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ABSTRACT In recent years, deep learning (DL) techniques have shown great potential in wireless
communications. Unlike DL-based receivers for time-invariant or slow time-varying channels, we propose
a new DL-based receiver for single carrier communication in time-varying underwater acoustic (UWA)
channels. Without the off-line training, the proposed receiver alternately works with online training and test
modes for accommodating the time variability of UWA channels. Simulation results show a better detection
performance achieved by the proposed DL-based receiver and with a considerable reduction in training
overhead compared to the traditional channel-estimate (CE)-based decision feedback equalizer (DFE) in
simulation scenarios with a measured sound speed profile. The proposed receiver has also been tested by
using the data recorded in an experiment in the South China Sea at a communication range of 8 km. The
performance of the receiver is evaluated for various training overheads and noise levels. Experimental results
demonstrate that the proposed DL-based receiver can achieve error-free transmission for all 288 burst packets
with lower training overhead compared to the traditional receiver with a CE-based DFE.

INDEX TERMS Channel equalization, deep learning, deep neural network, DFE, machine learning, single
carrier communication, underwater acoustic network.

I. INTRODUCTION
Underwater acoustic (UWA) channel features frequency-
dependent limited bandwidth, long time-varying multipath
spread and severe Doppler effect, which pose a great chal-
lenge for reliable and effective UWAcommunications [1]–[7]
and networks [8]–[10], leading to relatively low data rates
in a range between a few bits/s (bps) to several tens
of kbits/s (kbps) and often unsatisfied performance [11].
Generally, single-carrier (SC) modulation schemes with
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approving it for publication was Muhammad Imran.

time-domain equalization techniques enjoy high spectral effi-
ciency and robust performance at the cost of a high receiver
complexity [1], [4], [12]. Historically, in order to combat the
inter-symbol interference (ISI) induced by the time-varying
multipath spread, many channel equalization techniques have
been thoroughly studied, g.e., linear equalizer (LE), decision
feedback equalizer (DFE) etc. [13]–[16]. However, there is
still a great room for the improvement in UWA communica-
tion systems.

In recent years, machine learning techniques have attracted
attention in different fields. In particular, deep learning (DL)
techniques feature great potential for solving nonparametric
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problems such as object detection and recognition, voice
recognition, and object tracking [17]–[19], [21]. Although
DL has been adopted for terrestrial radio wireless commu-
nication only recently [22]–[25], it has also been utilized
in UWA communications [26]. In [22]–[24], DL techniques
were proposed for joint channel estimation and symbol detec-
tion in OFDM systems. Simulation results demonstrate that
deep neural network (DNN) has the ability to learn and
analyze characteristics of wireless channels with nonlinear
distortion and interference in addition to the frequency selec-
tivity. In [25], learning assisted (LA) algorithms are proposed
for estimation of time-varying channels. The DNN based
channel estimators are utilized to track channel variations.
Simulation results validate the effectiveness of the algorithms
in online tracking the channel variations. In [26], inspired
by the works in [23] and [24], a DL-based UWA OFDM
communication scheme is proposed and verified by simula-
tion in a UWA channel with a measured sound speed profile
(SSP). Despite the success of DNN in time-invariant or slow
time-varying channels, DNN-based wireless communication
over fast time-varying channels induced by severe Doppler
effects has not been studied yet.

In this paper, we propose a DL-based receiver for UWA SC
communications over time-varying channels. As compared
to existing works, our main contributions are summarized
below:

1) Different from the existing DL-based receivers with the
offline training and online test modes, we propose a
DL-based receiver with online training and test modes
for accommodating time-varying UWA channels.

2) The performance of the proposed DL-based receiver
is evaluated by a statistical channel simulator with
a measured SSP. Numerical results show that the
proposed receiver achieves a better detection perfor-
mance than the traditional CE-based decision-feedback
equalization (DFE) receiver and with lower training
overhead.

3) The performance of the proposed receiver has been
tested in the South China Sea experiment, at a com-
munication distance of 8 km. We show that the pro-
posed DL-based receiver can achieve a substantial
performance gain over the traditional CE-based DFE
receiver with the second-order PLL. With less training
overhead, the proposed receiver can achieve error-free
transmission of 288 data packets at the signal-to-noise
ratio (SNR) as low as SNR=5dB, while the traditional
CE-based DFE receiver cannot achieve that even at as
high SNR as SNR = 15 dB and with a significantly
longer training sequence. At the best of our knowledge,
this is the first time that a DL based receiver is vali-
dated using data from a sea trial instead of simulated
data.

The rest of this paper is organized as follows. In Section II,
the time-varying UWA SC communication system model is
presented and the CE-based DFE receiver with second-order

FIGURE 1. Block diagram of the transmitter for the UWA SC
communication system.

PLL is reviewed. Section III presents the proposed DL-based
receiver for UWA communication over time-varying UWA
channels. Simulation results are presented in Section IV.
Section V presents results from the sea trial. Conclusions are
drawn in Section VI.
Notation: Matrices and vectors are denoted by boldface

uppercase and lowercase letters, respectively. (·)†, (·)∗ and
(·)T denote the Hermitian transposition, complex conjugate
and transposition, respectively.

II. SYSTEM MODEL FOR UWA SC COMMUNICATIONS
OVER TIME-VARYING CHANNEL
A. SIGNALING MODEL
We consider a single-input single-output UWA SC communi-
cation system. Fig. 1 depicts the block diagram of the trans-
mitter. The binary information bit vector b is split into groups
of P bits, where P represents the number of bits per symbol,
and each group is mapped to one of the 2P-ary symbols of
the alphabet A =

{
αp
}P
p=1, where αp is a complex num-

ber. The sequence of 2P-ary symbols is multiplexed with a
training symbol sequence of lengthNt , producing the payload
symbol vector x 1

= {xn}
Ns
n=1. Symbols from the vector x pass

through a square-root raised-cosine pulse-shaping filter with
an impulse response g (t) to produce the baseband signal b(t).
The complex baseband signal b(t) is expressed as [27]

b (t) =
Ns∑
n=1

xng (t − nTs), (1)

where xn is the transmitted symbol, g (t) is a square-root
raised cosine pulse-shaping filter with roll-off factor γ , Ts is
the symbol interval. The signal b (t) is then modulated onto
a carrier of angular frequency ωc to produce the transmitted
signal s(t) as [1] and [27]

s (t) = Re{b (t) ejωct }. (2)

Preamble and postamble linear frequency modula-
tion (LFM) waveforms are added before and after s(t) for
the purpose of the coarse frame synchronization and Doppler
estimation.

In this paper, we consider the narrowband signaling model,
i.e., the Doppler effect can be represented as a carrier fre-
quency offset without time scaling. We assume that the max-
imum channel delay (in symbol intervals) is L.
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So the received baseband signal distorted by multipath
spread and noise can be expressed as

yb(t) =
L−1∑
l=0

βl(t)b
(
t − τl

)
ejωc(−τl ) + η (t) , (3)

where βl(t) is time-varying amplitude fading factor corre-
sponding to the l-th path, τl is the delay associated with
the l-th path and η (t) is additive complex white Gaus-
sian noise (AWGN) with zero mean and variance σ 2

η at
hydrophone, which is independent from b (t).

B. TRADITIONAL CE-BASED DFE RECEIVER WITH PLL
Fig. 2 depicts the receiver with the traditional CE-based DFE
and PLL. This type of DFE is widely used for combatting the
inter-symbol interference (ISI) and phase distortion in UWA
communication channels [15], [27].

On the receiver side, the passband signal yp(n) is trans-
formed into baseband signal yb(n) by a demodulator, and the
baseband signal yb(n) is downsampled into y(k), where k is
the time index in the symbol interval Ts. Assume that a DFE
consists of an Lf -length feedforward filter (FFF) with the tap
vector f (k) and Lb-length feedback filter (FBF) with the tap
vector g(k), and the equalizer delay is l [27], [28].

At time instant k , the transmitted symbol x(k−l) estimated
by DFE as [28]

x̂(k − l) = yT (k)f (k)+ x̂T (k)g(k), (4)

where y(k) =
[
y(k), y(k − 1), · · · , y(k − Lf + 1)

]T ,
and the already estimated symbol vector x̂(k) =[
x̂(k − l − 1), x̂(k − l − 2), · · · , x̂(k − l − Lb)

]T . Fig. 3
depicts the structure of this type DFE in details. The equa-
tion (4) can be written in vector form as [27] and [28]

x̂(k − l) = mT (k)n(k), (5)

where

m(k) =
[
y(k)
−x̂(k)

]
,n(k) =

[
f (k)
g(k)

]
. (6)

With an adaptive channel estimator, we can estimate the
equivalent time-varying baseband channel matrix Ĥ (k) by
using the training symbols or the hard decisions of estimated
data symbols [28]. Finally, the equalizer taps f̂ (k) and ĝ(k)
are generated and updated by solving the equivalent mean
square error (MSE) equation as follows [27]

0(k)n(k) = 9(k), (7)

where 0(k) = E
{
m(k)mH (k)

}
, 9(k) = E

{
m(k)x̂∗(k−

l)}.
In order to compensate the phase distortion induced by the

Doppler effect, the second-order PLL is incorporated into the
CE-based DFE for joint carrier phase synchronization and
equalization [29]. For easy understanding, we set the decision
delay l = 0, so at time instant k , output of the FFF is given
by

p(k) = f †(k)y(k)e−jθ(k), (8)

and the output of the FBF is written as

q(k) = ĝ†(k)x̂(k), (9)

where the time-varying phase can be tracked by the
second-order PLL as follows [29]

θ (k + 1) = θ (k)+ Kf18(k)+ Kf2

k∑
i=0

8(i), (10)

where Kf1 and Kf2 are proportional coefficient and integral
coefficient of loop filter, respectively.

III. PROPOSED DL-BASED RECEIVER FOR UWA SC
COMMUNICATION OVER TIME-VARYING CHANNELS
A. REVIEW OF DNN
DNN is an artificial neural network (ANN) with multiple
hidden layers composed of many neurons [30]. Fig. 4 depicts
the general structure of a DNN model with Q > 3 layers,
where the layer 1 and layer Q are called as input layer and
output layer, respectively, and the other layers are hidden
layers. Data flow propagates from the input layer to the
hidden layers, then the output layer.

The input layer (i.e. layer 1) has J (1) variables in vector

b(1) =
[
b(1)1 , · · · , b

(1)
j , · · · , b

(1)
J (1)

]T
, then the j-th neuron’s

input of layer 2 is

a(2)j =
J (1)∑
i=1

u(1)ij b
(1)
i + v

(1)
j , j = 1, 2, · · · , J (2), (11)

where u(1)ij is a weight between the i-th neuron of layer 1

and the j-th neuron of layer 2, v(1)j is a bias of the j-th
neuron in layer 2, J (2) is the number of neurons of layer 2.
In each hidden layer, there is a nonlinear activation function
f (·) which transforms the linear combinations of inputs to
non-linear outputs. The j-th neuron’s output of layer 2 is thus
given by [30]

b(2)j = f (2)
(
a(2)j

)
. (12)

Then b(2) =
[
b(2)1 , · · · , b

(2)
j , · · · , b

(2)
J (2)

]T
will be the next

layer’s input. Similarly, the j-th neuron’s input a(q)j and output

b(q)j of layer q are

a(q)j =
J (q−1)∑
i=1

u(q−1)ij b(q−1)i + v(q−1)j , j = 1, 2, · · · , J (q),

(13)

b(q)j = f (q)
(
a(q)j

)
, (14)

where J (q−1) and J (q) are the number of neurons of layer (q−
1) and q, respectively.

The nonlinear activation functions may be the Sigmoid
function fS (n) = 1

1+e−n , or Rectified Linear Unit (ReLU)
function fR(n) =max(0, n) [30]. Hence, the final out-

put of the DNN b̂(Q) =
[
b̂(Q)1 , · · · , b̂(Q)j , · · · , b̂(Q)

J (Q)

]T
38422 VOLUME 7, 2019
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FIGURE 2. Block diagram of the receiver structure for the traditional CE-based DFE.

FIGURE 3. Structure of a symbol-spaced DFE. x̄(k − l ) denotes the hard
decision of x̂(k − l ).

is a cascade nonlinear transformation of input

b(1) =
[
b(1)1 , · · · , b

(1)
j , · · · , b

(1)
J (1)

]T
, and can be expressed as

b̂(Q) = f
(
b(1), · · · ,b(q), · · · ,b(Q−1);u(1), · · · ,u(q),

· · · ,u(Q−1); v(1), · · · , v(q), · · · , v(Q−1)
)

= f (Q−1)
(
f (Q−2)

(
· · · f (1)

(
b(1)

)))
, (15)

where f (q)(·) is the activation function adopted by layer q.
Vectors u(q) and v(q) denote the weights and bias at layer q.
Through the offline or online training process, the weights
and bias can be optimized following a target function.

B. PROPOSED DL-BASED RECEIVER
In a time-invariant channel, a DL-based receiver usually
comprises two stages: 1) offline training stage, and 2) online
deployment/test stage [23]. However, this type of training and
deployment mode is not suitable for the DL-based receiver
over time-varying channels.

In order to accommodate the time variability of UWAchan-
nels, we propose a DL-based receiver with online training and

FIGURE 4. General structure of a DNN model.

test mode. As shown in Fig. 5(a), the proposed receiver is
alternatively working at two modes: 1) online training mode,
and 2) online test mode. As shown in Fig. 5(b), the whole
payload is divided into D sub-blocks with Ns symbols in
each. For the i-th sub-block, the first {N i

p}
D
i=1 symbols are

utilized as the training symbols and the remaining N i
d =

Ns−N i
p symbols are the data symbols. So the number of total

training symbols is Np =
∑D

i=1 N
i
p. The resulting training

overhead is β = Np/Ns/D.
When the receiver is receiving known training symbols,

the DL-based receiver switches to the online training mode.
Given the received symbols y(k), the known training sym-
bols x(k) and estimated symbols of previous sub-block,
the DNN utilizes the Adam (Adaptive moment estimation)
optimizer which is based on the stochastic gradient descent
algorithm [30] to minimize the mean-square error of the loss
function given by

L i2 =
1
N i
p

N i
p−1∑
k=0

(
b̂i(k)− bi(k)

)2
, i = 1, 2, · · · ,D. (16)
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FIGURE 5. Structure of the proposed DL-based receiver for time-varying
UWA channels: (a) DL-based receiver, and (b) alternatively working
between the training mode and test mode.

The online training mode is stopped if L i2 becomes lower
than a predefined threshold a as shown in Fig. 5(a) or if
k = Np−1.When the training mode ends, the DNN produces

theweight set u1=
{
u(q)

}Q−1
q=1 and bias set v1=

{
v(q)

}Q−1
q=1 , which

are utilized in the online test mode.
The DL-based receiver switches into the online test mode

after obtaining the weights vector u and bias vector v. In the
online test mode, we obtain the estimate {b̂i}Di=1 of the trans-
mitted symbols {bi}Di=1 by using the equation (15).

IV. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
DL-based receiver and compare it to the traditional DFE
receiver with the recursive least squares (RLS) based channel
estimator and embedded second-order PLL by using simu-
lated time-varying channels.

A. SIMULATION ENVIRONMENT
A statistical channel simulator [31] is used to generate the
time-varying UWA channels for evaluating the performance
of the proposed DL-based receiver and the traditional
CE-based DFE receiver. The parameters for the time-varying
channel simulator are listed in Table 1. We use a SSP
measured in a sea experiment and shown in Fig. 6.
We also compute the transmission loss (TL) as shown
in Fig. 6, the computation is done using the Bellhop

FIGURE 6. Measured SSP and predicted TL with a source at 50 m depth.
The transmission loss is shown in dB.

TABLE 1. Simulation Parameters Setup.

TABLE 2. Depth of the Transducer-hydrophone Pair.

acoustic toolbox [31]. The maximum TL is approximately
60 dB. In order to investigate how the surface and bot-
tom affect the UWA channel characteristics, we construct
three configurations of transducer-hydrophone pair listed
in Table 2.

Following the parameters and configurations shown
in Table 1 and Table 2, we obtain the time-varying UWACIRs
and corresponding channel scattering functions as shown
in Fig. 7, Fig. 8, and Fig. 9. It can be seen that the simulated
channels are time varying.

B. TRAINING SCHEME
For short packet bursts, we adopt the same training scheme
for both the proposed DL-based receiver and the traditional
CE-basedDFE receiver as shown in Fig. 10. For each received
packet with Ns = 500 symbols, the first Np symbols are
utilized as the training symbols and the remaining Nd =
Ns−Np symbols are the data symbols. The resulting training
overhead is β = Np/(Np + Nd ), and the corresponding data
rate is (1− β)× Rs kbps.
For the proposed DL-based receiver, the DNN has Q = 4

layers, in which J (1), J (2), J (3) and J (4) are set to 128, 96, 48,
and 32, respectively. All layers utilize the sigmoid function
as the active functions. The number of pilot symbols Np is set
to 64, then the resulting training overhead is β = 12.8%.
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FIGURE 7. Simulated time-varying channel characteristics under the
configuration C1: (a) time-varying CIRs, and (b) corresponding channel
scattering function.

FIGURE 8. Simulated time-varying channel characteristics under the
configuration C2: (a) time-varying CIRs, and (b) corresponding channel
scattering function.

For the traditional CE-based DFE receiver as shown
in Fig. 2, we set Np to 200 for ensuring that the traditional
CE-based DFE receiver can get good performance. The

FIGURE 9. Simulated time-varying channel characteristics under the
configuration C3: (a) time-varying CIRs, and (b) corresponding channel
scattering function.

FIGURE 10. Training scheme for the proposed DNN-based receiver and
the traditional CE-based DFE receiver.

length of the feed forward filter and feedback filter are set
according to the CIRs shown in Fig. 7, Fig. 8, and Fig. 9, but
the following parameters are common for all the three config-
urations: forgetting factor λ of the RLS adaptive algorithm is
set to 0.995, proportional coefficient and integral coefficient
of PLL, i.e. Kf1 and Kf2 , are set to 0.001 and 0.000001,
respectively.

C. TEST RESULTS
Following the above three simulation configurations,
we compare the performance of the proposed DL-based
receiver with that of the traditional CE-based DFE receiver
in terms of bit error rate (BER). As shown in Fig. 11(a),
Fig. 11(b), and Fig. 11(c), with lower training overhead,
the proposed DL-based receiver consistently outperforms the
traditional CE-based DFE receiver.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENT
The experiment was carried out in the South China Sea in
November 2014. Fig. 12 depicts the layout of this experiment.
The sea depth at the experimental site is about 99 m.
One transducer was deployed to a depth of approximately
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FIGURE 11. BER performance of the proposed DL-based receiver and the
traditional CE-based DFE receiver under the configuration: (a) C1, (b) C2,
and (c) C3.

15 m from a ship. During the experiment, the ship was
drifting on the sea surface. A receive vertical linear array
of 48 hydrophones was moored with the first hydrophone at
about 72 m below the surface, and other hydrophones evenly
spaced by 0.25 m. The communication range was about 8 km

FIGURE 13. Structure of the signal transmitted in the sea experiment.

at the start of the experiment. The system timers of transmitter
and received array are synchronized by the GPS time before
deployment.

B. DATA STRUCTURE
For transmission, the input bits were encoded by a rate Rc =
1/2 convolutional coder with generator polynomial [171,
133] in octal format. The carrier frequency was fc = 3 kHz
and the symbol rate was 1 k symbols per second (ksps). The
pulse shaping filter was a square-root raised cosine filter with
a roll-off factor of 0.5 [27], leading to an occupied channel
bandwidth of about 1.5 kHz. The sampling rate was 25 kHz
at the receiver end. The structure of the transmitted data
stream and relevant parameters are shown in Fig. 13. Pream-
ble up-chirp and postamble down-chirp, Doppler-insensitive
waveforms, were added before and after the data burst for
coarse frame synchronization and estimation of an average
Doppler shift over the whole data burst. Following the frame
synchronization signal is one data packet (payload). Only
data with BPSK modulation was used for performance eval-
uation for the proposed DL-based receiver. The payload is
separated from up-chirp or down-chirp signal by the gap of
the duration 150 ms for avoiding the inter-block interference.
The length of each payload is 5500 symbols between two
guard intervals. Each burst packet is transmitted every 6.1 s.
The approximate SNR, which is estimated by using the signal
part and silent part of the received signal, is in the range
of 15 dB to 16 dB.

In order to show characteristics of the UWA channel during
the experiment, we estimate the CIRs by using the matched
filter applied to the preamble and postamble chirp signals and
the RLS algorithm applied to the data signals. It can be seen
that the channel is fast time varying within a single burst.

FIGURE 12. Layout of the South China Sea experiment.
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FIGURE 14. Examples of the CIR estimated over one burst transmission. The CIRs measured between transducer and first hydrophone are
shown in (a), (c), (e). The CIRs measured between transducer and last hydrophone are shown in (b), (d), (f). CIR is measured using: (a) and
(b) the preamble up-chirp with the correlation method; (c) and (d) the postamble down-chirp with the correlation method; (e) and (f) data
signals and the classical RLS algorithm with λ = 0.995.

From Fig. 14, we can observe that the channel multipath
spread is about 15 ∼ 30 ms, corresponding to a channel
length of 15 ∼ 30 taps in terms of the symbol rate Rs = 1
ksps. The arrival paths fluctuate very rapidly and CIRs are
clustering.

C. TRAINING SCHEME
In order to evaluate the performance of the proposed
DL-based receiver and traditional CE-based DFE receiver,
we use 6 transmitted bursts. For each burst, we have
48 received packets, so in total we have 288 received packets.
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FIGURE 15. Training schemes for (a) proposed DNN-based receiver;
(b) traditional CE-based DFE receiver.

We choose 5000 symbols including training sequence and
data sequence in each packet depicted in Fig. 13 to test the
performance of above receivers.

For the proposed DL-based receiver, the DNN has Q = 5
layers, in which J (1), J (2), J (3), J (4) and J (5) are set to 96,
48, 16, 8, and 1, respectively. All layers utilize the sigmoid
function as the active functions. Training symbols are peri-
odically inserted into the data to train the DNN. As shown
in Fig. 15(a), the whole payload is divided into D = 10
sub-blocks with Ns = 500 symbols in each. For the i-th
sub-block, the first N i

p symbols are utilized as the training
symbols and the remaining Nd = Ns − N i

p symbols are the
data symbols. So the number of total training symbols isNp =∑10

i=1 N
i
p. The resulting training overhead is β = Np/500/10.

For the traditional CE-based DFE receiver, as shown
in Fig. 15(b), we follow the training scheme usually used
in this receiver, then with Ns = 5000, the first Np symbols
are utilized as the training symbols and Nd = Ns − Np
symbols are the data symbols. The length of the feed forward
filter and feedback filter are set to 60 and 29 according to
the channel characteristic analysis. Forgetting factor is 0.995,
proportional coefficient and integral coefficient of the PLL
loop filter are set to 0.001 and 0.000001, respectively.

D. TEST RESULTS
Fig. 16 shows the time-varying phase estimated by using the
PLL for one received signal packet. Fig. 17 shows how the
performance of receivers is effected by the training overhead.
We observe that the total number of training symbols Np sig-
nificantly affects the performance of the traditional CE-based
DFE receiver. It can be seen that, when Np is less than
50, the traditional CE-based DFE receiver cannot converge.
The performance of the proposed DL-based receiver can be
improved with a few training symbols per subblock. When
N i
p = 5 for the i-th subblock, i.e. the total number of training

symbols Np = 10 × 5 = 50, the BER can reach 10−2. With
N i
p = 6, the proposed DL-based receiver can reach zero BER

for all 288 received packets. The traditional CE-based DFE
receiver needs at least 60 training symbols to converge to a
BER below 3.7× 10−4.

For the traditional CE-based DFE receiver, the improve-
ment in BER performance is small with the increase of train-
ing symbols. The error free transmission cannot be achieved

FIGURE 16. Phase estimated by PLL at SNR ≈ 15 dB.

FIGURE 17. BER versus the training overhead at SNR ≈ 15 dB.

FIGURE 18. BER versus the training overhead at SNR ≈ 10 dB.

even with a training overhead β = 300/5000 = 6%, while
the proposed DL-based receiver only needs 60 pilot symbols
to achieve the error-free transmission for all 288 packets with
a training overhead as low as β = 6× 10/5000 = 1.2%.
Since the data were originally acquired in a relatively

high SNR, we can evaluate the performance of the receivers
over different noise levels by adding recorded noise into the
received data. Fig. 18 and Fig. 19 show how the performance
of the receivers is effected by the lower SNR.

Fig. 18 shows the performance at an SNR of 10 dB. It can
be seen that, whenNp is less than 50, the traditional CE-based
DFE receiver cannot converge. With Np = 60 BER can
only reach BER=1.1 × 10−3. With the proposed DL-based
receiver, when the N i

p = 5 for each subblock, i.e. the total
training number is 50, all 288 packets can be received without
errors.
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FIGURE 19. BER versus the training overhead at SNR ≈ 5 dB.

Fig. 19 shows the receiver performance at SNR= 5 dB.
It can be seen that, with the the lower SNR, the performance
of the two receivers degrades. For the traditional CE-based
DFE receiver an error floor is BER= 7.5 × 10−3. The
proposed DL-based receiver, with Np = 400, can reach zero
BER with a training overhead β = 400/5000 = 8%.

VI. CONCLUSIONS
In this paper, we have proposed a DL-based receiver for
UWA SC communications over time-varying UWA channels.
Unlike the DL-based receivers over time-invariant channel,
the proposed receiver works with the online training stage
and online test stage for accommodating the time variability
of UWA channels. Simulation results show that the proposed
receiver outperforms the traditional CE-based DFE receiver
even if using a significantly shorter training sequence. The
proposed receiver has also been tested using sea trial data
recorder at a communication range of 8 km. The performance
of the receiver is evaluated for various training overheads
and SNRs. Experimental results demonstrate that the pro-
posed DL-based receiver achieves error-free transmission at
all SNR conditions with lower training overhead compared to
the traditional CE-based DFE receiver, which cannot provide
the error-free transmission.
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