 3. CIC2017 dataset experiment results.

Metrics Accuracy Precision Recall Fl-measure
Proposed Methods
CNN2 0.998545 0.997576 0.998524  0.99805
LSTM2 0.99417 0.994401 0.990289  0.992341
CNN+LSTM2 0.999125 0.998499 0.999251 0.998875
CNNI11 0.997778  0.999419 0.999543  0.999481
LSTM11 0.992722  0.997202 0.99716  0.997181
CNN+LSTM11 0.998111 0.998475 0.999847 0.999161
Sharafaldin’s Method[27]
KNN - 0.96 0.96 0.96
RF - 0.98 0.97 0.97
D3 - 0.98 0.98 0.98
Adaboost - 0.77 0.84 0.77
MLP - 0.77 0.83 0.76
Naive-Bayes - 0.88 0.04 0.04
QDA - 0.97 0.88 0.92
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TABLE 4. CTU dataset experiment results.

Metrics Accuracy Precision Recall F1-Measure
Proposed Methods
CNN2 0.998174 0.998522 0.998898  0.99871
LSTM2 0.994261 0.998398 0.993067  0.995725
CNN+LSTM2  0.998217 0.99912 0.998382  0.998751
CNNI1 0.970087 0.998363 0.992131  0.995237
LSTM11 0.963913 0.997494 0.99155  0.994513
CNN+LSTMI11 0.987696 0.99843 0.998082 0.998256
He Huang’s Methods[30]
HDSN - 94.7 94.9 -
STL - 97.7 96.3 -
MIT - 97.9 98 -

TABLE 5. Influence of input data size on classification accuracy.

Model CNN LSTM CNN+LSTM
Header&Payload 99.57146889 99.39217945 99.63495497
Packet header  96.95600128 92.49089813 97.21829987
Payload 40.61399841 40.61399841 40.61399841

He Huang’s method only gives two metrics of precision and
recall, and we give the four metrics of accuracy, precision,
recall and Fl-measure. The experimental results show that
our model is better on the two metrics of precision and recall.
We retained more accurate values to compare performance
between models more efficiently.

The three different experiments of CNN model, LSTM
model and deep hierarchical network model on two datasets
show that CNN network model and LSTM network model
can extract spatial features and temporal features of flow
separately. The separate CNN model and LSTM model can
achieve good classification results in the binary-classification
and multi-classification experiments. But comparing our pro-
posed deep hierarchical network model to extract the spatial
and temporal features of flow at the same time, our model
can further improve the performance of these classification
metrics. This shows that our proposed deep hierarchical net-
work model can indeed learn the deeper abstract features of
flow and perform better. The experimental results on both
datasets are very good, indicating that our model has good
generalization ability.

In order to study the influences of input data size and type
on experimental results, we further studied the impacts of
individual header data and payload on classification accuracy.
Specifically, for each flow we extract the header and pay-
load of the first five traffic packets. For each traffic packet,
we extract the first 50 bytes of the header and payload respec-
tively. By padding, we extend a flow to a 256-dimensional
feature vector and then reshape the network to a size of 16¥16.
We used the header and payload raw data to conduct multi-
classification experiments on the models we designed. The
experimental results are shown in TABLE 5.

Through experimental result in TABLE 5, we find that the
packet header information has more classification capability
than the payload information. In particular, when the payload
information is used alone, the model does not have the ability

VOLUME 7, 2019



Y. Zhang et al.: Network Intrusion Detection: Based on Deep Hierarchical Network and Original Flow Data

IEEE Access

TABLE 6. CICIDS2017 dataset semi-supervised model experimental results.

Clusters 2 3 4 5

6 7 8 9 10

Accuracy 94.8701 94.9396 94.8744 94.8605 94.7814 94.857 94.9014 94.8448 94.8396

TABLE 7. CTU dataset semi-supervised model experimental results.

CLusters 2 3 4 5

6 7 8 9 10

Accuracy 84.2607 84.1506 84.4358 84.3133 84.3612 84.2683 84.2817 84.3353 84.2923

to recognize when performing multi-classification. This is
because in most cases the differences between payloads trans-
mitted by the same host are not obvious and the payloads of
the transmission are few, resulting in a very sparse feature
matrix. Compared with the proposed method, by extract-
ing the first 160 bytes of each traffic packet that include
the packet header information and the payload information,
the classification accuracy can be further improved under the
same network structure. The gain obtained by the combined
packet header and payload is mainly due to the addition
of field information of the application layer, which further
enhances the expression features of the traffic to make the
traffic data more distinguishable. In fact, by analyzing the
payload part, we found that the obtained feature vectors are
very sparse and have too many O elements, which make our
network models unable to distinguish the categories well.

In addition, we wused the statistical features of
Vladutu et al. [9] and the semi-supervised machine learn-
ing algorithm model of the Kmeans+Decision Tree on
CICIDS2017 and CTU datasets for multi-classification
experiments. The experimental results on the two datasets are
shown in TABLE 6 and TABLE 7 respectively.

Through the experimental results in TABLE 6 and
TABLE 7, we found that the classification accuracy of flow
on the CICIDS2017 dataset exceeded 94%, but the exper-
imental results were inferior to the experimental results of
the deep hierarchical network model proposed by us. The
experimental results on the CTU dataset are more than 10 per-
centage points worse than our proposed deep hierarchical net-
work model. The experimental results show that the statistical
features and traditional machine learning algorithms can not
express the flow information as much as possible, which leads
to the bottleneck of classification accuracy.

Further, we find that the network structure proposed by
Wang et al. [23] is partially similar to the model proposed by
us, but our model can perform better than their experimen-
tal results with fewer model parameters and converge very
quickly. The difference in the recall metric is very obvious,
we can reach 99.98% but they can only reach 96.91%, which
indicates that our model has a very low miss detection rate.
In fact, one-hot-encoding operation is adopted in the data
preprocessing part of their model, which not only introduces
feature engineering operation but also introduces a large
number of useless parameters to increase the computational
complexity of the model. Because the operation of their one-
hot-encoding is to deal with each traffic packet, assuming a
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TABLE 8. Model convergence analysis.

Model CNN2 LSTM2 CNN+LSTM2 CNNI1 LSTMI11 CNN+LSTMII
Train(s) 207.35 29.84 602.67 190.02  30.83 589.44
Test(s) 11.68 14.67 15.50 12.57 23.83 24.72

traffic packet of length n and an OHE vector length of m,
then their method introduces n (m — 1) O elements. These
large O elements account for (1 — 1/m) percent of the total
traffic packet bytes, which not only introduces additional
computational parameters but also makes network learning
useless. What’s more, their hierarchical network structure is
very different from ours. In their network structure, CNN
extracts features by convolution operation just for each traffic
packet. Firstly, spatial feature extraction is carried out for
r traffic packets in a flow, then feature vectors of r traffic
packets are cached, and finally each feature vector is sent
to the LSTM network for temporal feature learning. In this
way, their four-layer CNN outputs r one-dimensional vec-
tors for one flow, while our two-layer CNN outputs 1 one-
dimensional vector for the whole flow and then sends it to
the LSTM network according to the time step. This further
makes the model have fewer parameters and greatly reduces
the cache storage space, which is an important reason for
the fast convergence of our model. In order to illustrate the
convergence performance of our model in detail, we give the
training and test time of multi-classification of the model on
CICIDS2017 dataset, and the results are shown in TABLE 8.

In TABLE 8, the parameters of the experiment were set
to be the same as all the above experiments. Only 1 epoch
was trained and test time analysis was performed on each
model in 112,000 test samples. From the experimental results,
we found that CNN was more time-consuming than LSTM
in the training stage, while LSTM was more time-consuming
than CNN in the test stage. This is because the convolutional
neural network finally recovers to the original input data size
after downsampling. Many of the 0 parameters in the middle
have become non-zero parameters through learning, so they
become denser through the fully connected layer. For the
LSTM network, since the data is input according to the time
step, the calculation time of the model cannot be significantly
reduced even in the test stage. Experimental results show
that the hierarchical network model proposed by us in the
test stage only about 26% more time consume compares to a
single CNN network and LSTM network, but does not require
additional computing resources.
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TABLE 9. Machine learning algorithms convergence analysis.

Model KNN NB LR RF DT
Accuracy 0.93399 0.62482 0.97829 0.99367 0.99352
Train(s) 44529 38596 10316.78 31.75 84.06
Test(s) 29406.41  6.61 0.64 0.63 0.25

In order to compare with traditional machine learning
algorithms, we trained five classifiers including KNN, Naive-
Bayes(NB), Logistic Regression(LR), Random Forest(RF),
Decision Tree(DT) on the CIC2017 dataset, and each classi-
fier was multi-classified using original flow data. We give the
accuracy of these algorithms, the training time, and the test
time, the results are shown in Table 9. We find that Random
Forest can achieve the highest classification accuracy, but
this is still lower than the result of our proposed algorithm
(0.998111). In terms of convergence, these five algorithms
are quite different. The test time of KNN is about 8 hours,
because the algorithm needs to calculate a large number of
Euclidean distances. The test time of Random Forest and
Decision Tree is low, because the depth parameter of the tree
is set relatively small to prevent overfitting. It indicates that
only a small number of features are required to recognize the
abnormal traffic, and that these strongly separable features
are derived from header fields (Table 5 shows that header is
the main separable feature). In addition, because the payload
of transmission in the dataset is very small, the feature matrix
is very sparse, which is also the reason why the test time of
Random Forest and Decision Tree algorithm is reduced. In the
actual network environment, an attacker usually does not send
a small amount of payload. In this case, the feature matrix will
not become sparse and the test time will become longer.

V. IMPORTANT FEATURE ANALYSIS

In order to explore why our proposed deep hierarchical net-
work model and flow classification method based on original
flow data can achieve such high accuracy. We further analyze
the features that are important for the flow classification
in the experiments and give the actual meanings of these
important features. In this section, we use three different
important feature analysis methods, and weight the average
of the analysis results of the three methods and finally give
the top nine feature scores.

A. THREE METHODS

The principle of three different feature analysis methods is
based on the analysis method of ensemble trees, which is
weight-based, gain-based and cover-based. The three differ-
ent methods are described below.

1) WEIGHT-BASED

The weight-based [35] method is currently the most com-
monly used method, which measures the importance of fea-
tures by counting the number of times a feature is divided
when constructing a subtree. If a feature is divided more times
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during the construction of the ensemble tree, then the more
important this feature is.

2) GAIN-BASED

The gain-based method is a classical feature importance anal-
ysis method proposed by Breiman [36] in 1984. Gain is the
contribution of loss or impurities to all the divisions of a
feature. The gain calculation formula for feature A in a tree
is: g(D,A) = H(D) - H(DIA). Where H(D) is the information
entropy of feature set D in a given tree, and H(DIA) is the
conditional entropy of feature set D given the condition of
feature A. The larger the Gain, the more important the fea-
ture 1s.

3) COVER-BASED

The cover-based method is the relative amount of specified
features observed in the tree. For example, suppose there are
100 observations, there are 3 trees and 4 different features in
the ensemble tree, and assume that the node observations of
feature 1 in the three trees are 10, 5 and 2, then the value of
cover of feature 1 is 17. Similarly, the larger the cover value
of a feature, the more important the feature is.

B. RESULTS

Three different feature importance analysis methods were
used to analyze the original flow data extracted on the
CICIDS2017 dataset. We performed binary classification and
multi-classification experiments on 1600-dimensional fea-
tures. The experimental results are shown in TABLE 10 and
TABLE 11.

TABLE 10. Feature importance analysis: binary classification.

Weight-based
F6 | F198 | F358 | F320 | F188 | F31 | F360 | F1321 | F193 | F148
122 44 30 26 24 20 20 20 20 20
Gain-based
F6 | F198 | F320 | F358 | F193 | F389 | F2 | F188 | F31 |F360
120 | 50 30 26 24 22 22 20 20 20
Cover-based
F6 [F198 | F8 |F193|F320|F358 |F389 | F188 | F360 | F31
98 | 52 32 28 28 24 22 20 20 20

According to the experimental results, we found that in the
binary classification and multi-classification the features of
the three different feature importance analysis methods have
some overlap. This suggests that these repeated features do
have a large impact on the classification results. We compare
the actual meaning of a TCP packet field to add the feature
scores obtained by the three methods and give the actual
meaning of these features in a TCP packet. The results of the
analysis are shown in Figure 5. The actual meaning of each
field is shown in TABLE 12.

According to the actual meaning of the field of a TCP
packet, we find that for multi-classification, the impact of
the TCP payload field on the flow classification is the most
important, and the impact of fragment offset field on the
binary classification is the most important. Combined with
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TABLE 11. Feature importance analysis: multi-classification.

Weight-based

F8 | F687 | F47 | F6 | F388 | F45 | F161 | F41 | F538 | F1446
32| 32 32 30 28 26 | 22 20 20 20
Gain-based
F6 | F687 | F47 |F366 | F8 |F45| F46 | F320 | F161 | F527
52| 38 37 32 30 27 | 25 23 22 20
Cover-based
F6 | F47 |F687 | F26 |F1327 | F45|F366 | F48 | F39 | F166
61| 40 31 27 26 24 | 24 23 20 20

TABLE 12. The actual meanings of the fields.

tp TCP payload ws | Window size
fo Fragment offset p Protocol

up Urgent pointer tl Total length
an | Acknowledge number | sn | Sequence number
f Flags

600 -
binary

I multiclass

500+

score

tp fo up an f ws <] tl sn
fields

FIGURE 5. Important feature weighted score.

the urgent pointer, window size and acknowledge number
fields, we can conclude that malicious flows are usually sent
out in more slices. We found that several of the top 9 features
are features that were previously rarely used by researchers
in the field of network intrusion detection.

VI. CONCLUSION

We consider the artificial design and extraction of the features
of the flow for network intrusion detection will lose part of
the traffic information and thus affect the detection accuracy.
In this paper, we extract the original information of flow and
use our proposed hierarchical network to detect abnormal
flow. Our hierarchical network is a specially designed CNN
and LSTM model that learns spatial and temporal features
from original flow information. To the best of our knowl-
edge, this is the first time that the original information of
flow is used for feature learning. The hierarchical network
model we proposed is significantly better than other net-
work intrusion detection models. In this paper, we use the
CICIDS2017 dataset and CTU dataset. The experimental
results on these two datasets show that our proposed model
can achieve very high accuracy, precision, recall and FI-
measure. At the same time, we analyzed the features that have
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contributed significantly to abnormal traffic detection and
found features that were rarely used by previous researchers.

In the future work, we will design a traffic collection sys-
tem by ourselves. Use our designed traffic acquisition system
to collect real-world traffic data under the environment of our
lab for analysis to detect suspicious attack traffic and evaluate
test results. In addition, we will improve our hierarchical
network model to make the network deeper, enabling the
model to detect unknown types of attacks that have not been
trained.
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