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ABSTRACT The high-quality pansharpened image with both high spatial resolution and high spectral
fidelity is highly desirable in various applications. However, existing pansharpening methods may lead to
spatial distortion and spectral distortion. To measure the degrees of distortion caused by the pansharpening
methods, we conduct in-deep studies on the subjective and objective quality assessment of pansharpened
images. We built a subjective database consisting of 360 images generated from 20 couples of panchromatic
(PAN)/multispectral (MS) images using 18 pansharpening methods. Based on the database, we proposed
a no-reference quality assessment method to blindly predict the quality of pansharpened images via
opinion-unaware learning. The proposed method first extracted features from the MS images’ spectral bands
and typical information indexes which comprehensively reflect spatial distortion, spectral distortion, and the
effects of pansharpening on applications. Based on the features extracted from the pristineMS image training
dataset, a benchmark multivariate Gaussian (MVG) model is learned. The distance between the benchmark
MVG and the MVG fitted on the test image is calculated to measure the quality. The experimental results
show the superiority of our method on our database.

INDEX TERMS Pansharpening, no-reference quality assessment, spatial distortion, spectral distortion,
remote sensing.

I. INTRODUCTION
Pansharpened images with high spatial and spectral resolu-
tion in remote sensing are highly desirable in many fields,
such as visual interpretation and change detection. Typically,
multispectral (MS) images have the high spectral resolu-
tion but low spatial resolution, while panchromatic (PAN)
images have the high spatial resolution but low spectral res-
olution. The purpose of pansharpening is to achieve spatially
enhanced MS images with the same spectral resolution of the
MS and the same spatial resolution of the PAN by fusing the
MS and PAN images [1]–[4], which is important for remote
sensing applications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Marco Anisetti.

In the past decades, a large number of pansharpening
methods have been proposed, which can be broadly classi-
fied into three categories: component substitution (CS)-based
methods [3], [5]–[10], multiresolution analysis (MRA)-
based methods [11]–[20] and variational optimization (VO)-
based methods [21]–[34]. Besides, deep learning (DL)-based
pansharpening methods [35]–[37] have been proposed in
recent years. Though there have proposed large numbers of
pansharpening methods, how to effectively evaluate the qual-
ity of the pansharpened image has not been well addressed
in the current research. Especially the no reference image
quality evaluation is still a challenging problem, due to the
lack of the ideal high spatial resolution reference MS image.

Generally speaking, the quality of the pansharpened image
is evaluated from two aspects: the qualitative evaluation and
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the quantitative evaluation. The qualitative evaluation per-
forms the subjective assessment of the pansharpened image
visually. The quantitative evaluation objectively evaluates the
pansharpened image based on the quality evaluation indexes,
including the full-reference quality evaluation indexes and
the no-reference quality evaluation indexes. Among them,
the full-reference quality evaluation is based on the Wald
protocol that the performances of the fusion methods are
invariant among different scales [1]. For this, both the orig-
inal MS and PAN images are degraded to a lower reso-
lution before pansharpening process, so that the original
MS image can be used as a reference for the evaluation.
Currently, quality measurements for pansharpened images
are developed from two aspects: distortion-based measure-
ment and application-basedmeasurement. For the first aspect,
the widely used full-reference quantitative evaluation indexes
include the correlation coefficient (CC) [3], the spectral angle
mapper (SAM) metric [38], the Erreur Relative Globale Adi-
mensionnelle de Synthèse (ERGAS) index [39], the Q2n -
index [40], etc. Compared to the full-reference image quality
evaluation indexes, the no-reference quantitative evaluation
of the pansharpened image is more challenging, due to the
lack of the reference image for pansharpening. The typical
no-reference methods include the Quality with No Refer-
ence (QNR) [41], and generalized QNR (GQNR) index [42],
etc. For the second aspect, some widely used information
indexes, such as normalized difference vegetation index
(NDVI) [43], normalized differencewater index (NDWI) [44]
and RatioG [45], [46], are applied to evaluate the information
presentation ability of fusion products. Conversely, quality
assessment for the pansharpened image is taken as an indica-
tor to guide the design of different pansharpening methods.

In this work, we conduct in-deep studies on quality pre-
diction issue for pansharpened images from both subjective
and objective perspectives. For this purpose, a subjective
database of pansharpened images was built, which con-
sists of 360 pansharpened images generated from 20 cou-
ples of PAN/MS images using 18 pansharpening methods.
Based on the constructed dataset, we propose a no-reference
image quality assessment (NR-IQA) method for pansharp-
ened images. By analyzing the statistical properties of the
pristine MS images and pansharpened images, features that
comprehensively reflect spatial distortion, spectral distortion
and remote sensing information indexes are extracted. The
features extracted from the pristine MS training dataset are
used to learn an MVG model as a benchmark. By computing
the distance between the benchmark MVG and the MVG
fitted on the testing image, the overall quality score of a
testing pansharpened image is then obtained by pooling the
distances from all patches.

Our work is inspired by the Natural Image Quality Eval-
uator (NIQE) model [47] and the Integrated Local NIQE
(IL-NIQE) model [48], but it performs much better than
NIQE and IL-NIQE for the following contributions:

1) A large-scale subjective performance evaluation
database for pansharpening is firstly constructed.

2) This paper proposed a new no-reference image qual-
ity evaluation method by comprehensively considering the
spatial and spectral distortions of the fused image. Further-
more, typical information indexes, including NDVI, NDWI
and RatioG, are integrated to a form a quality-aware feature
representation.

3) Different from the existing quality assessment methods
for pansharpened images that need degrade the fused MS
image to the same resolution of the reference image, our
method does not require the reference images and ground-
truth subjective scores or down-sample fused MS images,
so that completely blind quality prediction can be achieved.

The rest of the paper is organized as follows: Section II
introduces the related work. Section III describes the con-
struction of the subjective database. Section IV presents
the proposed quality assessment method. The experimental
results are given and discussed in Section V, and finally,
conclusions are drawn in Section VI.

II. RELATED WORK
A. PANSHARPENING METHODS
Pansharpening for remote sensing has beenwidely researched
in the last thirty decades [3], [5]–[37]. Broadly, the pan-
sharpening methods can be classified into three categories
as suggested in [2] and [49]: CS-based pansharpening
methods [3], [5]–[10], MRA-based pansharpening meth-
ods [11]–[20] and VO-based methods [21]–[34]. Besides,
deep learning (DL)-based pansharpening methods [35]–[37]
have been proposed in recent years, which can be regarded as
a new type of pansharpening methods.

The CS-based methods are the simplest and most pop-
ular pansharpening methods, which have experienced the
process from the traditional understanding to the general
understanding. In the traditional understanding, theMS bands
are first projected into a new space based on the spec-
tral transformation and one component is substituted by
the high-resolution PAN image. Then, an inverse projection
is performed to obtain the fused image. The representa-
tive methods include Intensity-Hue-Saturation (IHS) fusion
method [3], Principal Component Analysis (PCA) fusion
method [5], and Gram Schmidt (GS) fusion method [6], etc.
Subsequently, the CS-based methods have been generalized
to a new formalization without explicit calculation of the
forward and backward transformation. The general under-
standing is based on the simple substitution of a single com-
ponent by the PAN image, and the component is generally
obtained by a linear combination of the spectral bands of
the MS images, such as Brovey method [7], Gram Schmidt
Adaptive (GSA) method [8], Band-Dependent Spatial-Detail
(BDSD)method [9], and Partial Replacement Adaptive Com-
ponent Substitution (PRACS) method [10].

The MRA-based pansharpening methods are based on the
spatial detail injection of the PAN image into the resam-
pled MS image. In the early stage, these methods are based
on high-pass filters, such as the High-Pass filter (HPF)
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method [5] and smoothing filter-based intensity modula-
tion (SFIM) method [11]. Subsequently, for better spectral
preservation, methods based on different kinds of discrete
wavelet transform were proposed. These methods include
Additive À Trous Wavelet Transform with unitary injection
model (ATWT) [12], À Trous Wavelet Transform using the
Model 2 (ATWT-M2) [13], À TrousWavelet Transform using
the Model 3 (ATWT-M3) [13], Additive Wavelet Luminance
Proportional (AWLP) [14], [15], etc. In addition, the Gen-
eralized Laplacian Pyramid (GLP) methods using filters to
match the modulation transfer function (MTF) of the sensor
are proposed, such as the MTF-GLP [16], MTF-GLP with
context-based decision (MTF-GLP-CBD) [17], MTF-GLP
with high pass modulation (MTF-GLP-HPM) [18], MTF-
GLP-HPMwith Post-Processing (MTF-GLP-HPM-PP) [19],
etc.

The VO-based methods are generally based on the opti-
mization of a variational model. The VO-based methods
include two main parts: (1) the construction of the energy
functional; and (2) the optimization solution. For the con-
struction of the energy functional, the most widely used
methods are based on the observation models [21]–[27] and
the sparse representation models [28]–[31]. Among them,
the observation model-based methods take the fusion pro-
cess as an ill-posed inverse optimization problem. Based
on the relationship between the desired fused image and
MS/PAN images, an energy function is established, and a
high-resolution fused image is obtained by optimizing the
solution. The sparse-based methods are mainly based on
sparse representation theory. It is assumed that the informa-
tion of the remote sensing images is sparse in a basis set,
and can be represented by a linear combination of relatively
few base elements. The optimization solution of the energy
functional is generally based on iterative optimization algo-
rithms [32]–[34].

In addition to the above three classes of pansharpening
methods, in recent years, several DL-based pansharpening
methods are proposed. Huang et al. [35] proposed a pansharp-
ening method based on deep neural network. Masi et al. [36]
proposed convolutional neural networks-based pansharpen-
ing method. Yuan et al. [37] proposed the multiscale and
multidepth convolutional neural network for pansharpening
of remote sensing images.

Since CS-based methods and MRA-based methods are
more widely used, our work mainly focuses on these two
kinds of methods in this paper.

B. TRADITIONAL NR-IQA METHODS
Recent studies on NR-IQA focused on blind image qual-
ity assessment (BIQA) problem via ‘‘opinion-aware’’ or
‘‘opinion-unaware’’ learning. The representative ‘‘opinion-
aware’’ BIQA methods include Blind Image Quality Indexes
(BIQI) [50], Distortion Identification-based Image Verity and
Integrity Evaluation (DIIVINE) [51], Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [52], Blind
Image Integrity Notator using DCT Statistics-II (BLIINDS-

II) [53], etc. These methods share a similar architecture
that trains a regression model on a dataset consisting of
distorted images and the corresponding subjective scores.
However, the ‘‘opinion-aware’’ models need human subjec-
tive scores to learn the regression model, usually having
weak generalization capability. In practice, the subjective
scores for pansharpened images are hard to obtain, leading
to poor applicability of ‘‘opinion-aware’’ models in quality
assessment of pansharpened images. In contrast, ‘‘opinion-
aware’’ BIQA model does not need training samples with
human subjective scores. Mittal et al. [47] proposed a NIQE
model, in which a set of local features are first extracted from
images and fitted to a multivariate Gaussian (MVG) model.
The quality is predicted by measuring the distance between
its MVG model and the benchmark MVG model learned
from pristine training images. Zhang et al. [48] proposed
the IL-NIQE model, which integrates natural image statistics
features derived from multiple cues to learn an MVG model.
Considering the advantages of opinion-aware BIQAmethods,
it is of great interest to utilize ‘‘opinion-aware’’ model for
quality assessment of pansharpened images.

C. IQA METHODS FOR PANSHARPENED IMAGES
The pansharpened images suffer from two main types of
distortions: spectral distortion and spatial distortion. On one
hand, some quality evaluation indexes mainly concern on
the spectral distortion. Yuhas et al. [38] proposed a Spec-
tral Angle Mapper (SAM), which can be used to measure
the spectral distortion of a pansharpened image. Wald [39]
proposed the Erreur Relative Globale Adimensionnelle de
Synthèse (ERGAS). Alparone et al. [54] proposed the Q4
method which is an extension of the universal image qual-
ity index (UIQI) or Q-index [55] for pansharpened images.
Garzelli and Nencini [40] proposed a generalization of the
Q4-index which is called Q2n-index. It is suitable to mea-
sure quality for multiband images having more than four
spectral bands. On the other hand, some quality evaluation
indexes mainly focus on spatial distortions. Zhou et al. [56]
proposed to evaluate the spatial quality of the fused image
based on the correlation coefficient between high frequency
of the fused image and the PAN image. However, since
the spatial distortion is usually co-existed with the spectral
distortion, it is incomplete to assess the quality of pansharp-
ened images only concerning the spectral distortion or the
spatial distortion. To date, there are many works on both
spectral and spatial distortions. Alparone et al. [41] proposed
the QNR index to predict quality from both the spatial dis-
tortions and spectral distortions without reference. In [4],
the existing pansharpening methods are thoroughly analyzed,
and the quality of the fused image generated by various
pansharpening methods is synthetically measured by SAM,
root-mean-square error (RMSE), UIQI, Q4 and QNR meth-
ods. Palsson et al. [57] used full reference (FR) IQAmethods
(ERGAS, SAM, Q4/Q8 and Q) to measure the quality of pan-
sharpened images with the degrading step consisting of syn-
thesis property and consistency property, and adopted QNR
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method [41] to evaluate the pansharpened images without any
degrading steps. Based on QNR method, Khan et al. [58]
proposed a no reference method optimizing the QNR spatial
index. Kwan et al. [42] proposed the GQNR index for the
fused WorldView-3 images. Hasanlou and Saradjian [59]
propose to evaluate the quality of fused images based on
the weighted average of the geometric index and radiation
index. Rodriguez-Esparragon et al. [60] proposed an object-
based quality assessment scheme for pansharpened remote
sensing imagery, which extracted the segments of the images
and assessed both the spectral and spatial properties of fused
remote sensing images. Selva et al. [61] demonstrated that
adopting the expanded image as reference is erroneous based
on Wald’s protocol.

There are some works in analyzing the effects of pansharp-
ening on special applications. For change-detection (CD)
applications, Bovolo et al. [62] found that change-detection
maps computed from pansharpened data suffer from errors
due to artifacts induced by the fusion processes. For land
cover classification applications, Ibarrola-Ulzurrun et al. [63]
assessed the influence of pansharpening techniques in obtain-
ing precise vegetation maps and analyzed the accuracy
assessment of the pixel-based classification algorithms for
each fused image. Gilbertson et al. [64] found that pansharp-
ening may lead to dramatic improvements in classification
accuracy. For target detection, Garzelli et al. [65] compared
different pansharpening methods by evaluating the perfor-
mances of target detection on true MS and panchromatic
data. In such applications, the effects on the correspond-
ing information indexes play important roles. For example,
Maglione et al. [66] used NDVI and NDWI derived from pan-
sharpened images to extract coastline. In addition, there are
some works focusing on the effects on information indexes.
Johnson [67] evaluated the effects of pansharpened images
on Vegetation Indexes (VIs) and found that the pansharpened
MS image may lose some spatial information after VI cal-
culations. Xu et al. [68] analyzed the relationship between
pansharpened spectral indexes and soil total nitrogen (TN)
and quantified the effect of pansharpened image based on the
proposed soil TN models. Du et al. [69] compared Modified
Normalized Difference Water Index (MDNWI) derived from
four pansharpening algorithms.

However, the aforementioned methods only assessed
one aspect of the pansharpened MS images. Recently,
Li et al. [70] assessed the performances of eight state-of-
the-art pansharpening methods using both quality indexes
and information indexes, including NDVI, NDWI and mor-
phological building index. However, the quality indexes and
information indexes are evaluated separately.

III. DATABASE
To investigate quality evaluation of pansharpened images,
we construct a new pansharpened image database, in which
360 pansharpened MS images are included. Subjective eval-
uation of these images is conducted to obtain the human

opinion scores. In the next, we will describe the databases
in details.

A. COLLECTION OF ORIGINAL AND PANSHARPENED MS
IMAGES
We select the original MS images acquired from Quick-
bird sensor. The Quickbird sensor works in the visible and
near-infrared spectrum range, obtaining 4-band multispec-
tral components: Blue, Green, Red and near-infrared (NIR)
bands, and the corresponding PAN band. The resolution cell
is 2.44m×2.44m for MS bands and 0.61m×0.61m for PAN
band. The sensor has the same spectral region for PAN and
MS data, which guarantees good performance of various
pansharpeningmethods. In the database, we select 20 couples
of PAN/MS images as shown in Fig. 1, and use 18 differ-
ent pansharpening methods to generate 360 pansharpened
images. The scenes for the originalMS images include typical
ground objects, such as water, vegetation, buildings, and
roads. The resolution of MS image is 512×512 pixels, and
2048×2048 pixels for the corresponding PAN image.

FIGURE 1. The reference images selected in the database (only RGB
bands are displayed).

The pansharpening methods used in the database are listed
in Table 1, from two typical CS and MRA based methods [4].
As shown by examples of fused images obtaining using dif-
ferent pansharpening methods in Fig.2, compared with the
reference MS image in (b), there are two types of distortions
in the pansharpened images: 1) Spectral distortion: The spec-
tral distortions are quite obvious in the pansharpened images
generated by BROVEY and IHS in (h) and (l), in which
the color of the river and the riparian vegetation obviously
deviate from the original MS images. The reason may be
that the difference between the substituted component and the
PAN is quite large. In addition, slight spectral distortions are
also found in the pansharpened images generated by AWLP,
HPF, INDUSION, MTF-GLP, MTF-GLP-HPM, MTF-GLP-
HPM-PP and SFIM. 2) Spatial distortion: There are different
degrees of spatial distortions in the pansharpened images
generated by ATWT-M3, ATWT-M2, GS, GSA, MTF-GLP-
HPM-CBD, PCA and PRACS, in which boundaries of the
rivers and banks are blurred. Since spectral and spatial dis-
tortions are co-existed in a pansharpened image, quantifying
their influence are very difficult. The existing methods evalu-
ate the spectral and spatial distortions separately and integrate
them to obtain a unified score [41], [42], [59]. From the per-
spective of subjective evaluation, it is meaningful to evaluate
the two cues in a unified framework. In our subjective test,
we evaluate the overall performance of a pansharpened image
involving spectral and spatial distortions.
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TABLE 1. Description of fusion methods used in the database.

B. SUBJECTIVE TEST
We carried out the subjective experiment in the lab designed
for subjective quality test at Ningbo University. The test
environment and condition met ITU-R BT.500-11 [71]
and ITU-R 1438 [72]. All the pansharpened images were
displayed on a Samsung UA65F9000 65-inch Ultra HD
3D-LED TV. We adapted double stimulus continuous quality
scale (DSCQS) test methodology in the experiment, in which
the reference and test images are simultaneously presented
(displayed side-by-side) on the screen. The interface for the
subjective test is shown in Fig. 3. However, in the practical
application, since the reference image with the same resolu-
tion of the test image cannot be obtained, according to Wald
Protocol [1], we spatially degraded both the original MS and
PAN images to a lower resolution so that the original MS
image can be used as the reference. Since the scale ratio
between PAN andMS images is 4 in our database, we degrade
the original MS and PAN images by the factor 4.

FIGURE 2. Examples of pansharpened images obtained by using different
pansharpening methods.

FIGURE 3. Subjective experiment interface.

Based on the properties of pansharpened images, grading
criteria in our subjective study depend on two factors: spectral
distortion and spatial distortion. Based on the grading criteria
defined in Table 2, the participants were asked to rate the
quality of images on a five-level scale: Level 1, Level 2,
Level 3, Level 4 and Level5, corresponding to Excellent,
Good, Fair, Poor and Bad. The descriptions of each level are
shown in Table 2.We invite 40 graduate students participating
in the subjective test.

After obtaining the raw subjective scores of all 360 pan-
sharpened images from 40 subjects, the normalized z-scores
is calculated by subtracting the mean and dividing by the
standard deviation.

zi,j =
si,j − µi
σi

(1)

where si,j denotes the score assigned by subject i to the
image j, and µi and σi denotes the mean and standard devi-
ation calculated from all scores assigned by subject i. Then,
after removing the outlier subjects (within 95% confidence
interval), the normalized z-scores are scaled and mapped to

40392 VOLUME 7, 2019



B. Zhou et al.: No-reference Quality Assessment for Pansharpened Images via Opinion-unaware Learning

TABLE 2. Illustration of rating criteria.

the range [0,100] to obtain MOS value for each sample:

z′i,j =
100(zi,j + 3)

6
(2)

DMOSj =
1
U

∑
i

z′i,j (3)

where U is the number of final subjects. The DMOS score
for each pansharpened image is used as the ground truth
to represent the subjective quality. The distribution of the
DMOSs in the database is shown in Fig. 4.

FIGURE 4. The DMOS distribution of the database.

IV. PROPOSED METHOD
As analyzed above, due to different properties of the MS and
PAN in the process of fusing the pansharpened image, if we
can directly extract the spatial and spectral features from the
pansharpened images, the MVG models can be learned from
the training and testing data. Followed the same architecture
in [48], the processing flow of the proposed method is shown
in Fig. 5. In the training stage, a benchmark MVG model
is learned based on the features extracted from pristine MS
training dataset. In the testing stage, the distance between
the benchmark MVG and the MVG fitted on the testing

FIGURE 5. Flowchart of the proposed method.

pansharpened image is calculated as the final quality score.
In the next, we will give the details for each step.

A. ANALYSIS OF PANSHARPENED IMAGES
A typical MS image is composed of 4 bands: red, green, blue
and infra-red (NIR) bands. Each band data can be regarded as
an individual image (subimages of MS image). The quality of
pansharpened MS image can be directly determined from the
quality of each band. However, each ground object has its own
spectral properties, which can be measured by ground objects
indexes. If there are obvious changes on the properties of the
typical ground objects after pansharpening, the correspond-
ing ground objects indexes or spectral features will reflect
such changes. The typical ground objects include vegetation,
water, roads and buildings.

To detect vegetation growth status, vegetation coverage
and other information, the normalized difference vegetation
index (NDVI) [43] is calculated as:

NDVI =
NIR− R
NIR+ R

(4)

To extract water information from images, the normalized
difference water index (NDWI) [44] is calculated as:

NDWI =
G− NIR
G+ NIR

(5)
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To distinguish roads and buildings, the RatioG [45], [46] is
calculated as:

RatioG =
G

R+ G+ B+ NIR
(6)

We show an example to demonstrate the distributions of
NDVI, NDWI and RatioG for the original and pansharpened
image in Fig. 6.

FIGURE 6. Comparison of the original MS image and pansharpened (PCA
and MTF-GLP-HPM) MS image among the objects feature images. (a) MS.
(b-d) the NDVI, NDWI and RatioG of (a). (e) PCA. (f-h) the NDVI, NDWI and
RatioG of (e). (i) MTF-GLP-HPM. (j-l) the NDVI, NDWI and RatioG of (i).

It is clearly observed that the distributions of NDVI, NDWI
and RatioG are changed caused by spectral distortions after
pansharpening (obviously clear in the areas marked by black
circles), which denotes NDVI, NDWI andRatioG can provide
additional information to compensate the missing informa-
tion in red, green, blue and NIR bands. As a result, we obtain
seven subimages (e.g., red, green, blue, NIR, NDVI, NDWI
and RatioG) to represent an MS image, and the follow-
ing feature representation is performed for each subimage
independently.

B. FEATURE REPRESENTATION
We observed that the distributions of locally normalized
subimages of a pristine I, which is generated from a pristine
MS image, can be well fitted by a sum of Gaussians. This nor-
malization process for each subimage of I can be described
as:

Îs(i, j) =
Is(i, j)− µs(i, j)
σs(i, j)+ C

(7)

where s ∈ {red, green, blue, NIR, NDVI, NDWI or RatioG}
denotes the subimage index, and

µs(i, j) =
K∑

k=−K

L∑
l=−L

ωk,lIs(i+ k, j+ k) (8)

σs(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

ωk,l (Is(i+ k, j+ k)− µs(i, j))2 (9)

where ω = {ωk,l |k = −K , ...K , l = −L, ...L } is a 2D
circularly-symmetric Gaussian filter (K = L = 3). Eq (7)
represents mean subtracted and contrast normalized (MSCN)
coefficients.

Refer to [73], we use a sum of Gaussian to accurately
model the distributions of Îs(i, j). The sum of Gaussian model
is given by:

g(x; a1, a2, µ1, µ2, σ1, σ2)

= a1 exp
(
x − µ1

σ1

)2

+ a2 exp
(
x − µ2

σ2

)2

(10)

where parameters a1, a2, µ1, µ2, σ1 and σ2 are used as
quality-aware features, which can be estimated by least
squares. In Fig. 7, we show the distributions of the original
and pansharpened images as presented in Fig. 6. The details
about the features are given in Table 3.

C. PRISTINE MVG MODEL LEARNING
To learn a pristine MVG model serves as a ‘‘reference’’ in
evaluating the quality of an arbitrary image/block, we col-
lected a set of high-quality MS images from Quickbird
dataset (Qingshan Lake area of Nanchang) and Worldview-
3 dataset (Washington DC area). The Worldview-3 sensor
offers 8-band multispectral components and the PAN band.
The resolution cell is 1.24m×1.24m for MS bands and
0.31m×0.31m for PAN band. In the experiment, we select
100 images from the objects of vegetation, buildings, roads
and water as pristine images, shown in Fig. 8. None of the
pristine images is included in our database.

Using 100 pristine MS images, we extracted the above
described statistical features from the MSCN of NIR, Red,
Green, Blue, NDVI, NDWI and RatioG, and learn a pristine
MVGmodel from the statistical features. The key steps detail-
ing the process are described:
Step 1 (Patch Extraction): The pristine MS images are

separated into un-overlapping blocks with size of 96×96.
To make the extracted features more efficient for quality
prediction, we only adapted a subset of the blocks based on
patch’s contrast. Based on the contrast calculated in Eq. (9),
only those patches having a high contrast greater than a given
threshold are selected, in which the threshold is set as 75% of
the peak patch contrast of each image.
Step 2 (Feature Extraction): Using the feature represen-

tation method in above, a m-dim feature vector is extracted
for each block (m = 84). Let x = [x1, x2, ..., xn] ∈m×n

be the matrix of feature vectors extracted from n selected
image patches, the mean vector and covariance matrix are
expressed as:

µ =
1
n

n∑
j=1

Xi(j), i = 1, . . . ,m (11)

6 = (σij)m×m =


σ11 σ12 · · · σ1m
σ21 σ22 · · · σ2m
· · · · · · · · · · · ·

σm1 σm2 · · · σmm

 (12)

where σij is the covariance of column vector xi and xj.
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TABLE 3. Description of features.

FIGURE 7. MSCN distributions and their corresponding fitting curves of the original and pansharpened images. (a) NIR. (b) Red. (c) Green. (d) Blue.
(e) NDVI. (f) NDWI. (g) RatioG.

Step 3 (MVG Fitting): Once the mean vector (µ) and
covariance matrix (6) are obtained, the benchmark MVG
model is fitted as:

f (x) =
1

(2π)m/2|6|1/2
exp

(
−
1
2
(x− µ)T6−1(x− µ)

)
(13)

D. TESTING
Once the benchmark MVG model (µ,6) is learned, it can
be used to measure the quality of any patch for a given test
image. For a test image, we first separate it into nonover-
lapped patches with size of 96×96. The statistical feature
is extracted for each patch, and the MVG model is learned
using the same process described in the training stage. For a
patch with MVG model (µi,6i) , the quality is obtained by
calculating the distance between (µ,6) and (µi,6i) as:

qi = D(µ,µi,6,6i)

=

√
(µ− µi)T

(
6 +6i

2

)−1
(µ− µi) (14)

It is evident that a small value qi means high quality. The
final quality score of the test image is calculated as the mean
of all {qi}.

V. EXPERIMENTAL RESULTS AND ANALYSES
A. EXPERIMENTAL DESCRIPTION
The evaluation experiments were conducted on the con-
structed database using three performance indicators: Pear-
son linear correlation coefficient (PLCC), Spearman rank
order correlation coefficient (SRCC), and root mean square
error (RMSE), between the objective scores after nonlinear
regression and the subject scores. For the nonlinear regres-
sion, a five-parameter regression is used to map the objective
scores to subjective scores [74]:

f (x) = β1

(
1
2
−

1
1+ exp(β2(x − β3))

)
+ β4x + β5 (15)

where βi(i = 1, 2, 3, 4, 5) are parameters determined by
fitting.

The comparative methods selected in this paper include:
(1) Five full reference IQA metrics: SSIM, PSNR, UIQI,
SAM and ERGAS; (2) Three training-based BIQA metrics:
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TABLE 4. Performance results with state-of-the-art FR and NR-IQA methods on our database (the top two results are in bold).

FIGURE 8. The selected 100 pristine MS images used to learn the
benchmark MVG model.

BIQI, DIIVINE and BLIINDS-II; (3) Two opinion-unaware
NR-IQA metrics: NIQE and IL-NIQE; (4) Two no-reference
quality evaluation methods designed for pansharpened
images: QNR and GQNR. Note that, for those full refer-
ence IQA metric, both the original MS and PAN images
are degraded to a lower resolution so that the original MS
image can be used as the reference, while for our method,
we directly evaluate the quality of full resolution images
without down-sampling.

B. EXPERIMENTAL RESULTS
To objectively evaluate the performance of our method,
we compare our method with the selected eleven methods.
Table 4 illustrates the comparisons of PLCC, SRCC and
RMSE on our database. From the results, we can draw the
following observations: 1) Compared with FR-IQA metrics,
the evaluation performances of these metrics are extremely
low, because spectral distortion is not considered in tra-
ditional PSNR, SSIM metrics and only spectral distortion
is considered in ERGAS and SAM, leading to incomplete
representation of the distortions. 2) Compared with three
training-based BIQA metrics, our method is superior to
DIIVINE and BLIINDS-II, but is superior to BIQA in some
indictors. Since these metrics are highly dependent on the

TABLE 5. Performance results of individual subimages.

features and the training samples on which they trained, our
method has stronger robustness than these training-based
metrics. 3) Compared with two opinion-unaware NR-IQA
metrics (NIQE and IL-NIQE) and two no-reference quality
evaluation methods designed for pansharpened images (QNR
and GQNR), our method has the best performance. The
reason may be that those feature extraction methods used
in these metrics are not suitable for our case. Overall, our
method takes spectral distortion, spatial distortion and effects
on information indexes into account, resulting in consistent
distribution with the subjective observations.

In Fig. 9, we also provide the scatter plots of the predicted
quality scores against the DMOS values for some representa-
tive objective metrics (such as PSNR, FSIM, ERGAS, SAM,
QNR, GQNR, NIQE and IL-NIQE) on our database. From
Fig. 9, it can be observed that our model has superior con-
vergence and monotonicity, especially better than the PSNR,
SSIM, ERGAS, NIQE and QNR metrics.

C. PERFORMANCE EVALUATION OF EACH SUBIMAGE
Since we use seven bands (Blue, Green, Red, NIR, NDVI,
NDWI and RatioG) to represent features, the influence of
each band is further analyzed in this subsection. As shown
in Table 5, for four red, green, blue and NIR bands in MS
image, green and blue bands have the great influence on
the performance, because spectral distortions are sensitive to
in these bands. Although NDVI and NDWI have very low
performance in the independent evaluation, they can cap-
ture special ground objects information and can compensate
for the limitations of other bands. As a result, integrating
these bands obviously promote the prediction performance
compared with using independent ones. We further analyze
the performance of different band combinations. As shown
in Table 6, for simplicity, we design 6 schemes that only
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FIGURE 9. Scatter plots of DMOS versus DMOSp for various methods on our database. (a) PSNR. (b) SSIM. (c) ERGAS. (d)
SAM. (e) QNR. (f) GQNR. (g) NIQE. (h) IL-NIQE. (i) PROPOSED.

TABLE 6. Performance results with different band combinations.

consider all possible combinations of 6 bands. Agreeing with
the conclusion in the above analysis, each band has its unique
contribution in characterizing the quality degradation.

D. PERFORMANCE VALIDATION
The most direct application of our metric is to guide the
selection of optimal pansharpening methods. We provide
an example to show the influence of different metrics on
selecting the best pansharpening results. As shown in Fig. 10,

for the pansharpened images obtained using six pansharpen-
ing methods: three CS methods (GSA, IHS and PCA) and
three MRA methods (ATWT, ATWT-M2 and MTF-GLP),
the image in (d) has significant spectral distortion, while
the images in (c), (e) are spatially distorted. We use
PSNR, SSIM, SAM, NIQE, IL-NIQE, QNR, GQNR and our
method to measure the quality of the pansharpened images.
Table 7 reports the objective evaluation results for the images
shown in Fig. 10. It is obvious that our method can achieve
the best consistent trend with the ground-truth DMOSs, while
other metrics have more or fewer deviations in some pan-
sharpened images. Overall, our method can well select the
best pansharpened image in a completely blind way.

E. PERFORMANCE OF DIFFERENT PATCH SIZE
As shown in previous context, with the fixed patch size
(96×96) our method has good performance. In this section,
it is shown that the performance of our method is insensitive
to changes in patch size. The patch size ranges from 48 to
132 with a step size of 12. The results are presented in Fig.11.
SRCC and PLCC are used as the performance indicators.
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TABLE 7. The predicted quality values of different metrics for the pansharpened images in fig. 10.

FIGURE 10. Example of original MS/PAN and its corresponding fused images generated by different pansharpening methods.
(a) PAN. (b) MS. (c) GSA. (d) IHS. (e) PCA. (f) ATWT. (g) ATWT-M2. (h) MTF-GLP.

FIGURE 11. The performance (PLCC and SROCC) with different patch sizes.

From the results shown in Fig.11, it can be seen that the
proposed method’s performance is robust to the patch size
variations in a considerable range.

F. DISCUSSION
Although the proposedmethod achieves good performance in
evaluating the quality of pansharpened images, the following
aspects deserve further attentions: 1) The current database

only considers two types of pansharpening methods, which is
inadequate for practical applications. Therefore, more types
of pansharpening methods should be included in the further
database construction. 2) We only select source MS images
from Quickbird database, for other databases with more
bands, such asWorldView-3, more effective feature represen-
tation method should be considered. 3) For the more critical
subjective test, the absolute evaluation may be not a feasible
way in estimating the quality of two images. Measuring
relative quality (e.g., rank score) against other pansharpened
images generated from the same source image may be more
suitable for remote sensing applications. 4) Our work only
concerns the quality assessment of multispectral pansharp-
ened images. For other types of remote sensing image fusion,
such as hyperspectral and multispectral image fusion, since
hyperspectral images have more abundant bands information,
it may also be applicable.

VI. CONCLUSIONS
In this paper, a subjective database of pansharpened images
is constructed, and a no-reference quality evaluation method
for pansharpened image is proposed. In order to measure the
spectral and spatial distortions, our method combines the fea-
tures for NIR, Red, Green, Blue, NDVI, NDWI and RatioG.
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We built a benchmark MVGmodel from pristine MS images.
Quality score for a test image is computed by measuring
the distance between the benchmark MVG model and the
fitted MVG model of the test image. Compared with other
metrics on the database, our metric yields more consistent
with subjective observation. In future work, we will focus on
constructing a more large-scale database.
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